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Abstract

Background—Community-acquired pneumonia (CAP) is a leading cause of pediatric 

hospitalization. Pathogen identification fails in approximately 20% of children but is critical for 

optimal treatment and prevention of hospital-acquired infections. We used two broad-spectrum 

detection strategies to identify pathogens in test-negative children with CAP and asymptomatic 

controls.

Methods—Nasopharyngeal/oropharyngeal (NP/OP) swabs from 70 children <5 years with CAP 

of unknown etiology and 90 asymptomatic controls were tested by next-generation sequencing 

(RNA-seq) and pan viral group (PVG) PCR for 19 viral families. Association of viruses with CAP 

was assessed by adjusted odds ratios (aOR) and 95% confidence intervals controlling for season 

and age group.

Results—RNA-seq/PVG PCR detected previously missed, putative pathogens in 34% of 

patients. Putative viral pathogens included human parainfluenza virus 4 (aOR 9.3, P = .12), human 
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bocavirus (aOR 9.1, P < .01), Coxsackieviruses (aOR 5.1, P = .09), rhinovirus A (aOR 3.5, P = .

34), and rhinovirus C (aOR 2.9, P = .57). RNA-seq was more sensitive for RNA viruses whereas 

PVG PCR detected more DNA viruses.

Conclusions—RNA-seq and PVG PCR identified additional viruses, some known to be 

pathogenic, in NP/OP specimens from one-third of children hospitalized with CAP without a 

previously identified etiology. Both broad-range methods could be useful tools in future 

epidemiologic and diagnostic studies.
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RNA sequencing (RNA-seq); metagenomics; pan-viral group polymerase chain reaction (PVG 
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Pneumonia is a leading cause of childhood death globally; approximately 1 million children 

die of pneumonia every year [1]. In the United States, up to 50% of children aged ≤5 years 

with community-acquired pneumonia (CAP) require hospitalization, accounting for 110 000 

admissions annually [2]. Pathogens vary by age [3–5], but viruses are the most common 

cause of CAP in children aged ≤5 years, especially in the absence of lobar pneumonia and 

pleural effusion [3]. However, a pathogen cannot be identified in 14%–23% of children with 

CAP, even with extensive testing [4–11]. More effective pathogen identification will 

improve our understanding of pneumonia and guide treatment and site-of-care decisions.

Inability to detect etiologic agents may be due to incomplete test panels, genetic pathogen 

variants escaping molecular detection, unrecognized bacterial infections due to insensitive 

diagnostics, novel and emerging pathogens, or inadequate specimens. Most of these 

limitations could be overcome by unbiased pathogen detection [12, 13]. Shotgun 

metagenomic sequencing of DNA or RNA (RNA sequencing [RNA-seq]) and broad-range 

polymerase chain reaction (PCR) amplification of conserved pathogen genomic regions are 

two such methods. RNA sequencing enables sequence-independent detection of any 

pathogen with sufficient sequence homology to known viruses, bacteria, fungi, or parasites 

to allow their classification [13–15]. Panviral group (PVG) PCR uses broad-range PCR 

primers to detect known and novel members of relevant viral genera and families [16].

The aim of this study was to identify potential pathogens in children enrolled in a 

multicenter study of children hospitalized with CAP but without identifiable diagnosis after 

extensive testing [4].

METHODS

Study Population

Participants were children enrolled in the US Centers for Disease Control and Prevention 

Etiology of Pneumonia in the Community (EPIC) study. The EPIC study population, 

enrollment criteria, specimen collection, and etiologic testing have been described in detail 

[4]. Patients were included if they lived in the catchment area and were hospitalized for 

CAP, defined as acute infection, acute respiratory illness, and radio-graphically confirmed 
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pneumonia. Exclusion criteria included recent hospitalization and severe 

immunosuppression.

