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Abstract

Moderate to severe fatigue occurs in 14% to 96% of oncology patients undergoing active 

treatment. Current interventions for fatigue are not efficacious. A major impediment to the 

development of effective treatments is a lack of understanding of the fundamental mechanisms 

underlying fatigue. In the current study, differences in phenotypic characteristics and gene 

expression profiles were evaluated in a sample of breast cancer patients undergoing chemotherapy 

(CTX) who reported low (n=19) and high (n=25) levels of evening fatigue. Compared to the low 

group, patients in the high evening fatigue group reported lower functional status scores, higher 

comorbidity scores, and fewer prior cancer treatments. One gene was identified as up-regulated 

and eleven genes were identified to be down-regulated in the high evening fatigue group. Gene set 

analysis found 24 down-regulated and 94 simultaneously up and down perturbed pathways 

between the two fatigue groups. Transcript Origin Analysis found that differential expression 

originated primarily from monocytes and dendritic cell types. Query of public data sources found 

18 gene expression experiments with similar differential expression profiles. Our analyses revealed 

that inflammation, neurotransmitter regulation, and energy metabolism are likely mechanisms 

associated with evening fatigue severity; that CTX may contribute to fatigue seen in oncology 

patients; and that the patterns of gene expression may be shared with other models of fatigue (e.g., 

physical exercise, pathogen-induced sickness behavior). These results suggest that the mechanisms 

that underlie fatigue in oncology patients are multi-factorial.
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INTRODUCTION

In women undergoing chemotherapy (CTX) for breast cancer, prevalence rates for fatigue 

range from 30% to 80% (Alcantara-Silva, Freitas-Junior, Freitas, & Machado, 2013). The 

severity of fatigue varies over the course of a day and displays marked inter-individual 

variability (Dhruva et al., 2010; B. A. Fletcher et al., 2009; Miaskowski et al., 2008; 

Molassiotis & Chan, 2004). Some of this inter-individual variability is explained by the fact 

that morning and evening fatigue are distinct but related symptoms (Dhruva et al., 2013; 

Dhruva et al., 2010; Miaskowski et al., 2008). Of note, morning and evening fatigue are 

distinguished by different phenotypic and genotypic characteristics. For example, a higher 

number of comorbid conditions was associated with more severe morning fatigue, whereas 

caring for children at home was associated with more severe evening fatigue (Dhruva et al., 

2010). Variations in interleukin (IL) 8 and tumor necrosis factor alpha (TNFA) were 

associated with the severity of morning fatigue, whereas variations in interleukin 1 receptor 

2 (IL1R2), IL4, IL6, and TNFA are associated with the severity of evening fatigue 

(Aouizerat et al., 2009; Dhruva et al., 2014; Miaskowski et al., 2010). A better 

understanding of the unique phenotypic and molecular characteristics associated with 

morning and evening fatigue would provide the means to identify high risk patients and to 

develop and test interventions for these devastating symptoms.

Difficulties in the diagnosis and treatment of fatigue are related to our lack of understanding 

of the fundamental mechanisms that underlie this debilitating symptom. Work by our group 

(Aouizerat et al., 2009; Miaskowski et al., 2010) and others (Bower et al., 2013; Bower et 

al., 2009; Collado-Hidalgo, Bower, Ganz, Irwin, & Cole, 2008; Reinertsen et al., 2011) 

suggest that inflammation plays a role in the development of fatigue. However, while it is 

safe to say that the mechanisms for fatigue are multi-factorial (Ryan et al., 2007), the 

causative pathways remain to be identified. One approach to identify additional 

mechanism(s) for fatigue is to evaluate for changes in gene expression associated with this 

symptom.

To date, only six studies, in four independent samples, have evaluated for differences in gene 

expression associated with fatigue in oncology patients (Bower, Ganz, Irwin, Arevalo, & 

Cole, 2011; Hsiao, Araneta, Wang, & Saligan, 2013; Hsiao, Wang, Kaushal, & Saligan, 

2013; Landmark-Hoyvik et al., 2009; Light et al., 2013; Saligan et al., 2013). One study 

evaluated changes in gene expression in pathways solely involved in mitochondrial function 

(Hsiao, Wang, et al., 2013). In another study (Light et al., 2013), gene expression was 

evaluated for a number of specific pathways (e.g., adrenergic, monoamine and peptides). Of 

the four studies that collected whole-transcriptome measurements, three focused on select 

genes and pathways related to mitochondrial function (Hsiao, Araneta, et al., 2013) and/or 

inflammation and immune function (Bower et al., 2011; Hsiao, Araneta, et al., 2013; Saligan 
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et al., 2013). Only one study reported findings on the whole transcriptome (Landmark-

Hoyvik et al., 2009). In all six studies, a general measure of fatigue was used and diurnal 

variability in fatigue was not evaluated. Based on previous work on diurnal variations in 

fatigue (Aouizerat et al., 2009; Dhruva et al., 2013; Miaskowski et al., 2010), an evaluation 

of one dimension of fatigue (i.e., evening fatigue) may improve our ability to detect 

differences in gene expression between patients who do and do not experience fatigue. 

Additional studies are needed that apply hypothesis-generating approaches utilizing the 

entire transcriptome in order to identify novel pathways and processes associated with 

fatigue in oncology patients.

In this study, we evaluated for differences in gene expression in peripheral leukocytes of 

patients with low and high levels of evening fatigue. The role of central versus peripheral 

mechanisms in the development and maintenance of fatigue continues to be debated 

(Yavuzsen et al., 2009). However, peripheral changes in the expression of pro-inflammatory 

cytokine genes can influence neural and endocrine activity (Dantzer, O’Connor, Freund, 

Johnson, & Kelley, 2008) and contribute to a reciprocal regulation between the neural and 

innate immune systems termed the “neuro-immune circuit” (Irwin & Cole, 2011). This 

neuro-immune circuit originates with the innate immune system (Cole, Hawkley, Arevalo, & 

Cacioppo, 2011; Powell, Mays, Bailey, Hanke, & Sheridan, 2011). Pro-inflammatory 

cytokines can cross the blood brain barrier (Quan & Banks, 2007). In addition, increased 

synthesis of cytokines in the brain can occur in response to peripheral input (Quan & Banks, 

2007). Therefore, studies of gene expression from peripheral leukocytes will provide 

valuable information on fatigue.

