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Abstract

Spatial normalization of brains to a standardized space is a widely used approach for group studies 

in functional magnetic resonance imaging (fMRI) data. Commonly used template-based 

approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. 

The most widely used software packages implement two common template-based strategies: 1) 

affine transformation of the EPI data to an EPI template followed by nonlinear registration to an 

EPI template (EPInorm), and 2) affine transformation of the EPI data to the anatomic image for a 

given subject, followed by nonlinear registration of the anatomic data to an anatomic template, 

which produces a transformation that is applied to the EPI data (T1norm). EPI distortion 

correction can be used to adjust for geometric distortion of EPI relative to the T1 images. 

However, in practice, this EPI distortion correction step is often skipped. We compare these 

template-based strategies empirically in four large datasets. We find that the EPInorm approach 

consistently shows reduced variability across subjects, especially in the case when distortion 

correction is not applied. EPInorm also shows lower estimates for coregistration distances among 

subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T-

values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the 

sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm 

boosts the effective sample size by 12–25%). In sum, these results argue for the use of EPInorm 

over the T1norm when no distortion correction is used.
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Introduction

Spatial normalization of fMRI data has been broadly implemented in a variety of widely 

used software packages including AFNI1, SPM2, and FSL3. One of the challenges of 

working with the echo planar imaging (EPI) scans is that they suffer from geometric 

distortion and signal dropout. Two main template-based approaches have been utilized to 

spatially normalize EPI data into standard space [e.g. Montreal Neuroimaging Institute 

(MNI) standard space]4–8.

The first approach, called EPInorm, involves an affine transform followed by a nonlinear 

registration of the EPI image to an EPI template in standard space (we use MNI from this 

point forward though the approach can apply to any template)9–16. An advantage of this 

approach is that it directly addresses the nonlinearities the EPI image exhibits, but a 

potential drawback is that it can suffer from over correction (e.g. pulling of unrelated brain 

regions to fill regions of signal dropout).

The second approach, called T1norm, includes the estimation of an affine transform 

mapping between the EPI image to the T1 image for that individual followed by a nonlinear 

warp between the T1 and a T1 MNI template. These warp parameters are then applied to the 

coregistered EPI image resulting in MNI normalized EPI data8,9,12,15. An advantage of this 

approach is that it typically relies on an image with higher spatial resolution to estimate the 

nonlinear warp to MNI space. However, a potential drawback of this approach is that it does 

not account for the geometric distortions (which can be substantial) that impact the EPI data, 

but not the T1 data, as it assumes the affine transform can correct for any differences 

between the EPI and T1 data from the same subject.

Both of the approaches above can be applied to raw EPI data or on distortion corrected EPI 

data. Geometric distortion can be corrected to a degree using field maps17 or interpolation 

between images calculated using multiple phase encode directions18. In this case, the 

T1norm approach makes more sense as the nonlinear distortion correction provides a 

physics-based correction of the nonlinearities between the T1 and the EPI data. Despite this, 

presumably because collection of and/or use of the field map adds additional complexity to 

the data collection and post processing, the vast majority of fMRI studies published use the 

T1norm approach and do not report using geometric distortion correction. When distortion 

correction is not performed, the spatial resolution advantages of the T1norm approach are 

likely outweighed by the disadvantages caused by distortion discrepancies between 

individual subjects’ EPI and T1 data; poor coregistration between the EPI and T1 data may 

result in EPI data that are not well aligned across subjects. While several studies have 

compared nonlinear warping procedures commonly used within the T1norm 

framework19–23, to our knowledge, no study has systematically compared the EPInorm and 

T1norm approaches.
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The goal of this paper is to evaluate EPI spatial normalization schemes in group studies 

using either the EPInorm or the T1norm approaches. To do this, we evaluate four different 

datasets using several metrics. One outcome metric is the variability of the coregistration 

across subjects. This measure estimates the degree of similarity between the spatially 

normalized images from different individuals. A second metric is the coregistration between 

spatially normalized images across individuals. Finally, using a go/no-go task, we evaluate 

the impact of these various approaches on the resulting T-values, as increasing the anatomic 

accuracy of spatial normalization has been shown to increase sensitivity for detecting task-

related activation as well as the replicability of activation maps21. We focus primarily on the 

template-based nonlinear spatial normalization within the SPM12 pipeline, but results are 

expected to apply to any T1norm approach. For comparison, we also include preprocessed 

data from the Autism Brain Imaging Data Exchange (ABIDE24,25) which differed in the way 

that EPI and T1 data were aligned and in the way that T1 data were transformed to standard 

space (http://preprocessed-connectomes-project.org/abide/). The nonlinear boundary based 

registration (BBR) approach in FSL 5.0 was used to align EPI and T1 data, and linear and 

nonlinear approaches in the advanced normalization tools (ANTs) software package26 were 

used to transform T1 data to standard space. BBR includes field inhomogeneity correction 

and aligns the EPI to the T1 by maximizing the intensity gradient across tissue boundaries27. 