For this analysis (University of Utah IRB 35409, CDC IRB 5827), we included children (n = 

70) with CAP and asymptomatic pediatric control subjects aged <5 years enrolled at Primary 

Children’s Hospital in Salt Lake City, Utah (Table 1). Patients were enrolled between 1 

January 2010 and 30 June 2012. Control subjects (n = 90) were same-day elective surgery 

patients and were enrolled between 1 February 2011 and 30 June 2012; if a control subject 

had respiratory symptoms or fever within 14 days of enrollment, they were excluded. 

Patients and control subjects were included if no pathogen was detected per EPIC study 

protocol [4].

Specimen Collection and Pathogen Detection in the EPIC Study

For children hospitalized with CAP, combined nasopharyngeal (NP) and oropharyngeal (OP) 

swabs were collected within 72 hours of hospital admission. Specimens were transferred 

into 3-mL universal transport media, refrigerated, and stored at −80°C within 24 hours. 

Bacteria (Haemophilus influenzae or other Gram-negative bacteria, Staphylococcus aureus, 
Streptococcus anginosus, Streptococcus mitis, Streptococcus pneumoniae, or Streptococcus 
pyogenes) were detected by culture (blood, endotracheal aspirate, bronchoalveolar-lavage 

specimen, pleural fluid) or PCR (whole blood, pleural fluid); Chlamydophila pneumoniae 
and Mycoplasma pneumoniae were detected by PCR from NP/OP swabs. Viruses 

(adenovirus [ADV], coronavirus, human metapneumovirus, human rhinovirus [HRV], 

human influenza, parainfluenza viruses 1–3 [HPIV], and respiratory syncytial virus) were 

detected by PCR of NP/OP swabs or serology of acute-and convalescent-phase serum 

(except for human rhinovirus and coronaviruses) [4]. Nasopharyngeal and OP swabs were 

also obtained from asymptomatic control subjects before elective surgery while in the 

operating room and tested for viral pathogens, C. pneumoniae, and M. pneumoniae [4].

RNA Sequencing

Nucleic Acid Extraction—Nasopharyngeal and OP swabs (75–200 µL) were extracted 

using the QIAamp Viral RNA extraction kit per manufacturer’s instructions with the 

addition of on-column DNase treatment after AW1 wash (10 µL of RNase-free DNase I plus 

70 µL of Buffer RDD, Qiagen) at room temperature for 15 minutes and an additional wash 

step.

Library Generation—Indexed cDNA libraries were prepared with the TruSeq RNA 

Sample Prep Kit following manufacturer’s instructions (Illumina). Libraries were quantified 

with the Illumina Universal Library Quantification Kit (Kapa Biosystems) and the Applied 

Biosystems 7900HT Fast Real-Time PCR System (Applied Biosciences). Library size and 

quality was assessed with a High Sensitivity DNA Analysis Kit on an Agilent 2100 

Bioanalyzer (Agilent Technologies). Libraries from 24 samples were combined in equimolar 

ratios for a final concentration of 9.6 nM and sequenced in batches of 24 samples per lane on 

a HiSeq 2500 instrument (Illumina), generating an average of 1.7 × 107 sequencing reads (2 

× 100 base pairs) per sample.
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Analysis of Metagenomics Data—Matching paired-end reads were concatenated, 

adding an “N” between read 1 and read 2. The resulting sequences were analyzed by 

Taxonomer [14], an alignment-free, rapid, interactive metagenomic sequence analysis tool 

for microbial identification and results visualized through http://taxonomer.iobio.io. Taxa 

with only 1 read assigned to them were ignored. Viral taxa (other than phages) were 

confirmed manually by mapping the sequencing files against the relevant reference 

sequences in Geneious (version 8.1, Biomatters) and by comparing viral sequences to the 

National Center for Biotechnology Information nucleotide database [17, 18]. Viral taxa 

identified based on <100 reads were only considered if reads were not an identical match to 

any other sample within the same batch by manual analysis. These protocols had previously 

been shown to produce results comparable with a US Food and Drug Administration–

cleared PCR panel [15].

