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Abstract

At present, presurgical functional mapping is the most prevalent clinical application of functional 

magnetic resonance imaging (fMRI). Signal dropouts and distortions caused by susceptibility 

effects in the current standard echo planar imaging (EPI)-based fMRI images are well-known 

problems and pose a major hurdle for the application of fMRI in several brain regions, many of 

which are related to language mapping in presurgical planning. Such artifacts are particularly 

problematic in patients with previous surgical resection cavities, craniotomy hardware, 

hemorrhage, and vascular malformation. A recently developed T2-prepared (T2prep) fMRI 

approach showed negligible distortion and dropouts in the entire brain even in the presence of 

large susceptibility effects. Here, we present initial results comparing T2prep- and multiband EPI-

fMRI scans for presurgical language mapping using a sentence completion task in patients with 

brain tumor and epilepsy. In all patients scanned, T2prep-fMRI showed minimal image artifacts 

(distortion and dropout) and greater functional sensitivity than EPI-fMRI around the lesions 

containing blood products and in air-filled cavities. This enhanced sensitivity in T2prep-fMRI was 

also evidenced by the fact that functional activation during the sentence completion task was 

detected with T2prep-fMRI but not with EPI-fMRI in the affected areas with the same statistical 

threshold, whereas cerebrovascular reactivity during a breath-hold task was preserved in these 

same regions, implying intact neurovascular coupling in these patients. Although further 

investigations are required to validate these findings with invasive methods such as direct cortical 
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stimulation mapping as the gold standard, this approach provides an alternative method for 

performing fMRI in brain regions with large susceptibility effects.
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INTRODUCTION

Presurgical functional mapping in patients with brain tumor and epilepsy is increasingly 

performed in large medical centers across the United States and worldwide (1–4). In patients 

with brain tumor, because of the infiltrative nature of most gliomas, complete surgical tumor 

removal is often impossible. To accomplish a maximal tumor resection for optimal 

therapeutic effect and simultaneously preserve neurological function and quality of life, a 

critical balance must be sought between the extent of resection and risk of postprocedural 

neurological deficit due to inadvertent injury to adjacent healthy functional (also known as 

“eloquent”) brain tissue. A similar concern exists with resection of other focal brain lesions 

such as vascular malformations and epileptogenic lesions such as malformations of cortical 

development. Thus, individual-based brain mapping of critical brain functions, such as 

sensorimotor and language, and accurate information on hemispheric dominance are of 

utmost importance for neurosurgeons to decide which surgical options are appropriate and 

whether less-invasive therapeutic approaches such as radiotherapy should be considered.

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) 

has revolutionized the non-invasive assessment of human brain function. Shortly after its 

invention, it was used to locate sensorimotor and language areas in patients with brain tumor 

(5–7). Since then, substantial evidence has been established for the reliability of presurgical 

fMRI in patients with brain tumor and epilepsy (2, 6, 8–13). As a noninvasive technique, 

fMRI can provide critical information on brain function preoperatively, thus helping to 

reduce the need for invasive diagnostic procedures such as intraoperative cortical stimulation 

mapping.

Currently, gradient-echo (GRE) echo planar imaging (EPI) is the method of choice for most 

BOLD fMRI studies. However, the well-known geometric distortion and signal dropouts in 

EPI BOLD images caused by large magnetic susceptibility effects have hampered its 

application in some brain areas (14). In a normal brain, regions close to air cavities are 

usually the most affected by susceptibility artifacts, which typically include the orbitofrontal 

and temporal lobes. For instance, many brain studies using EPI BOLD fMRI at 3 Tesla (T) 

or lower fields have reported difficulties in detecting neuronal activation in regions such as 

inferior temporal (with a language task) (15, 16), medial temporal (memory task) (17), 

anterior temporal (face recognition) (18), and olfactory cortex (in both frontal and temporal 

lobes) (19). Many of these areas are particularly relevant for language localization, a primary 

diagnostic aim in presurgical mapping. Furthermore, such susceptibility artifacts become 

more severe in the presence of magnetic resonance (MR)-compatible metal head implants 

(20–23), such as metallic dental fillings and braces (24–26).