Evaluation of the parallel expression measures of a genome (e.g., the transcriptome) will 

increase our understanding of the functions of various genes as well as their contributions to 

the biology of an organism (Butte, 2002). Moreover, novel statistical approaches permit the 

identification of differential gene expression patterns at the level of a gene, a biological 

pathway, and the entire transcriptome. The aim of this study, in a sample of patients 

undergoing CTX for breast cancer (n=44), was to use high throughput methods to determine 

if there are changes in gene expression in peripheral leukocytes associated with high and low 

levels of evening fatigue. The analytic methods employed in this study included: the use of 

microarray data to identify genes and pathways associated with evening fatigue; the use of 

bioinformatic analyses to infer the cellular origin for the differences in gene expression 

detected in peripheral leukocytes; and an interrogation of publically available transcriptome 

gene expression experiments that share a similar pattern with the gene expression differences 

identified in our sample.

METHODS

A detailed description of the methods is found in Supplemental File 1.

Patients and Settings

This longitudinal study enrolled patients who were ≥18 years of age; had a diagnosis of 

breast, gastrointestinal, gynecological, or lung cancer; had received CTX within the 

preceding four weeks; were scheduled to receive at least two additional cycles of CTX; were 
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able to read, write, and understand English; and gave written informed consent. Patients 

were recruited from two Comprehensive Cancer Centers, one Veteran’s Affairs hospital, one 

public hospital, and four community-based oncology practices. The first 44 eligible patients 

with breast cancer were included in this study.

Instruments

A demographic questionnaire obtained information on age, gender, ethnicity, marital status, 

living arrangements, education, employment status, and income. The Karnofsky 

Performance Status (KPS) scale was used to evaluate patients’ functional status (Karnofsky, 

Abelmann, Craver, & Burchenal, 1948). The Self-administered Comorbidity Questionnaire 

(SCQ) evaluated the occurrence, treatment, and functional impact of common comorbid 

conditions (e.g., diabetes, arthritis) (Sangha, Stucki, Liang, Fossel, & Katz, 2003).

The Lee Fatigue Scale (LFS) consists of 13 items designed to assess physical fatigue (K. A. 

Lee, Hicks, & Nino-Murcia, 1991). A total mean fatigue score was calculated with higher 

scores indicating greater fatigue severity. Patients were asked to rate each item based on how 

they felt prior to going to bed each night over the previous week (i.e., evening fatigue). The 

LFS has well-established validity and reliability. A score of >5.6 indicates a clinically 

meaningful level of evening fatigue (B. S. Fletcher et al., 2008). From the first 50 patients 

with breast cancer enrolled in the parent study, data from 44 patients were selected to enrich 

for low (LFS score <5.6, n=19) and high (LFS score ≥5.6, n=25) levels of evening fatigue.

Study Procedures

The study was approved by the Committee on Human Research at the University of 

California, San Francisco (UCSF) and by each of the study sites. A research staff member 

approached patients who had received at least one cycle of CTX in the infusion unit to 

discuss participation in the study. All patients signed written informed consent. Depending 

on the length of their CTX cycles, patients completed study questionnaires in their homes, a 

total of six times over two cycles of CTX (i.e., prior to the next CTX administration 

(enrollment), approximately 1 week after CTX administration, approximately 2 weeks after 

CTX administration). For this paper, mean evening fatigue scores at the time of enrollment 

were used in the analyses. Medical records were reviewed for disease and treatment 

information.

Gene Expression Measurements

Sample processing—Total ribonucleic acid (RNA) was extracted from whole blood 

collected into PAXgene RNA Stabilization tubes and processed using a standard protocol 

(Qiagen, USA). The blood specimen was collected prior to administration of CTX. RNA 

concentration was measured by NanoDrop UV spectrophotometry (ThermoScientific, USA). 

RNA integrity was evaluated using the RNA 6000 Nano Assay (Agilent, USA). All RNA 

samples were determined to be of good quality (i.e., RNA Integrity Number (RIN) ≥ 8) and 

were retained for gene expression profiling.

Microarray hybridization—For each sample, approximately 100 nanograms of total RNA 

was labeled using the Illumina Total Prep RNA Amplification Kit (Ambion, USA) and then 
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hybridized to the HumanHT-12 v4.0 Expression BeadChip (47,214 transcripts) (Illumina, 

USA). The BeadChips were scanned using iScan system (Illumina, USA) at the UCSF 

Genomics Core Facility. Each HumanHT-12 BeadChip contains 12 sample BeadArrays. 

Forty-seven samples were measured (i.e., 44 patient specimens, 3 technical replicates). To 

assess for between-BeadChip variation, one sample was repeated on each of the four 

BeadChips at a different physical BeadArray position.

Microarray preprocessing and normalization—Summary level data from the 

uncorrected, non-normalized, and non-transformed summary intensities at the probe level 

were calculated. Data preparation and analyses were conducted using two well-established 

protocols (Gentleman et al., 2004; Luo, Friedman, Shedden, Hankenson, & Woolf, 2009). 

The quality control procedures and associated results are described in detail in Supplemental 

File 1 and summarized in Supplemental File 2. None of the samples displayed unusual 

distance between arrays or array signal intensity distributions. Background correction, 

quantile normalization, and log2 transformation were performed using limma (Smyth, 2005). 

Probes with insufficient expression measurements were excluded, leaving 34,267 assays 

spanning 16,980 genes for analysis (Supplemental File 2, Supplemental Figure 1, panel B). 

The reliability of the expression measurements were supported by a high level of correlation 

between quadruplicate arrays across all filtered assays (mean pairwise Pearson’s ρ = 0.95). 

These values were significantly higher than those observed between all samples (mean 

pairwise Pearson’s ρ = 0.92, Welch two sample t-test p<1.31×10−12). Finally, potential 

clustering of samples was evaluated by principal components analysis. No obvious 

clustering by fatigue group was observed (data not shown) and no adjustment for batch 

effects was warranted.

Data Analyses

Demographic and clinical data—Demographic and clinical data were analyzed using 

SPSS version 22 (IBM, Armonk, NY) and Stata version 13.0 (StataCorp, College Station, 

TX). Descriptive statistics and frequency distributions were calculated for demographic and 

clinical characteristics as well as for fatigue severity. The two evening fatigue groups were 

defined as individuals with LFS scores below (<5.6, n=19) or above (≥5.6, n=25) the 

clinically meaningful cut-off score for evening fatigue (B. S. Fletcher et al., 2008). 