Pan-Viral Group Family/Genus Polymerase Chain Reaction Panel

Nucleic Acid Extraction—Combined NP/OP swab samples (200 µL) in universal 

transport media were extracted using either a manual method by the QIAamp Viral RNA 

extraction kit (Qiagen) or an automated method by the BioSprint 96 One For All kit 

(Qiagen) on a Kingfisher 96 platform (Thermo) according to the manufacturer’s instructions.

Pan-Viral Goup Polymerase Chain Reaction—Pan-viral group PCR assays were 

designed to amplify known and potentially novel members of the viral families/genera listed 

below. They were designed using the consensus-degenerate hybrid oligonucleotide primer 

(CODEHOP) principle to conserved genes and regions [19, 20] and had analytical 

sensitivities of 10–500 copies (RNA viruses) and 10–1000 copies (DNA viruses) per 

reaction. Samples (5 µl of total nucleic acid) were tested with broadly reactive PVG PCR for 

the following viral families/genera: Adenoviridae, Anelloviridae, Arenaviridae, Astroviridae, 
Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae (Flavivirus), 

Herpesviridae, Orthomyxoviridae (influenza viruses A, B, and C), Paramyxoviridae, 
Parvoviridae, Picornaviridae (enterovirus and parechovirus; primers do not target all human 

rhinoviruses), Polyomaviridae, Reoviridae (aquareovirus, orthoreovirus, orbivirus, rotavirus, 

and seadornavirus), Rhabdoviridae, and Togaviridae (alphavirus) [21–28]. The 

Picornaviridae PCR targets only a subset of human rhinoviruses. First-round reverse-

transcription PCR for RNA viruses was performed with Superscript III/Platinum Taq One 

Step kits (Invitrogen), and second-round PCR was performed with Titanium Taq (Clontech) 

kits. First- and second-round PCR for DNA viruses was performed with Hot Start Ex Taq 

kits (Takara). Positive and negative PCR controls containing mutation-engineered synthetic 

RNA transcript or DNA amplicon and nuclease-free water, respectively, were included in 

each run. Polymerase chain reaction products were visualized on 2% agarose gels.

Sequence Confirmation—Positive bands of the expected size that had strong signal and 

without additional bands were cleaned up using Exonuclease I (New England Biolabs) and 

Shrimp Alkaline Phosphatase (Roche). Samples were incubated at 37°C for 15 minutes 

followed by 80°C for 15 minutes to inactivate the Exonuclease and Shrimp Alkaline 

Phosphatase. Positive bands of the expected size with additional bands present in the PCR 

products were purified using QIAquick Gel Extraction kits (Qiagen). Purified PCR 
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amplicons were sequenced with the PCR primers in both directions on an ABI Prism 3130 

Automated Capillary Sequencer (Applied Biosystems) using Big Dye 3.1 cycle sequencing 

kits (Life Technologies).

Validation

We first assessed the ability of RNA-seq and PVG PCR to detect known respiratory 

pathogens using specimens from children with CAP (n = 63) and asymptomatic control (n = 

52) subjects in whom viral or atypical bacterial pathogens had been detected using the EPIC 

study protocol. Nasopharyngeal and OP specimens were analyzed by RNA-seq and PVG 

PCR as described.

Statistics

Proportions of putative pathogens detected by each method individually or in combination 

were determined. Descriptive statistics were calculated, and proportions were compared by 

χ2 or Fisher exact test, as appropriate. To assess the association of virus detection with 

disease, we compared children with CAP with asymptomatic control subjects and calculated 

adjusted odds ratios (aORs) and 95% confidence intervals (CIs) using approximate exact 

logistic regression controlling for season and age group. All statistical analyses were 

performed with a 2-tailed α of .05 using R 3.2.2 (R Foundation for Statistical Computing). 

Approximate exact logistic regression models were developed using the elrm package for R 

with 1 000 000 Markov chain iterations and 20 000 burn-in iterations that were discarded 

when conducting the inference.