Hua et al. Page 2

Tomography. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For presurgical fMRI, a significant subset of patients is affected by the distortion and 

dropout artifacts (thus, compromised sensitivity) in EPI BOLD, presenting a significant 

barrier for proper evaluation and interpretation of fMRI results, particularly in the following 

occasions:

1. Signal voids and distortions in regions close to surgical resection cavities and/or 

craniotomy hardware. This is a problem in almost all patients with prior 

resections who undergo presurgical fMRI in anticipation of additional surgery 

(27). About 25% of our presurgical mapping referrals at the Johns Hopkins 

Hospital fall into this category. These regions, understandably, are particularly 

important for presurgical planning and surgical outcome assessment; yet, the 

susceptibility artifacts impair the ability of EPI BOLD fMRI to map such 

eloquent cortex.

2. Artifacts in regions close to calcified structures, hemorrhages (eg, in vascular 

malformation) (28), and lesions that contain hemosiderin.

3. Artifacts due to intracranial metallic implants and devices placed during surgery 

or endovascular intervention, such as MR-compatible aneurysm clips or 

endovascular coils.

Recently, we demonstrated a whole-brain T2-prepared (T2prep) BOLD fMRI approach (29, 

30) that uses a spin preparation module (T2prep) (31–33) before readout to induce T2-

weighted BOLD effects for fMRI. This approach separates BOLD contrast generation from 

image acquisition, thereby opening the possibility to use readout sequences that are less 

sensitive to susceptibility artifacts (dropout and distortion) compared with EPI. We have 

shown in normal human brains that by adopting a 3-dimensional (3D) fast GRE (also known 

as turbo field echo, TFE, or TurboFLASH) readout with short echo time (TE), a sequence 

typically used in anatomical imaging, the T2prep BOLD fMRI approach showed minimal 

signal dropout and distortion across the entire brain even in the presence of metallic dental 

braces (34), allowing clear access to regions near air-filled cavities and metal objects that are 

often inaccessible with conventional EPI BOLD (14–26).

In the current study, we report initial results for using T2prep BOLD fMRI for presurgical 

language mapping in patients with brain tumor and epilepsy on 3 T clinical MRI scanners 

and evaluate the results by comparing with the current standard GRE EPI BOLD fMRI 

performed in the same patients.

METHODOLOGY

Four patients (female = 1; male = 3; age, 27–57 years; range, 39.5 ± 12.7 years; see Table 1 

for more information) were recruited for this pilot study. Planned MRI scans were 

completed in all patients with satisfactory image quality. This study was approved by the 

Johns Hopkins Institutional Review Board, and written informed consent was obtained from 

each patient.

All scans were performed on a 3 T Philips MRI scanner (Philips Healthcare, Best, The 

Netherlands). A 32-channel phased-array head coil was used for radiofrequency reception 
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and a body coil for transmit. A respiratory belt was placed around the patient’s chest during 

the MRI scans. The following scans were performed for each patient:

1. 3D T1-weighted magnetization-prepared rapid acquisition GRE (MPRAGE) scan 

(TR/inversion time/TE = 2300/ 900/3.5 milliseconds; voxel = 1 mm isotropic; 

176 slices).

2. T2-weighted fluid attenuated inversion recovery (FLAIR) scan (TR/inversion 

time/TE = 9000/2500/116 milliseconds; voxel = 0.7 × 0.7 × 3 mm3; 50 slices).

3. T2prep BOLD fMRI (TR = 2000 milliseconds; flip angle = 20°; T2prep effective 

TE = 50 milliseconds; voxel = 3.75 × 3.75 × 4 mm3; 40 slices; no gap; parallel 

imaging or SENSE = 2 × 1.5 (AP × FH), single-shot 3D turbo field echo readout, 

also known as 3D fast GRE, centric phase encoding profile starting from the 

center of k-space, TRGRE/TEGRE = 3.2/1.34 milliseconds).