Independent sample t-tests, Mann-Whitney U tests, Chi square tests, and Fisher’s Exact tests 

were used to evaluate for differences in demographic and clinical characteristics between the 

two evening fatigue groups. Effect size was calculated using Cohen’s d statistic (Cohen, 

1988).

Differential gene expression—Differential expression (DE) of genes can offer insights 

into the biological processes that influence inter-individual variability in evening fatigue. 

Although numerous approaches are used to identify between group differences in DE 

(Jeanmougin et al., 2010), we selected two well-known methods, namely the t-test using 

GenePattern and an estimation of gene-by-gene variance with ‘limma’ (Figure 1, blue 

outline).
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Unsupervised clustering was used to evaluate the resolution of the two evening fatigue 

groups by the DE genes identified using limma and GenePattern. Evening fatigue group 

membership was then mapped onto the samples to visualize the degree to which the DE 

genes distinguished between patients with high versus low levels of evening fatigue (Figure 

1, blue outline).

Differential pathway perturbation—Since pathway analysis is performed at the level of 

the gene, a summary signal estimate of expression was calculated from all valid probes 

spanning each gene (Reimers, 2010). Summary signal intensities were obtained for 16,980 

genes. Differential pathway perturbation was performed using competitive analysis with the 

R package ‘GAGE’ (Generally Applicable Gene Set Enrichment) (Luo et al., 2009). By 

excluding genes with insufficient background expression levels and utilizing a whole-

genome gene expression microarray, the impact of known limitations and spurious results 

associated with competitive approaches was minimized (Figure 1, purple outline) (Tripathi, 

Glazko, & Emmert-Streib, 2013).

Pathways and gene sets were defined using the 177 Kyoto Encyclopedia of Genes (KEGG) 

(Aoki-Kinoshita & Kanehisa, 2007), 259 BioCarta (Nishimura, 2001) and 17,202 Gene 

Ontology (GO) (Harris et al., 2004) annotated sets provided by the ‘gageData’ R package. 

Pathways model the complex interactions between genes in a biological setting and are not 

expected to be solely simultaneously all up- (or down-) regulated. Rather, perturbations are 

more likely to consist of a mixture of up- and down-regulation. As such, we tested for 

differential perturbations under three models: up-regulation, down-regulation, and both 

(simultaneous up/down or “2d”). While all of the genes in each pathway were included in 

this analysis, only a subset of these genes had discernible expression changes above 

background (termed “essential contributing (EC) genes”).

Transcript Origin Analysis (TOA)—Peripheral blood contains a heterogeneous 

population of nucleated immune cells (e.g., B-cells, CD4+ T-cells, CD8+ T-cells, dendritic 

cells, monocytes, natural killer (NK) cells). Each cell type is involved in unique biological 

processes and expresses different subsets of genes (e.g., genes involved in different 

biological pathways). In order to identify the cell type(s) of origin for genes and/or pathways 

that were significantly DE between the high and low evening fatigue groups, the TOA test 

was used (Figure 1, red outline) (Cole et al., 2011). We implemented the TOA methodology 

described by Cole et al. (Cole et al., 2011) using Python. Our implementation was diagnostic 

for B-cells, CD4+ T-cells, dendritic cells, monocytes, and NK cells (Supplemental File 3). 

We were not able to sufficiently validate for diagnosticity of CD8+ T cells and consider any 

results that identified this class of cells as unreliable.

Objective query of publically available transcriptome experiments—To better 

categorize and understand the biological significance of the “molecular signatures” 

associated with evening fatigue, a data driven approach was employed to leverage the 

collection of over 1800 data sets available in the National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) and to identify curated datasets with 

similar DE patterns (Figure 1, orange outline). Specifically, we employed ProfileChaser 

(Engreitz et al., 2010) (http://profilechaser.stanford.edu/) to identify DE profiles that existed 
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in GEO similar to the ones that we identified between the low and high evening fatigue 

groups.

Two independent reviewers curated the abstracts for each published study from the candidate 

profiles with similar DE patterns for conceptual relevance to evening fatigue. If either 

reviewer selected an abstract for consideration, it was included for further evaluation. Then, 

the factor comparison identified by ProfileChaser was evaluated in order to exclude un-

interpretable comparisons. While a large number of significant hits were expected, false 

positives needed to be identified and culled (Engreitz et al., 2010). As hypothesized, many of 

the significantly similar profiles were not appropriate for our study due to the content-

agnostic fashion (i.e., no pairwise comparisons are excluded) in which the universe of target 

profiles were generated (e.g., a “sample ID” factor which splits samples based on the 

individual ID of samples), or easily interpretable in the context of our current study (e.g., a 

factor splitting samples based on expression at different time points of a yeast colony’s 

development). Manuscripts from profile matches for all studies of interest to either reviewer 

(KMK, BEA) were retained. From this list, the full manuscript and supplemental materials 

were collected and reviewed.

RESULTS

Patient Characteristics

The total sample consisted of 44 women undergoing CTX for breast cancer. As shown in 

Table 1, the majority of the patients were college graduates and Caucasian with a mean age 

of 56.1 (± 9.5) years. Patients had a mean KPS score of 80.9 (± 12.9) and a mean SCQ score 

of 5.8 (± 3.5). The mean fatigue score for the total sample was 5.6 (± 2.2). The scores for the 

low (n=19) versus the high (n=25) evening fatigue groups were 3.7 (± 1.7) and 7.1 (± 1.2), 

respectively (p<0.001).

Differences in Demographic and Clinical Characteristics Between the Two Fatigue Groups

Table 1 summarizes the differences in demographic and clinical characteristics between the 

low and high evening fatigue groups. Compared to the low group, patients in the high 

evening fatigue group reported a lower KPS score, had a higher comorbidity score, and had 

a lower number of prior cancer treatments.

Differences in Gene Expression Between the Two Fatigue Groups

The transcriptomic analysis was done using the Human HT-12 Expression BeadChip. One 

DE gene was identified by limma and eleven DE genes were identified by GenePattern 

(Table 2). Among these twelve genes, one gene was up-regulated and eleven genes were 

down-regulated in the high evening fatigue group. A heatmap of the two class cluster 

analysis of these twelve genes revealed that the DE genes noticeably, but incompletely, 

distinguished between the low and high evening fatigue groups (Supplemental File 4 Figure 

S2).