RESULTS

Validation of Respiratory Pathogen Detection by RNA Sequencing and Pan-Viral Group 
Polymerase Chain Reaction

We validated RNA-seq and PVG PCR methods to detect known respiratory pathogens by 

testing specimens using both methods from children with CAP (n = 63) and asymptomatic 

control subjects (n = 52) in whom viral or atypical bacterial pathogens had been detected 

using the EPIC study protocol. In children with pneumonia, RNA-seq detected 90% of 

pathogens detected by the EPIC study tests, and PVG PCR detected 57% (78% when 

excluding HRV and M. pneumoniae) (Table 2). In control subjects, the proportion detected 

was 64% by RNA-seq and 22% by PVG PCR (38% when excluding HRV) ( Table 2). 

Combining results of both methods, 93% of known pathogens in patients and 73% of known 

pathogens in control subjects were detected. Table 2 shows sensitivity and specificity for 

detection of each of the known pathogens. Calculations were based only on the tested 

samples. Results could be different when calculated for the entire EPIC study. A trend 

toward lower sensitivity in control subjects may be related to lower viral loads in 

asymptomatic children [29–34]. Of note, sensitivity was lowest for adenovirus for both 

methods; RNA-seq did not detect any of the 8 ADV-positive samples (n = 3 patients; n = 5 

control subjects), whereas PVG PCR detected ADV in 1 of 3 patients and 3 of 5 control 

subjects. RNA sequencing detected HRV in 46 (92%) of 50 PCR-positive specimens, 

whereas PVG PCR detected 7 (14%) of 50. All M. pneumoniae infections were detected by 

RNA-seq but not targeted by PVG PCR.
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Detection of Additional, Previously Unrecognized Respiratory Pathogens in Validation 
Samples by RNA Sequencing and Pan-Viral Group Polymerase Chain Reaction

From these specimens in which pathogens were detected by PCR, RNA-seq and PVG PCR 

detected 58 previously unrecognized viruses in 63 children with CAP and 61 previously 

unrecognized viruses in 52 asymptomatic control subjects (Figure 1). Anelloviruses were the 

most commonly detected viruses (n = 34 patients; n = 38 control subjects), followed by 

human herpesvirus 6 (HHV6; n = 8 patients; n = 9 control subjects), and human herpesvirus 

7 (HHV7; n = 6 patients; n = 10 control subjects). Other viruses of interest were human 

bocavirus (HBoV; n = 4 patients; n = 1 control subject), astrovirus (n = 3 patients; n = 0 

control subjects), human parechovirus (n = 1 patient; n = 1 control subject), and measles 

virus (n = 1 patient).

Pathogen Detection in Previously Test-Negative Specimens by RNA Sequencing and Pan-
Viral Group Polymerase Chain Reaction

Human viruses were detected in 53 of 70 (76%) children with pneumonia and 55 of 90 

(61%) control subjects (Figure 2, Table 3) who were test-negative using the EPIC study 

protocol. In patients compared with control subjects, the most commonly detected viruses 

were anelloviruses (49% vs 36%; aOR = 1.6; 95% CI = .7–3.5), HHV6 (13% vs 10%; aOR 

= 1.0; 95% CI = .3–3.3), and HHV7 (9% vs 10%; aOR = 1.2; 95% CI = .3–4.4). Human 

bocavirus was detected in a significantly greater proportion of patients (18.6%) than control 

subjects (2.2%; aOR = 9; 95% CI = 1.6–102.9; P < .01). Coxsackieviruses were detected in 

3 patients (4.3%) and no control subjects, but this association was not statistically significant 

(aOR = 5.1; 95% CI = 0.5–∞; P = .09). Other potential pathogens were more commonly 

detected in patients than control subjects, but these differences were not statistically 

significant: HRV-A (aOR = 3.5; 95% CI = .2–199; P = .34), and HPIV-4 (aOR = 9.3; 95% 

CI = .4–741; P = .12). Additional viruses detected included Epstein-Barr virus (n = 4 

patients; n = 2 control subjects), measles virus (n = 2 patients), polyomaviruses (n = 2 

patients), HPV type 5 (n = 1 patient), herpes simplex virus (n = 1 patient), rotavirus (n = 1 

patient), parvovirus B19 (n = 1 patient; n = 1 control subject), and echovirus (n = 1 control 

subject). Cytomegalovirus (CMV; n = 1 patient; n = 3 control subjects), human parechovirus 

(n = 1 patient; n = 3 control subjects), and cardioviruses (n = 2 control subjects) were more 

commonly detected in control subjects than in patients. Figure 3 shows the proportion of 

codetected putative pathogens; 24% of detections in patients and 22% of detections in 

control subjects were codetections. Monodetection of HBoV was significantly associated 

with CAP (OR = 7.3; 95% CI = 1.6–35).