4. 2-dimensional GRE EPI BOLD fMRI (TR = 2000 milliseconds; flip angle = 80°; 

TE = 30 milliseconds; voxel = 3.75 × 3.75 × 4 mm3; multiband or blipped-CAIPI 

= 2; single-shot EPI readout; and fat suppression).

Typical imaging parameters for presurgical fMRI used clinically were chosen for T2prep 

and GRE EPI BOLD fMRI scans (matched between the 2 scans). Linear-only and linear plus 

optimized high-order shim (35) were applied in T2prep BOLD and EPI, respectively. Note 

that all EPI images were acquired with advanced parallel imaging technique (multiband or 

blipped-CAIPI) (36), and were shimmed with optimal high-order method and distortion-

corrected (35). Therefore, these images represent the best-quality EPI images with least 

possible dropout and distortion on state-of-the-art clinical MRI scanners.

A sentence completion task typically used for language mapping clinically (37, 38) was 

adopted in this study. It consists of 3 blocks of 40-second control and 40-second active 

periods, followed by a 20-second control period in the end (total duration, 260 seconds). 

During the control period, strings of scrambled letters were presented on a screen and the 

patients were instructed to look at them. During the active period, the patients were asked to 

read (silently) a meaningful English sentence with 1 word missing presented every 5 seconds 

and to complete the sentence with at least 1 proper word. The sentence completion task is 

expected to activate mainly key language regions in the brain including the inferior frontal 

and superior temporal lobes. In addition to the sentence completion task, all patients were 

also instructed to perform a breath-hold task, consisting of 4 blocks of 40-second normal 

breathing, 4-second inhalation, and 16-second breath holding, followed by a 20-second 

normal breathing period in the end (total duration, 260 seconds). This task was routinely 

performed in our clinical scans to evaluate potential impairment of neurovascular coupling 

in these patients (3). All instructions in the sentence completion and breath-hold tasks were 

delivered using a projector from the back of the magnet onto a screen fixed on the head coil. 

Both paradigms were programmed using E-Prime 2.0 (Science Plus Group, The 

Netherlands). Each patient was asked to perform the sentence completion and breath-hold 

tasks twice during a T2prep BOLD and an EPI BOLD scan, respectively (ie, a total of 4 

fMRI scans for each patient). The order of the fMRI scans was pseudorandomized among 

patients.
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The statistical parametric mapping (SPM) software package (Version 12, Wellcome Trust 

Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/) and other in-

house code programmed in Matlab (MathWorks, Natick, MA) were used for image analysis. 

Functional MRI images were motion-corrected using the realignment routine in SPM. Slice 

timing correction was performed for 2D multi-slice EPI BOLD scans, but this was not 

needed for 3D T2prep BOLD scans. Anatomical images were coregistered with fMRI 

images. As presurgical fMRI is usually analyzed on an individual basis, the normalization 

step of fMRI images to the Montreal Neurological Institute (MNI) space was not performed. 

A general linear model was used to detect functional activation (adjusted P < .05; cluster 

size, ≥3). Motion parameters estimated from the realignment routine and time courses 

recorded from the respiratory belt were regressed out. The relative signal change (ΔS/S) was 

calculated as the difference signal between control and active periods divided by average 

baseline signal. To avoid transition signals between the control and active periods, only data 

points acquired during the second half of the control and active periods were used to 

calculate the average signals. Temporal signal-to-noise ratio (tSNR) was taken as the signal 

divided by standard deviation along the time course in each voxel. Contrast-to-noise ratio 

(CNR) was defined as the product of tSNR and (ΔS/S). Two-sample two-tailed t-tests with 

unequal variances were performed to compare the results from the 2 fMRI methods. Both 

activation-based and regions of interest (ROIs)-based analyses were conducted. In 

activation-based analysis, functional results in each method were averaged over all voxels 

that had met the criteria for activation detection in respective scans (suprathreshold voxels: 

same statistical threshold for both methods as described above, but the selection of voxels 

can be different in each method). In ROI-based analysis, a direct comparison between the 2 

fMRI methods was allowed by using the same ROIs (thus same selection of voxels) in both 

fMRI methods. Two ROIs—the inferior frontal lobe and the superior temporal lobe—were 

manually delineated on the anatomical (FLAIR) images for each patient, which were then 

overlaid onto all fMRI scans from the same patient for signal averaging. Both ROIs include 

important language regions: the inferior frontal lobe includes the Broca’s area (left) and its 

homologue (right); the superior temporal lobe include the Wernicke’s area (left) and its 

homologue (right).