Three of the genes identified (i.e., cDNA FLJ25030 fis, clone CBL02631 (Hs.650028); 

Homo sapiens hypothetical protein MGC13005; chromosome 1 open reading frame 61 
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(C1orf61)) do not have established functional roles. However, the remaining eight genes can 

be categorized into three groups based on their known function(s) (Summarized in 

Supplemental File 5 Table S2): immune activation (i.e., Calpain, small subunit 1 (CAPSN1), 

COMM domain containing 9 (COMMD9), Cathepsin Z (CTSZ), Defensin, beta 103B 

(DEF103B), Docking protein 2, 56kDa (DOK2), Transcription elongation factor A (SII)-like 

1, transcript variant 2 (TCEAL1), Yip1 interacting factor homolog B (S. cerevisiae), 

transcript variant 4 (YIF1B)); energy metabolism and physical activity (i.e., TCEAL1, Enoyl 

Coenzyme A hydratase 1, peroxisomal (ECH1), YIF1B, Fructose-1,5-bisphosphatase 1 

(FBP1)); and serotonergic activation (i.e., YIF1B).

Differentially Perturbed Pathways Between the Two Fatigue Groups

Gene set analysis was performed to discover differences between the low and high evening 

fatigue groups in perturbations of genes that operate together in pathways. KEGG pathways 

are the primary focus of this manuscript given their superior depth of annotation and rich 

usage in pathway analysis. No up-regulated, 24 down-regulated, and 94 2d perturbed KEGG 

pathways were identified that differentiated between the two evening fatigue groups (Table 

3). Only those down-regulated pathways that were not identified as 2d perturbed are listed in 

Table 3 (i.e., 5 of 24). A listing of all 19 KEGG down-regulated, GO, and BioCarta analyses 

are provided in Supplemental File 6.

Differentially expressed pathways were broadly categorized into those associated with 

immune cell replenishment and activation (n=30); cellular metabolism and protein synthesis 

(n=56); DNA synthesis, repair and cell division (n=10); and neurological activity (n=3). 

TOA inferred that the DE pathways originated from B-cells, dendritic cells, monocytes, and 

NK cells. A dearth of DE pathways were identified as unambiguously originating from 

CD4+ T-cells.

When the two fatigue groups were compared, significantly differentially perturbed cytokine 

pathways were identified from KEGG (KEGG: hsa04920), GO (GO: 0019221, GO: 

0071345, GO: 0034097, GO: 0019221, GO: 0071345, GO: 0034097), and BioCarta 

(gata3pathway), as well as inflammation and immune-response pathways from GO (GO: 

0006954, GO:0002472, GO:0002252) and BioCarta (il1rpathway, il2pathway, il3pathway, 

il4pathway, il6pathway, il10pathway, il22pathway, nthipathway) (Table 3 and Supplemental 

File 6).

Prior to multiple hypothesis correction, several cytokine-related genes were DE between the 

fatigue groups. Among 57 (94 probes) of 70 measured genes that are involved in the 

adipocytokine signaling pathway (KEGG: hsa04920), five genes had probes identified by 

limma to be DE prior to statistical correction: retinoid X receptor, gamma (RXRG), v-akt 

murine thymoma viral oncogene homolog 3 (AKT3), acyl-CoA synthetase long-chain 

family member 4 (ACSL4), inhibitor of kappa light polypeptide gene enhancer in B-cells, 

kinase gamma (IKBKG), and signal transducer and activator of transcription 3 (acute-phase 

response factor) (STAT3) (all p< 0.03). Among 114 genes (160 probes) of 265 measured 

genes that are involved in the cytokine-cytokine receptor interaction pathway (KEGG: 

ksa04060), two genes had probes identified by limma to be DE prior to statistical correction: 

platelet factor 4 (PF4) and chemokine (C-X-C motif) receptor 5 (CXCR5) (all p<0.02). Gene 
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expression studies of fatigue in a larger sample may result in the detection of cytokine gene 

expression differences that survive statistical correction for multiple testing.

Differentially perturbed pathways related to DNA synthesis, repair, and cell division 

included DNA replication (hsa03030), cell cycle (hsa04110), nucleotide excision repair 

(hsa03420), and base excision repair (hsa03410) (Table 3 and Supplemental File 6).

Cellular metabolism and protein synthesis pathways that were differentially perturbed 

include glycolysis/gluconeogenesis (hsa00010), oxidative phosphorylation (hsa000190), 

fructose and mannose metabolism (hsa00051), amino sugar and nucleotide sugar 

metabolism (hsa00520) and the citrate cycle (TCA cycle) (hsa00020) from KEGG, and 

mitochondrial matrix (GO:0005759), membrane (GO:0031966), inner membrane (GO:

0005743) and envelope (GO:0005740), generation of precursor metabolites and energy (GO:

0006091), oxidative phosphorylation (GO:0006119), and respiratory chain (GO:0070469) 

from GO (Table 3 and Supplemental File 6).

Finally, differentially perturbed pathways related to neurotransmission included: Long-term 

potentiation (hsa04720), soluble NSF [N-ethylmaleimide-sensitive factor] attachment 

protein receptors (SNARE) interactions in vesicular transport (hsa04130), Mitogen-activated 

protein kinase (MAPK) signaling (hsa04010) and epidermal growth factor receptor (avian 

erythroblastic leukemia viral (v-erb-b) oncogene homolog) (ErbB) signaling (hsa04012) 

pathways in KEGG and the gamma-aminobutyric acid (GABA) receptor lifecycle 

(gabapathway) and MAPKinase Signaling (mapkpathway) pathways in BioCarta (Table 3 

and Supplemental File 6).

Transcript Origin Analysis (TOA)

Peripheral blood contains a heterogeneous population of nucleated cells from which gene 

expression data are derived. TOA is used to identify the cell lineage with the highest degree 

of statistical significance for a group of DE genes (Cole et al., 2011). The cell types that can 

be distinguished included B cells, CD4+ T-cells, dendritic cells, monocytes, and NK cells. 