Comparison of Viral Detection by RNA Sequencing and Pan-Viral Group Polymerase Chain 
Reaction

In children with CAP with no identifiable etiology, 32% of all viruses were detected by both 

methods, 22% by RNA-seq only and 47% by PVG PCR only (Supplementary Figure 1). In 

control subjects, 19% of all viruses were detected by both methods, 20% by RNA-seq only, 

and 61% by PVG PCR only. The vast majority of viruses only detected by PVG PCR were 

anelloviruses, HHV6, and HHV7, which, combined, were detected in 35 of 41 (85%) 

patients and 37 of 39 (95%) control subjects (Supplementary Figure 1). In patients, the 
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remaining viruses were most commonly detected by both methods (46%) or by RNA-seq 

only (38%; compared with 15% by PVG PCR only). In control subjects, the remaining 

viruses were more frequently detected by RNA-seq (64%) than by both methods (21%) or 

by PVG PCR only (14%). In 2 RNA-seq–positive/PVG PCR–negative samples, the entire 

viral genome could be determined. Two and 1 mismatches were identified in reverse primer 

binding sites of these Coxsackievirus and HRV-C genomes, respectively. Failure to detect 

these 2 viruses by PGV PCR was more likely due to reduced sensitivity of degenerate PCR 

primers than primer mismatches.

Bacteria in Children With Pneumonia With No Identifiable Etiology

One infant with CAP and no identified pathogen by the EPIC study protocol had C. 
trachomatis detected by RNA-seq. In 2 patients with CAP, a potential bacterial pathogen was 

identified (Figure 4). Although a diverse set of bacteria consistent with upper respiratory 

tract flora was detected in most patients, the flora in these 2 patients was dominated by a 

single Gramnegative organism. In a 23-month-old patient with trisomy 21, Pseudomonas 
fluorescens dominated the bacterial sequences (approximately 95%, best matching strain 

LBUM223, accession number CP_011117). In a 10-month-old patient with spina bifida, 

chiari malformation, and history of aspiration pneumonia, approximately 90% of bacterial 

sequences originated from Serratia marcescens (best matching strain FGI94, accession 

number NC_020064).

DISCUSSION

Using RNA-seq and PVG PCR, we identified additional viruses from upper respiratory tract 

specimens in >30% children hospitalized with clinical and radiographic pneumonia but in 

whom no pathogen was identified despite extensive testing by culture, molecular, and 

serologic methods. Human bocavirus, Coxsackieviruses, HPIV-4, HRV-C, and HRV-A were 

more commonly detected in children with CAP compared with control subjects, but only 

HBoV was statistically more common than in control subjects. This suggests that these 

pathogens may have played an etiologic role in CAP. Making an etiologic diagnosis in 

patients with pneumonia is important for understanding the epidemiology, providing 

appropriate therapy, and limiting unnecessary use of antimicrobials. However, extensive 

testing using standard approaches is unable to identify a pathogen in approximately 20% of 

children and approximately 60% of adults [4, 35]. Data from our proof-of-concept study of 

upper respiratory specimens suggest that RNA-seq and PVG PCR enable more 

comprehensive pathogen detection compared with virus-specific, real-time PCR-based tests. 

Although specimens from the upper respiratory tract can be collected without invasive 

procedure, they are most useful for identifying viral infections and have limited utility in 

testing for bacterial pneumonia.