RESULTS

Figure 1 shows typical GRE EPI and T2prep BOLD and FLAIR images acquired in this 

study with original resolution in respective scans before preprocessing (therefore slices not 

perfectly aligned). Patient 2 (Table 1) had a hemorrhagic glioblastoma in the left frontal 

opercular and insular cortex, causing signal dropouts in EPI images due to the presence of 

blood products in the tumoral regions. Image distortion and dropout in the frontal cortex and 

in some basal regions of the brain were also apparent in EPI images, as commonly shown 

previously in normal brain scans (14–20). In contrast, the T2prep BOLD images showed 

minimal distortion and dropout across the entire brain, including the hemorrhagic tumor 

areas, and the shape of the images closely resembled that of the anatomical (FLAIR) images.

Figure 2 shows fMRI results from a patient (patient 1 in Table 1) with a glioblastoma in the 

left temporal lobe containing blood products in the cavity, causing severe dropouts in the 

EPI images (Figure 2C). The sentence completion task normally activates both the inferior 
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frontal and superior temporal lobes. Activation in the inferior frontal areas (yellow arrow) in 

both hemispheres were detected on both the T2prep and GRE EPI BOLD scans. However, 

activation in the superior temporal area (red arrow) was considerably diminished around the 

dropout regions in the EPI BOLD scan compared with the T2prep BOLD scan. No 

significant activation in the right temporal lobe was detected in this patient in both the 

T2prep and EPI BOLD scans. In the breath-hold task (Figures 2, E and F), positive 

cerebrovascular reactivity (CVR) was detected in most normal-appearing brain regions, 

including the areas surrounding the glioblastoma, using T2prep BOLD fMRI.

Similarly, Figure 3 shows fMRI results from a patient with epilepsy with a larger cavernous 

malformation in the left temporal lobe and a much smaller one in the anterior left frontal 

lobe (patient 4 in Table 1), causing signal dropouts in the areas in the EPI images (Figure 

3C). Activation in the left inferior frontal lobe (yellow arrow) was detected in the T2prep 

BOLD scan (Figure 3, A and B) but not the GRE EPI BOLD scan (Figures 3, C and D). No 

significant activation in the superior temporal lobe (red arrow) was detected in this patient 

with both the T2prep and EPI BOLD scans. In the breath-hold task (Figure 3, E and F), 

positive CVR was detected in most normal-appearing brain regions in both hemispheres 

including the areas surrounding the lesion using T2prep BOLD fMRI.

Table 2 summarizes the individual quantitative fMRI results for language mapping using the 

sentence completion task from all patients. The relative signal change (ΔS/S), tSNR, and 

CNR were comparable between T2prep and EPI BOLD scans in all patients in activation-

based analysis (described in Methodology). In all 4 patients studied, lesions were adjacent to 

the inferior frontal and/or superior temporal areas, which resulted in substantial 

susceptibility artifacts (signal dropout) in the EPI images. In the ROI-based analyses, 

although tSNR values were still comparable between the 2 methods in these regions, relative 

signal change (ΔS/S) and CNR were both lower in EPI BOLD scans compared with T2prep 

BOLD scans in all patients. Because of the location of the lesions, the inferior frontal area 

was more affected in patients 2–4, whereas the superior temporal area was more affected in 

patient 1. Note that in the ROI-based analyses, some voxels included may not have passed 

the activation detection threshold described in Methodology. Therefore, the averaged signal 

changes over all voxels in the ROI were smaller than those from all activated voxels in 

respective scans in all patients. None of the (ΔS/S) results with a negative mean value was 

significantly different from zero.