Diagnosticity scores were successfully mapped for: twelve out of the combined set of the 

thirteen genes in Table 2 that were found to be DE between fatigue groups; for 70 of 77 EC 

genes from all 22 down-regulated KEGG pathways; and for 907 of 980 EC genes from 94 

2d perturbed KEGG pathways (Supplemental File 6). In total, TOA unambiguously inferred 

the origin of 77 of the 99 (78%) differentially perturbed KEGG pathways listed in Table 3. 

While the individual perturbed pathways originated primarily from monocytes, some 

originated from dendritic cells, NK cells, B-cells, and CD4+ T-cells (Table 4). The transcript 

origin for each differentially perturbed pathway is identified in Supplemental File 6 and is 

summarized in Supplemental File 7.

Identification of similar whole-transcriptome gene expression experiments

ProfileChaser was used to identify publically available gene expression studies and 

associated publications that shared a similar whole-transcriptome pattern of differential gene 

expression. The significant GEO DataSets (GDSs) identified across all five rounds of the 

split analyses (n=108) were retained (Supplemental Files 8 and 9). Abstracts for the original 

source publications obtained from the 108 GDSs (n=102), were reviewed by two 
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independent reviewers (BEA, KMK) for their relevance to fatigue. A total of 44 abstracts 

were selected and the complete publication was evaluated. Of these 44 manuscripts, 20 were 

retained after full evaluation of the experimental profiles. These 20 publications, 

representing 18 unique GDSs, were reviewed and categorized in terms of providing “strong” 

(n=14), “moderate” (n=1), or “weak” (n=5) insights into the mechanism(s) that contribute to 

fatigue (Supplemental File 9).

DISCUSSION

Differences in Demographic and Clinical Characteristics

This study is the first to evaluate for differences in gene expressions and perturbed pathways 

in breast cancer patients who reported low and high levels of evening fatigue during CTX. 

The between group differences in fatigue severity scores represent not only statistically 

significant, but clinically meaningful differences (Cohen’s d =1.5) (Osoba, 1999). Consistent 

with previous reports, patients in the high fatigue group had a poorer functional status 

(Dhruva et al., 2013; Hofso, Miaskowski, Bjordal, Cooper, & Rustoen, 2012) and a more 

severe comorbidity profile (Berger, Gerber, & Mayer, 2012).

The more surprising and intriguing finding was the associations identified between a lower 

number of previous cancer treatments and membership in the high fatigue group. While this 

finding needs to be validated in an independent sample, a number of plausible explanations 

can be postulated. Patients who are in later stages of their disease trajectory may experience 

a “response shift” in their perception of fatigue. First used in oncology to describe changes 

over time in QOL (Schwartz & Sprangers, 1999), a “response shift” is an age-related 

psychological shift that represents a change in a person’s internal framework for the 

assessment of experiences (Costanzo, Ryff, & Singer, 2009). In this context, patients in the 

low fatigue group who had received prior cancer treatments may have changed their internal 

conceptualization of fatigue based on their previous experiences with the symptom. An 

alternative hypothesis is that with prolonged cancer treatment, patients may develop 

tolerance to the physiologic responses that contribute to the development of fatigue. Another 

alternative hypothesis is that there may be a “selection bias”, where more women who had 

previous cancer treatments (e.g., due to tolerance or increased survival) volunteered to 

participate in this study. Longitudinal studies, that assess both phenotypic and epigenetic 

trajectories associated with fatigue, are needed to confirm or refute these hypotheses.

Differences in Gene Expression

In this study, a data driven analysis was performed at the levels of the gene, pathway, and the 

entire transcriptome to evaluate for differences in gene expression between patients who 

reported high versus low levels of evening fatigue (Figure 1). Using TOA, differential gene 

expression and perturbed pathway expression originated from several cell types 

(Supplemental File 7), but the majority of the signals originated from monocytes, dendritic 

cells, B-cells, and NK cells (Table 4). Our profile is consistent with gene expression 

experiments that evaluated the effects of exhaustive physical exercise (Supplemental File 9). 

In addition, the expression profiles for the high evening fatigue group were consistent with a 

number of gene expression studies that evaluated sickness behavior (Calvano et al., 2005; 
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Dennehy, 2007; Foteinou, Calvano, Lowry, & Androulakis, 2010; Rodriguez et al., 2007; 

Wurfel et al., 2005), circadian rhythm disruption (Bailey et al., 2009; Yang et al., 2007), and 

mechanisms of neuro-inflammation (Irwin & Cole, 2011). Of note, the DE genes (Table 2) 

and pathways (Table 3) identified using transcriptomic analyses in the current study are 

consistent in that these genes play roles in sickness behavior, inflammation, mitochondrial 

dysfunction, circadian rhythm disruption, and serotonin regulation. Taken together, our 

results and those of others described below provide a more complete picture of the 

mechanisms that underlie evening fatigue in oncology patients.

Twelve genes were identified that were DE between the low and high evening fatigue groups 

(Table 2). While the expression pattern of these twelve genes distinguished between patients 

in the two fatigue groups (Figure 2), this distinction was not perfect and suggests that 

additional genes remain to be identified. TOA of this set of twelve DE genes found that the 

expression patterns originated predominantly from monocytes. This finding is consistent 

with previous reports that noted that altered cytokine production in monocytes is associated 

with fatigue in oncology patients with breast cancer (Collado-Hidalgo, Bower, Ganz, Cole, 

& Irwin, 2006; Saligan & Kim, 2012).

Inflammation and immune response

In general, cytoxic CTX kills rapidly proliferating cancer cells (Mitchison, 2012). While the 

targets are cancer cells, other rapidly dividing cells, including peripheral leukocytes, are 

depleted by CTX. The need for peripheral blood counts to recover is the primary reason that 

CTX regimens are administered in cycles. In addition, immune system effectors are 

impacted during and following CTX (Saligan & Kim, 2012). For example, increased CD4 T-

cell counts, which may result in a prolonged pro-inflammatory state, are associated with 

increased fatigue in breast cancer survivors (Bower, Ganz, Aziz, Fahey, & Cole, 2003). 

Down-regulation of DEF103B in the high fatigue group may favor the production of pro-

inflammatory cytokines, that are associated with increased fatigue severity (Aouizerat et al., 

2009; Bower et al., 2011; Jager, Sleijfer, & van der Rijt, 2008; Miaskowski et al., 2010). 