The detected viruses in our study can be broadly categorized into 4 groups: (1) known 

respiratory pathogens, (2) viruses of unclear pathogenicity, (3) opportunistic viruses that are 

pathogenic in immunocompromised hosts, and (4) viruses not thought to play a pathogenic 

role in respiratory tract illness. Among known respiratory pathogens, we detected 

Coxsackievirus, HRV, ADV, HPIV, human parechovirus, and measles virus, which, 
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combined, were detected in 33% of children with CAP. Coxsackievirus, HRV, ADV, HPIV, 

and measles virus were all more commonly detected in patients than control subjects (aOR > 

2), but possibly due to the overall low frequency of these detections, these differences did 

not reach statistical significance. Human parechovirus and echovirus can cause respiratory 

tract infections but were detected infrequently in both patients and control subjects (aOR = 

1.3 and 0.4, respectively). The 2 patients with measles virus detection did not show signs of 

measles but had been vaccinated 7 days (positive by RNA-seq only) and 9 days (positive by 

RNA-seq and PVG PCR) before sample collection, suggesting we detected vaccine strain. 

However, the low number of sequencing reads precluded demonstrating this by examining 

the complete viral genome. Cardioviruses, which are a possible cause of respiratory tract 

infections [36], were only detected in control subjects and not patients.

Human bocavirus was the most commonly detected virus among children with CAP and no 

identified pathogen (n = 13/70; 19%). Human bocavirus detection was strongly associated 

with CAP (aOR = 9.1; 95% CI = 1.6–103) (Figure 2). Three of these infections (23%) were 

codetections with other putative viral pathogens, and monodetection of HBoV was 

significantly associated with CAP (OR = 7.3; 95% CI = 1.6–35). Human bocavirus was not 

targeted as part of the EPIC study protocol due to uncertainty over its role as a human 

pathogen [37, 38]. Human bocavirus is a Parvovirus with a DNA genome and can be 

detected for weeks to months following acute infections, which makes it difficult to 

demonstrate its pathogenicity even in well-designed epidemiologic studies. Pan-viral group 

PCR detected HBoV DNA in 12 of 70 patients (17.1%) and 2 of 90 asymptomatic control 

subjects (2.2%). RNA sequencing identified HBoV mRNA in 10 of 70 patients (14.3%) and 

0 of 90 asymptomatic control subjects (aOR = 31.4; 95% CI = 1.8– 546; P < .05). 

Sequencing reads spanning splice sites of the viral capsid mRNA [39] confirmed that mRNA 

rather than genomic DNA served as the sequencing template (data not shown). This strong 

association is in contrast with numerous PCR-based studies targeting viral genomic DNA 

[37, 40], suggesting that detection of HBoV mRNA may serve as a marker for acute (ie, 

clinically relevant) infections. Although these results will need to be confirmed in larger 

studies, our results suggest that HBoV may be associated with CAP and may be a true 

pathogen.

Human herpesviruses that can cause respiratory tract infections including pneumonia in 

immunocompromised hosts (eg, HSV, CMV, parvovirus B19, HHV6) were more frequently 

detected in patients than control subjects in our analysis. However, children with severely 

immune-compromising conditions were excluded from the EPIC study. These viruses were 

more frequently detected by PVG PCR (targeting viral genomic DNA) than by RNA-seq. In 

the absence of detectable RNA, active replication is unlikely, and their detection may be a 

result of reactivation or latent infection rather than acute infection. Lastly, we detected a 

number of viruses not known to cause respiratory tract infections, including EBV, 

anelloviruses, HHV7, polyomaviruses, and papillomavirus. Their detection in the 

nasopharynx and/or oropharynx of asymptomatic children as well as CAP patients (in 

validation and test-negative groups) is consistent with previous reports [41–47]. Their 

detection demonstrates both the power of comprehensive pathogen detection but also the 

importance of using appropriate controls. Interestingly, detection rates for these DNA 

viruses were much higher by DNA-based PVG PCR than by RNA-seq. It is possible that 
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RNA-based testing may be more sensitive for DNA viruses during high-level replication 

when mRNA is abundant.