Table 3 compares the quantitative fMRI results between the T2prep and GRE EPI BOLD 

approaches from the sentence completion and breath-hold tasks (4 patients, 2 scans/tasks per 

patient using each method; therefore, n = 8). Consistent with individual results shown in 

Table 2, the relative signal change (ΔS/S), tSNR, and CNR were all comparable between the 

2 methods in the respective activated voxels. In the inferior frontal and superior temporal 

lobes, tSNR values were comparable between the 2 methods, whereas ΔS/S and CNR were 

both significantly lower in EPI BOLD scans than in T2prep BOLD scans.
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DISCUSSION

Presurgical functional mapping is currently the most prevalent clinical application of fMRI 

and is the only one with approved AMA (American Medical Association) billing CPT 

(Current Procedural Terminology) codes (http://www.asfnr.org/cpt-codes/). Susceptibility 

artifacts, including image distortion and signal dropouts, in EPI-based BOLD fMRI images 

have been a major confound for the analysis and clinical interpretation of fMRI results in 

several important brain regions (14–26), many of which are particularly related to language 

mapping in presurgical planning. In addition, such artifacts affect a significant subset of 

patients undergoing presurgical fMRI, such as patients with previous surgical resection 

cavities, craniotomy hardware, calcified structures, hemorrhage, vascular malformation, and 

lesions that contain hemosiderin in the brain (27, 28). A number of methods have been 

developed to ameliorate this problem, including spin echo-based sequences, gradient spin 

echo, spiral MRI, advanced shimming techniques, z-shim, various methods for near metal 

imaging, and many others (30). Recently, we have developed an alternative approach for 

BOLD fMRI that can achieve whole-brain fMRI images with typical temporal and spatial 

resolution for fMRI, and image quality (in terms of distortion and dropouts) that is 

comparable with standard anatomical MR images (such as MPRAGE and FLAIR), even in 

the presence of large susceptibility effects such as in areas near air cavities and metal objects 

in the brain (29, 30, 34).

We further evaluated the utility of the T2prep BOLD fMRI approach for presurgical 

planning in patients who suffer from substantial susceptibility artifacts in EPI images. We 

present herein our initial results for comparing T2prep BOLD and GRE EPI BOLD fMRI 

scans for presurgical language mapping in patients with brain tumor and epilepsy. 

Susceptibility-induced signal dropouts and distortion around lesions containing blood 

products and air-filled cavities were apparent in EPI BOLD images, whereas such artifacts 

were minimal in T2prep BOLD images in the same regions (Figures 1–3). In all patients 

studied, these artifacts affected important language regions such as the inferior frontal and 

superior temporal areas. Functional activation during the sentence completion task was 

detected with T2prep BOLD fMRI but not with EPI BOLD fMRI in the affected areas with 

the same statistical threshold (Figures 2 and 3). We attribute this mainly to a substantially 

impaired functional sensitivity in EPI BOLD due to large susceptibility effects in these 

regions. This was supported by subsequent quantitative analysis of the fMRI results both at 

the individual (Table 2) and group (Table 3) levels. As expected, functional results (ΔS/S, 

tSNR, and CNR) were comparable between the 2 methods in voxels that met respective 

activation detection criteria in each scan, as only voxels with sufficient functional sensitivity 

in each method were included in signal averaging. However, significant decreases in ΔS/S 

and CNR in the inferior frontal and superior temporal areas were found in EPI BOLD 

compared with T2prep BOLD. Note that tSNR was still comparable between the 2 methods 

in these regions. This can be explained by the fact that as physiological noise is dominant in 

fMRI, a decrease in tSNR may not be proportional to the MR signal loss (39–42). This also 

indicates that even when complete signal dropout is avoided and reasonable tSNR is 

achieved, the underlying BOLD sensitivity (CNR) can be much diminished in regions 

affected by large susceptibility artifacts, as discussed by others (43–45).
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Hypercapnia induced by a functional task such as breath-hold is often used to probe the 

integrity of neurovascular coupling in the brain of patients undergoing presurgical fMRI (3). 