Decreased expression of DOK2 in the high fatigue group may result in prolonged immune 

cell activation, which could lead to higher levels of evening fatigue. Decreased ECH1 gene 

expression in patients with higher evening fatigue may be associated with decreased energy 

production and delayed immune system recovery following CTX. While the function of 

YIF1B in peripheral leukocytes is unknown, reduction of YIF1B in the high fatigue group 

may result in decreases in HTR1A expression; decreases in intracellular cAMP; and 

decreases in immune activation (i.e., creates a pro-inflammatory state that results in fatigue). 

While it is not known whether lower YIF1B gene expression in the periphery is associated 

with lower gene expression in the central nervous system, increasing evidence suggests that 

peripheral gene expression reflects system wide biology (Liew, Ma, Tang, Zheng, & 

Dempsey, 2006). In addition to the identification of these DE genes with plausible 

inflammatory and immune mechanisms for evening fatigue, we identified a number of DE 

pathways associated with immune cell recovery following CTX.

Consistent with established associations between inflammatory cytokines and fatigue in 

oncology patients (Aouizerat et al., 2009; Bower et al., 2009; Miaskowski et al., 2010), two 

Kober et al. Page 11

Biol Res Nurs. Author manuscript; available in PMC 2017 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fatigue groups were compared, we identified significantly differentially perturbed cytokine 

pathways as well as inflammation-related pathways. In addition, the BioCarta pathway 

(nthipathway) that was significantly differentially perturbed between the two evening fatigue 

groups (Supplemental File 6) is consistent with the over-representation of the NF-κβ 
response elements reported by Bower and colleagues in breast cancer survivors (Bower et 

al., 2011). Common elements (i.e., genes) of the identified KEGG, GO, and Biocarta 

pathways that were identified as harboring polymorphisms associated with fatigue in 

oncology patients include: IL1B (Bower et al., 2013; Collado-Hidalgo et al., 2008; 

Reinertsen et al., 2011), IL4 (Doong et al., 2014), IL6 (Bower et al., 2013; Miaskowski et 

al., 2010; Reinertsen et al., 2011), and TNFA (Aouizerat et al., 2009; Bower et al., 2013; 

Dhruva et al., 2014). Genetic association studies with other members of the above-identified 

pathways should be evaluated in future studies.

Although DE genes and differentially perturbed pathways related to inflammation were 

observed, DE cytokines genes were not detected. This finding is consistent with previous 

research that failed to find an association between cytokine gene expression and levels of 

fatigue (Landmark-Hoyvik et al., 2009; Reinertsen et al., 2011). The lack of detectable 

differences in gene expression despite the repeated associations reported between cytokine 

genes and fatigue may be due to the timing of cytokine gene expression in relation to the 

experience of fatigue (i.e., may occur prior to the perception of fatigue). Alternatively, the 

DE genes and perturbed pathways detected in the current study represent upstream and/or 

downstream events in relation to cytokine gene expression. Finally, the conservative 

adjustment for multiple hypothesis testing may have resulted in the exclusion of gene 

expression signals that would be identified with larger samples.

Circadian rhythm

The co-occurrence of (Davidson, MacLean, Brundage, & Schulze, 2002) and common 

genetic risk factors for (Aouizerat et al., 2009; Miaskowski et al., 2010), fatigue and sleep 

disturbance suggest that their mechanisms may overlap. Circadian influences on immune 

function may be particularly relevant to explain the relationship between sleep and fatigue in 

oncology patients undergoing CTX. Altered expression of circadian clock genes in 

peripheral leukocytes was observed in healthy individuals who experienced sickness 

behavior when exposed to endotoxin (Haimovich et al., 2010). The majority of immune cells 

(including NK cells) demonstrate circadian rhythmicity in healthy individuals (Mazzoccoli 

et al., 2011). This rhythmicity may be perturbed during CTX. In support of this hypothesis, 

the KEGG circadian rhythm pathway (hs04710) was differentially perturbed in the high 

fatigue group. NK cells were the cell type of origin for this perturbation (Table 3). This 

observation is bolstered by the observation of malfunctioning NK cells in patients with 

chronic fatigue syndrome (Meeus, Mistiaen, Lambrecht, & Nijs, 2009) and warrants further 

study.

Neurotransmission

An unexpected finding from the pathway analyses was the identification of pathways that 

participate in regulation of neurotransmission, including long-term potentiation of neurons 

(hsa04720, hsa04260), GABA receptor lifecyle (gabapathway), SNARE interactions in 
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vesicular transport (hsa04130), and ErbB signaling pathway (hsa04012) (Table 3 and 

Supplemental File 6). It should be noted that the “long-term potentiation of neurons” 

pathway may be a misnomer (i.e, because it share genes with other pathways not related to 

neurons). In addition, the long-term potentiation of neurons has not been characterized 

specifically in PBMC. Centrally, long-term potentiation plays an important role in a number 

of physiologic processes (e.g., learning, memory, pain). While GABA has an effect in 

peripheral tissue (Erdo & Wolff, 1990), it is the main inhibitory neurotransmitter in the 

cortex (Petroff, 2002). Serotonin is a neurotransmitter that modulates GABA. SNARE 

proteins are involved in cell signaling in neurons (Gotte & von Mollard, 1998). ErbB 

receptor tyrosine kineases perform a complex array of functions including regulation of 

neurotransmitter receptors (Bublil & Yarden, 2007). However, many patients with breast 

cancer undergo treatment to block ErbB2 (Yarden & Sliwkowski, 2001), so this pattern may 

reflect differences in treatment rather than levels of fatigue. While these results, combined 

with the potential roles of the DE genes CAPNS1 and YIF1B in neurotransmission, are 

intriguing, it is unclear if these peripherally perturbed genes and pathways reflect changes in 

gene expression in the central nervous system (Cole, 2013; Liew et al., 2006) that are 

associated with fatigue. If replicated in an independent sample, these pathways would 

warrant further study.