Although both RNA-seq and PVG PCR provide broad-range detection of respiratory viruses, 

each method has potential advantages and disadvantages. RNA sequencing is highly 

unbiased, demonstrated by the detection of divergent enteroviruses not identified by PVG 

PCR, and enables identification of nonviral pathogens, as exemplified by detection of M. 
pneumoniae and C. trachomatis. In contrast, PVG PCR identified DNA viruses that were not 

detected by RNA-seq. This may have been due in part to shedding predominantly of viral 

particles (containing genomic DNA) with low levels of active replication (ie, production of 

mRNA) in the upper respiratory tract. Performing next-generation sequencing with both 

RNA-seq and DNA sequencing might increase the yield for DNA viruses and bacteria but at 

increased financial cost.

As hypothesized, broad-range pathogen detection enabled identification of viruses not part 

of comprehensive test panels (eg, HBoV, Coxsackievirus, HPIV-4, Echovirus, human 

parechovirus), genetically divergent strains escaping PCR-based detection (as can be seen 

with genetically diverse viruses; eg, HRV-A, HRV-C), and unrecognized bacterial infections 

(eg, C. trachomatis) [15]. In addition to the sequence data analysis described above, we also 

performed de novo assembly of RNA-seq results and searched resulting contiguous 

sequences for conserved protein profiles [48] on all data from children with CAP without 

identifying additional putative pathogens (data not shown). Despite these extensive efforts, a 

potential pathogen was still not detected in 46 children (65.7%) with CAP of unknown 

etiology. This could have been due to testing of NP/OP swabs and not lower respiratory tract 

samples, which are preferred for detection of bacterial and fungal pathogens; focus on viral 

pathogens; inadequate timing of sample collection; polymicrobial infections caused by 

bacterial or fungal pathogens; or noninfectious mimics. Use of broad-range methods may 

provide even greater benefits in the 60% of adults with CAP in whom no pathogen is 

detected using conventional approaches [35]. Our findings also highlight the limits of 

etiologic diagnosis of CAP with noninvasive samples. We cannot exclude that highly diverse 

viruses without homology to known human viral pathogens may have caused CAP in some 

of the children. Further advancing the diagnosis of CAP is likely to require additional 

sampling as well as host-based markers of infectious processes that may help confirm 

infectious etiologies even when a pathogen cannot be directly detected [49].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Detection of additional human viruses by RNA sequencing (RNA-seq) and pan-viral group 

polymerase chain reaction (PVG PCR) in children with community-acquired pneumonia (n 

= 63) and control subjects (n = 52) with positive pathogen-specific tests using the Etiology 

of Pneumonia in the Community (EPIC) study protocol. Human viruses detected by RNA-

seq and PVG PCR that were not targeted in EPIC included human parechovirus, human 

bocavirus, Ebstein-Barr virus, human herpesvirus 6, and human herpesvirus 7. 

Abbreviatons: EBV, Epstein-Barr virus; HBoV, human bocavirus; HHV6, human 

herpesvirus 6; HHV7, human herpesvirus 7; HPeV, human parechovirus; PVG PCR, pan-

viral group polymerase chain reaction; RNA-seq, RNA sequencing.
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Figure 2. 
Viruses detected by RNA sequencing and/or pan-viral group polymerase chain reaction in 

children with pneumonia with no identifiable etiology (n = 70; red) and asymptomatic 

control subjects (n = 90; blue). A total of 20 different human viruses were detected in 

nasopharyngeal/oropharyngeal samples. In addition, Chlamydia trachomatis was detected in 

1 newborn child with pneumonia. Fifteen viruses were more frequently detected in patients 

than control subjects (odds ratios >1), with human bocavirus (P < .001) having significant 

associations with community-acquired pneumonia. Abbreviations: ADV, adenovirus; aOR, 

adjusted odds ratio (adjusted for season and age group); C. trachomatis, Chlamydia 
trachomatis; CI, confidence interval; CMV, cytomegalovirus; HBoV, human bocavirus; 

HHV6, human herpesvirus 6; HHV7, human herpesvirus 7; HPeV, human parechovirus; 