This is particularly important for the interpretation of presurgical fMRI results in patients. In 

all patients scanned, positive CVR during the breath-hold task was detected in most normal-

appearing brain regions using T2prep BOLD fMRI, which includes the areas showing 

substantial signal losses in EPI BOLD images. This provides further evidence for our 

hypothesis that the lack of activation in some language regions affected by susceptibility 

artifacts in EPI BOLD scans (for instance, Figures 2 and 3) was mainly due to reduced 

functional sensitivity compared to T2prep BOLD fMRI, rather than impaired neurovascular 

coupling in these patients.

One trade-off in T2prep BOLD fMRI is that it gives T2-weighted spin echo BOLD contrast, 

which is less sensitive to the BOLD effect than the T2*-weighted GRE BOLD contrast. 

Although this is a disadvantage in regions not affected by susceptibility artifacts, the 

sensitivity (CNR) in T2prep BOLD was significantly higher than that of GRE-EPI in brain 

regions with large susceptibility effects. Whereas, the CNR in small susceptibility areas was 

relatively higher in EPI BOLD, the T2prep BOLD data still provided sufficient detection 

power for neuronal activities in these regions (30). However, in regions with large 

susceptibility effects, GRE EPI often failed to detect meaningful signal changes, whereas 

T2prep BOLD showed preserved CNR across the entire brain. Whether such a trade-off in 

sensitivity between regions with small and large susceptibility artifacts is worthwhile for 

presurgical fMRI in all brain regions (sensorimotor, language, and memory) requires further 

investigation. Our initial results showed here suggest that T2prep BOLD may be a promising 

alternative method for presurgical fMRI when large susceptibility artifacts are present in EPI 

BOLD images. As presurgical fMRI protocols often consist of several anatomical and 

functional scans, this can be feasibly incorporated into existing clinical workflow. The 

operator can determine whether the T2prep BOLD sequence should be run based on 

evaluation of initial scout images, a GRE EPI scan without functional task (typically for a 

few seconds), field maps, or other anatomical images for assessment of susceptibility 

artifacts.

The sentence completion task used in this study is commonly used for presurgical language 

mapping in clinics, which is expected to invoke neuronal activation in both the inferior 

frontal and superior temporal areas in both hemispheres of a normal brain (37, 38). In some 

patients (Figures 2 and 3), significant activation during the sentence completion task was 

detected only in the inferior frontal but not in the superior temporal areas, or only in one of 

the hemispheres with both the T2prep and EPI BOLD scans, while neurovascular coupling 

seemed to be intact as indicated by the fMRI results during the breath-hold scans. This could 

be because of certain pathological reasons (37, 38, 46, 47), but further validation is 

warranted using direct cortical stimulation, the “gold standard” method.

In summary, we showed that T2prep BOLD fMRI has potential for presurgical language 

mapping in patients with brain tumor and epilepsy. These initial data on a small group of 

patients show higher functional sensitivity in brain regions affected by large susceptibility 

artifacts than in the current standard EPI BOLD fMRI scans. To make T2prep BOLD a 

clinically useful technique, validation in a larger cohort and with invasive methods such as 
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direct cortical stimulation as the gold standard is required. If successful, we expect this 

approach to benefit a significant subset of patients undergoing presurgical fMRI by 

providing an alternative method for performing fMRI in brain regions with large 

susceptibility effects.
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Abbreviations

fMRI Functional magnetic resonance imaging

EPI echo planar imaging

T2prep T2-prepared

BOLD blood oxygenation level-dependent

GRE gradient-echo

MR magnetic resonance

FLAIR fluid attenuated inversion recovery

3D 3-dimensional

TE echo time

TR repetition time

tSNR temporal signal-to-noise ratio

CNR contrast-to-noise ratio

ROIs regions of interest

CVR cerebrovascular reactivity
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Figure 1. 
Representative echo planar imaging (EPI) and T2-prepared (T2prep) blood oxygenation 

level-dependent (BOLD) functional magnetic resonance imaging (fMRI), and anatomical 

(fluid attenuated inversion recovery [FLAIR]) images from patient 2 described in Table 1. 