Energy metabolism

Regulation and control of the expression of energy metabolism genes occur through a 

variety of processes that may be altered by the cancer or its treatment (Andrews, Morrow, 

Hickok, Roscoe, & Stone, 2004). Radiation treatment or CTX may result in a decrease in 

adenosine triphosphate (ATP) regeneration. This disruption of ATP metabolism may lead to 

a reduction in mechanical ability (Ryan et al., 2007). The differences in expression patterns 

in pathways related to mitochondrial or energy metabolism found in our study, parallel a 

report of associations between fatigue and mitochondrial function genes in patients receiving 

radiation therapy for prostate cancer (Hsiao, Wang, et al., 2013). The decreased expression 

of FBP1 in our high fatigue group may be associated with decreased energy production and 

an attempt to increase intracellular glucose in order to restore energy reserves. Importantly, 

mitochondrial dysfunction has pleiotropic effects (Chan, 2006) and is closely tied with other 

processes (e.g., inflammation (Liu et al., 2012)).

Whole-transcriptome differential expression similarities with other studies

An evaluation of the studies identified by ProfileChaser suggests that the mechanisms that 

underlie fatigue in oncology patients are multi-factorial. Cytokine-induced sickness behavior 

(B. N. Lee et al., 2004) is a long-standing mechanism associated with common symptoms 

experienced by oncology patients, including fatigue. Interrogation of publically available 

transcriptome data sets using ProfileChaser revealed a preponderance of similarities between 

our gene expression study and studies that featured an inflammatory component. Five of the 

studies identified by ProfileChaser and retained after in-depth review employed various 

experimental models (e.g., healthy adults, acute pediatric viral infection) that incorporated 

an endotoxin or viral challenge (Calvano et al., 2005; Foteinou et al., 2010; Rodriguez et al., 

2007; Wang et al., 2007; Wurfel et al., 2005). Similar to pathogen-mediated induction of 

cytokines, four studies employed a more direct induction of cytokines (e.g., interferon, IL2) 
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in a wide variety of experimental models (e.g., multiple sclerosis, rheumatoid arthritis) 

(Indraccolo et al., 2007; Zhang, Martino, & Faulon, 2007). Interestingly, in one murine 

model study that focused on radiation therapy (RT) (Goldrath, Luckey, Park, Benoist, & 

Mathis, 2004), a similar transcriptome profile to our study was found, which supports the 

extant literature that cancer treatments induce a pro-inflammatory response in peripheral 

leukocytes that is associated with increased fatigue.

One study described differences in the transcriptome of healthy volunteers who underwent 

exhaustive as compared to none or moderate physical exercise (Buttner, Mosig, 

Lechtermann, Funke, & Mooren, 2007). The gene expression differences between our low 

and high fatigue groups are similar to the differences found between the non-exhaustive and 

exhaustive exercise groups. These findings suggest that exhaustive exercise may result in 

gene expression differences that overlap with those that occur in patients with high evening 

fatigue.

Fatigue displays a diurnal variability (B. A. Fletcher et al., 2009; Miaskowski et al., 2008). 

In general, evening fatigue is more severe than morning fatigue and is associated with 

different risk factors (Dhruva et al., 2010). A novel study from ProfileChaser found diurnal 

variations in gene expression in the prefrontal cortex of rodents (Yang et al., 2007). The 

prefrontal cortex plays an important role in the regulation of sleep and fatigue. These 

findings corroborated the DE genes from our study known to be involved in diurnal 

processes (i.e., COMMD9 and CTSZ) (Yang et al., 2007). A complementary study identified 

diurnal variations in gene expression in the pineal gland of rodents (Bailey et al., 2009), that 

plays an important role in chronobiology and in diurnal variability of genes involved in 

immune/inflammatory responses.

To date, only two gene expression studies of fatigue in breast cancer survivors are published 

(Bower et al., 2011; Landmark-Hoyvik et al., 2009). While our findings and those of the 

previous studies identified differences in gene expression related to immune function and 

mitochondrial dysregulation, the specific genes and pathways differed. The lack of 

congruence among these studies may be due in part to different designs and study 

populations. The studies by Bower et al (Bower et al., 2011) and Landmark-Høyvik et al 

(Landmark-Hoyvik et al., 2009) evaluated breast cancer survivors with persistent fatigue and 

did not account for diurnal variations in fatigue severity. In the study by Bower et al. (Bower 

et al., 2011), only genes responsive to NF-κβ or down-regulation of glucocorticoid-

responsiveness were evaluated and discussed. The analytic approaches employed in our 

study and the one by Landmark-Høyvik et al (Landmark-Hoyvik et al., 2009) were different. 

ProfileChaser did not identify either study because one (i.e., Bower et al) did not exist in the 

Gene Expression Omnibus and the other (i.e., Landmark-Høyvik et al) was submitted but 

not curated as a GEO dataset (which are used exclusively by ProfileChaser).

Limitations

Although the study findings do not provide direct support for the causal mechanisms for 

evening fatigue, they offer strong candidates for future functional, as well as intervention 

studies. Several limitations need to be acknowledged. While the sample size for this study is 

adequate or slightly larger than the typical gene expression study (Bower et al., 2011), a 
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larger independent sample may identify additional DE genes and pathways that differentiate 

between patients with high and low levels of evening fatigue. While all of the gene 

expression studies of fatigue in oncology patients, including our own, identified differences 

in genes involved in inflammation, the specific genes and pathways identified differed, 

which may be due to differences in the patients studied (e.g., patient receiving CTX versus 

survivors). The study sample is heterogenous for type of treatment received, disease stage, 

and number of previous CTX cycles. Finally, because the preponderance of DE genes and 

pathways identified by ourselves and others are related to inflammation, one can hypothesize 

that this finding may be a byproduct of the tissues studied (i.e., peripheral leukocytes). 

However, the transciptome analyses (i.e., ProfileChaser) identified gene expression studies 

that were performed in non-immune cells, in numerous tissues, and under different 

experimental conditions. Until they are replicated, the current findings must be viewed as 

preliminary.

CONCLUSIONS

This study is novel in that differences between patients with high and low levels of evening 

fatigue were evaluated at the level of genes, pathways, and the entire transcriptome. Our 

analyses revealed that pathways involved in inflammation, neurotransmitter regulation, and 

energy metabolism are likely associated with evening fatigue severity; that CTX may 

contribute to the severity of evening fatigue; and that the patterns of gene expression may be 

shared with other models of fatigue (e.g., physical exercise, pathogen-induced sickness 

behavior). Importantly, our findings suggest that the molecular mechanisms associated with 

evening fatigue are multifactorial and that these mechanisms interplay among themselves 

(e.g., neurotransmitter regulation and inflammation; inflammation and mitochondrial 

dysfunction). Future research will need to evaluate this potential interplay among pathways 

to determine the mechanisms that underlie evening fatigue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental approach and analysis plan
The diagram illustrates the analysis plan for the study, which includes differential expression 

(blue outline), differential expression profiling (orange outline), pathway analysis (purple 

outline), transcript origin analysis (red outline), and ProfileChaser (orange outline). Closed 

boxes denote analysis or software, and open boxes denote data or results.