HPIV-4, human parainfluenza virus type 4; HRV-A, human rhinovirus A; HRV-C, human 

rhinovirus C; HSV, herpes simplex virus; OR, odds ratio.
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Figure 3. 
Putative pathogens by RNA sequencing and/or pan-viral group polymerase chain reaction in 

children with pneumonia with no identifiable etiology (n = 70; red) and asymptomatic 

control subjects (n = 90; blue). In 31% of detections, other putative pathogens were 

codetected (hashed bars), whereas no other putative pathogen was detected in the remaining 

samples (monodetection). Odds ratios (ORs) and 95% confidence intervals (CIs) are shown. 

Only monodetection of human bocavirus was significantly associated with community-

acquired pneumonia. Abbreviations: HBoV, human bocavirus; HPeV, human parechovirus 

HPIV-4, human parainfluenza virus type 4; HRV-A, human rhinovirus A; HRV-C, human 

rhinovirus C.
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Figure 4. 
An abundant bacterial flora (>95% of sequencing reads) dominated by a single potential 

pathogen was detected by RNA sequencing in nasopharyngeal/oropharyngeal (NP/OP) 

samples of 2 children with community-acquired pneumonia and no identified pathogen by 

the Etiology of Pneumonia in the Community study protocol. A, In a 23-month-old patient, 

94.6% of sequencing reads generated from the NP/OP sample was identified as 

Pseudomonas fluorescens, covering 35% of the genome of strain LBUM223 (NCBI 

accession number CP_011117) at a mean of 332X (data analyzed as described in [14]). B, In 

a 10-month-old patient, 89.7% of sequencing reads were derived from Serratia marcescens, 

covering 1.5% of the genome sequence of strain FGI94 (NCBI accession number 

NC_020064) at a mean of 537X.
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Table 1

Demographic and Clinical Information of Children With Pneumonia With No Identifiable Etiology and 

Control Subjects

Patients
(n = 70)

Control subjects
(n = 90) P value (χ2)

Age group, no. (%) .05

    <1 y 14 (20) 23 (26)

    1 y 26 (37) 18 (20)

    2–4 y 30 (43) 49 (54)

Month of enrollment, no. (%) .04

    January–March 23 (33) 13 (14)

    April–June 25 (36) 37 (41)

    July–September 16 (23) 25 (28)

    October–December 6 (9) 15 (17)

Symptom, no. (%) NA

    Fever 67 (96) NA

    Cough 58 (83) NA

    Anorexia 53 (76) NA

    Dyspnea 33 (47) NA

Underlying condition, no. (%) ns

    Asthma or reactive airway disease 6 (9) 3 (3)

    Preterm birth among children aged <2 y 7 (10) 7 (8)

Radiographic findings, no. (%) NA

    Consolidation 32 (45) NA

    Alveolar or interstitial infiltrate 23 (33) NA

    Pleural effusion 20 (29) NA

Hospitalization NA

    Length of stay, median (IQR) 3 (2–4) NA

    ICU admission, no. (%) 19 (27) NA

    Death in the hospital, no. (%) 0 (0) NA

Abbreviations: ICU, intensive care unit; IQR, interquartile range; NA, not applicable; NS, not significant.
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Table 3

Putative Pathogens Detected in Children with Community-Acquired Pneumonia of Unknown Etiology by 

RNA Sequencing or Pan-Viral Group Polymerase Chain Reaction

Patients

Putative pathogen No. %

Chlamydia trachomatis 1 1.4

Coxsackievirus A6 1 1.4

Coxsackievirus A6 and human bocavirus 1 1.4

Coxsackievirus B3 1 1.4

Human bocavirus 10 14.3

Human parainfluenza virus 4 2 2.9

Human parechovirus 1 1.4

Human rhinovirus A 1 1.4

Human rhinovirus A and human bocavirus 2 2.9

Human rhinovirus C 2 2.9

None 48 65.7

Total 70 100

A putative pathogen was detected in 24 of 70 children (34.3%).
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