Raw images at original spatial resolution in respective scans before preprocessing are 

shown. Slice numbers in the EPI and T2prep BOLD scans are indicated at the top of each 

column. Slices from different scans are approximately aligned. Note that anatomical 

(FLAIR) images were acquired at a much higher spatial resolution than the EPI and BOLD 

fMRI images. Linear shim was applied in T2prep BOLD. Optimal high-order shim was used 

in gradient-echo (GRE) EPI BOLD.
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Figure 2. 
Functional MRI results from patient 1 described in Table 1. Activated voxels during the 

sentence completion task using T2prep BOLD fMRI overlaid on the original T2prep BOLD 

and coregistered anatomical (FLAIR) images, respectively (A, B). Activated voxels during 

the sentence completion task using GRE EPI BOLD fMRI overlaid on the EPI and 

anatomical (FLAIR) images, respectively (C, D). Voxels with positive cerebrovascular 

reactivity (CVR) (“activated”) during the breath-hold task using T2prep BOLD fMRI 

overlaid on the T2prep BOLD and anatomical (FLAIR) images, respectively (E, F). Note 

that the anatomical (FLAIR) images displayed here were down-sampled to match the 

original spatial resolution of the fMRI images. The activated voxels are highlighted with 

their t-scores. The scale bar on the right indicates the range of t-scores in the highlighted 

voxels. The yellow and red arrows point to the inferior frontal and superior temporal lobes, 

respectively (2 important language regions in the brain).
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Figure 3. 
Functional MRI results from patient 4 described in Table 1. Activated voxels during the 

sentence completion task using T2prep BOLD fMRI overlaid on the original T2prep BOLD 

and coregistered anatomical (FLAIR) images, respectively (A, B). Activated voxels during 

the sentence completion task using GRE EPI BOLD fMRI overlaid on the EPI and 

anatomical (FLAIR) images, respectively (C, D). Voxels with positive CVR (“activated”) 

during the breath-hold task using T2prep BOLD fMRI overlaid on the T2prep BOLD and 

anatomical (FLAIR) images, respectively (E, F). Note that the anatomical (FLAIR) images 

displayed here were down-sampled to match the original spatial resolution of the fMRI 

images. The activated voxels are highlighted with their t-scores. The scale bar on the right 

indicates the range of t-scores in the highlighted voxels. The yellow and red arrows point to 

the inferior frontal and superior temporal lobes, respectively (two important language 

regions in the brain).
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Table 3

Statistical Comparison of Quantitative fMRI Results Between T2prep and EPI BOLD fMRI (n = 8)†

T2prep EPI P

Activated voxels in respective scansa

ΔS/S (%)c 1.58 ±0.43 1.62 ± 0.46 .872

tSNRc 61.33 ± 13.20 58.11 ± 14.07 .877

CNRc 97.51 ± 24.77 94.52 ± 20.55 .823

Inferior frontal lobe including the Broca’s areab

ΔS/S (%) 0.73 ± 0.37 0.23 ±0.11 .001*

tSNR 44.66 ±5.11 38.99 ±6.12 .576

CNR 33.45 ±17.15 5.96 ± 4.39 .012*

Superior temporal lobe including the Wernicke’s areab

ΔS/S (%) 0.47 ± 0.25 0.25 ±0.14 .049*

tSNR 68.89 ±20.17 64.12 ± 18.03 .828

CNR 31.79 ± 8.02 14.20 ±4.81 .042*

Abbreviations: T2prep, T2-prepared; tSNR, temporal signal-to-noise ratio; CNR, contrast-to-noise ratio; EPI, echo planar imaging.

†
Each method was performed twice (2 tasks: sentence completion and breath-hold) in all 4 patients, therefore n = 8.

*
P values <.05.

a
Signals averaged over all activated voxels in respective scans.

b
Signals averaged over all voxels (including voxels that did not meet the activation detection criteria described in Methodology) in the inferior 

frontal and superior temporal lobes, respectively. Regions of interest (ROIs) were manually drawn on the anatomical (FLAIR) image for each 
patient. The same ROI was used for all scans from each subject.

c
Relative signal change (ΔS/S), tSNR, and CNR are defined in Methodology.
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