Abbreviations: aggregateExprs() = a function contained in the PGSEA R statistical software 

package; DE = differentially expressed; E.C. Genes = essential contributing genes; GAGE = 

generally applicable gene set enrichment; GEO = Gene expression omnibus; GO = Gene 

Ontogeny; GSE = GEO series; KEGG = Kyoto Encyclopedia of Genes; NK = natural killer; 

PBMC = peripheral blood mononuclear cell (dendritic); TOA = Transcript Origin analysis.
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Figure 2. 
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Table 1

Differences in Demographic and Clinical Characteristics Between the Low and High Evening Fatigue Groups

Characteristic Total
Sample
(n=44)

Mean (SD)

Low Evening
Fatigue

(n=19; 43.2%)
Mean (SD)

High Evening
Fatigue

(n=25; 56.8%)
Mean (SD)

Statistics

Age (years) 56.1 (9.5) 57.3 (7.8) 55.2 (10.7) t=0.72, p=.474

Education (years) 16.4 (2.4) 15.9 (2.1) 16.8 (2.5) t=−1.27, p=.211

Body mass index (kg/m2) 27.1 (6.4) 25.4 (3.9) 28.4 (7.6) t=−1.64, p=.111

Karnofsky Performance Status score 80.9 (12.9) 86.3 (11.6) 76.8 (12.5) t=2.58, p=.014

Self-administered Comorbidity Questionnaire score 5.8 (3.5) 4.5 (2.8) 6.8 (3.8) t=−2.23, p=.031

Time since diagnosis (years) 4.6 (7.7) 5.5 (6.1) 3.9 (8.8) U, p=.142

Time since diagnosis (median, years) 0.45 3.75 0.37

Number of prior cancer treatments 2.1 (1.8) 2.8 (1.9) 1.6 (1.5) t=2.32, p=.025

Number of metastatic sites including lymph node involvement A 1.6 (1.7) 2.1 (1.9) 1.3 (1.4) t=1.56, p=.128

Number of metastatic sites excluding lymph node involvement 1.1 (1.4) 1.4 (1.5) 0.8 (1.2) t=1.26, p=.215

LFS evening fatigue score 5.6 (2.2) 3.7 (1.7) 7.1 (1.2) t=−7.66, p<.001

% (n) % (n) % (n)

Self-reported ethnicity χ2=4.96, p=.292

    White 77.3 (35) 68.4 (13) 80.0 (20)

    Asian/Pacific Islander 11.4 (5) 15.8 (3) 8.0 (2)

    Black Non-Hispanic 4.5 (2) 10.5 (2) 4.0 (1)

    Hispanic/Mixed/Other 6.8 (3) 5.3 (1) 8.0 (2)

Married or partnered (% yes) 72.7 (32) 84.2 (16) 64.0 (16) FE, p=.181

Lives alone (% yes) 15.9 (7) 10.5 (2) 20.0 (5) FE, p=.680

Currently employed (% yes) 29.5 (13) 31.6 (6) 28.0 (7) FE, p=1.00

Annual household income χ2=2.83, p=.419

    Less than $30,000 2.8 (1) 0.0 (0) 4.3 (1)

    $30,000 to $70,000 16.7 (6) 23.1 (3) 13.0 (3)

    $70,000 to $100,000 8.3 (3) 0.0 (0) 13.0 (3)

    Greater than $100,000 72.2 (26) 76.9 (10) 69.6 (16)

Exercise on a regular basis (% yes) 77.3 (34) 78.9 (15) 76.0 (19) FE, p=1.00

Child care responsibilities (% yes) 28.9 (11) 17.6 (3) 38.1 (8) FE, p=.282
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Characteristic Total
Sample
(n=44)

Mean (SD)

Low Evening
Fatigue

(n=19; 43.2%)
Mean (SD)

High Evening
Fatigue

(n=25; 56.8%)
Mean (SD)

Statistics

Elder care responsibilities (% yes) 13.9 (5) 12.5 (2) 15.0 (3) FE, p=1.00

AJCC Status χ2=1.36, p=.715

    Stage 0 59.1 (26) 63.2 (12) 56.0 (14)

    Stage I 4.5 (2) 5.2 (1) 4.0 (1)

    Stage IIA, IIB 18.2 (8) 10.5 (2) 25.0 (6)

    Stage IIA,IIIB,IIIC,IV 18.2 (8) 21.1 (4) 16.7 (4)

Prior cancer treatmentB χ2=8.58, p=.035

    No prior treatment 14.3 (6) 11.8 (2) 16.0 (4)

    Only surgery, CTX, or RT 42.9 (18) 23.5 (4) 56.0 (14)

    Surgery and CTX, or surgery and RT, or CTX and RT 9.5 (4) 5.9 (1) 12.0 (3)

    Surgery and CTX and RT 33.3 (14) 58.8 (10) 16.0 (4)

Metastatic sites χ2=6.99, p=.073

    No metastasis 36.4 (16) 31.6 (6) 40.0 (10)

    Only lymph node metastasis 20.5 (9) 15.8 (3) 24.0 (6)

    Only metastatic disease in other sites 9.1 (4) 0.0 (0) 16.0 (4)

    Metastatic disease in lymph nodes and other sites 34.1 (15) 52.6 (10) 20.0 (5)

A
Total number of metastatic sites evaluated was 9.

B
Post-hoc contrasts failed to reveal the subgroup(s) underlying the differences in prior cancer treatments observed in the high compared to the low 

evening fatigue groups.

Abbreviations: AJCC = American Joint Committee on Cancer; CTX = chemotherapy; FE = Fisher’s Exact; kg = kilograms; LFS = Lee Fatigue 

Scale; m2 = meters squared; SD = standard deviation; RT = radiation therapy; U = Mann-Whitney test; χ2 = Chi-square test.
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