ANTs has been demonstrably more accurate in published studies comparing T1 

normalization strategies than standard voxelwise normalization28,29.

Methods

We focus on a comparison of EPInorm and T1norm for four different datasets, processed a 

variety of different ways. The data are briefly described in Table 1 and include an 81-subject 

multiband dataset collected during a go/no-go task at the Mind Research Network and 

analyzed without (experiment 1a) and with (experiment 1b) distortion correction, a 30-

subject pain dataset previously published using a T1norm approach30 (experiment 2), a 

pediatric study including 112 typically developing 8–12 year-old children (experiment 3), 

and the ABIDE24,25 data, which is an 1100-subject multisite autism dataset (age range 5–64) 

processed using an FSL T1norm pipeline (experiment 4).

The data are slice-time corrected, motion corrected and then spatially normalized in SPM 

using two approaches. For the EPInorm approach, we spatially normalize using the EPI MNI 

template as the target using a 4 × 5 × 4 basis set to mitigate overfitting. This approach 

involves an initial affine transform followed by a nonlinear warp, resulting in a nonlinear 

matching of the EPI image to the template. The T1norm approach involves an affine 

transform from the EPI image to the T1 image (or vice versa) from the same subject. In the 

case of the ABIDE dataset, the EPI data are registered to the T1 image with a linear 

transformation, followed by a white-matter boundary based transformation using FMRIB’s 

Linear Image Registration Tool (FLIRT)31 and then the prior white-matter tissue 

segmentation from FMRIB’s Automated Segmentation Tool (FAST)32. Next, the T1 image 

is warped to the template using the SPM T1 MNI template via the unified segmentation 

approach33, or in the case of the ABIDE dataset, linear and nonlinear transformations to 

MNI are performed using ANTs. The resulting warp parameters are applied to the EPI 

image, producing functional images in standard MNI space. See Figure 2 for a schematic 
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demonstrating the two approaches. Additionally, for the multiband dataset, we collected a 

distortion correction set, which consists of two images acquired with different phase encode 

directions. These are used to distortion correct the EPI data using the FSL topup program34 

and compared with the images that were not distortion corrected.

Metrics

We use several straightforward metrics for comparison in this study. The first metric used 

(Experiments 1, 2, and 4) was based on an evaluation of the voxelwise variability of the 

coregistered images across subjects. Within each dataset/experiment, we extracted the first 

timepoint of each subject’s fMRI data, divided by the in-brain mean for that subject and 

multiplied by 100. Next, we compute the voxelwise standard deviation among subjects. This 

provides a measure of the variability of the image; if a given voxel is always inside the brain 

at a voxel with a value of 100, the standard deviation will be zero. If a given voxel is on the 

edge and varying constantly between being ‘in’ and ‘out’ of the brain, this voxel will tend to 

have a high standard deviation. In an ideal case, all the datasets would be perfect matches to 

the MNI atlas and the standard deviation would be very low. In reality, we expect more 

variability at the edges of the brain, which largely reflects mismatch in the alignment of 

brains across individuals.

A second metric we use (Experiment 3) was the mean subject-to-subject displacement. That 

is, using the SPM image alignment algorithm, we compute the average displacement among 

each subject relative to a random subject in the dataset. Specifically, the first smoothed 

volume of the reference subject was concatenated with the first smoothed functional volume 

of every other subject along the fourth dimension to create a single image file with 112 

frames. The rigid body realignment parameters were then estimated on this 4D file created 

for each normalization method. Next, we calculated the sum of the absolute value of the six 

realignment estimates for each frame (subject) relative to the first frame (reference subject) 

after converting the three rotational displacements from degrees to millimeters by assuming 

a 50-mm radius from the cortex to the center of the head.

A third metric used was the task-activation effect size. For Experiments 1 and 2, we 

computed a GLM model fit using SPM and compared the resulting T-values for the main 

effect of interest (false alarms versus hits) in a go/no-go task. We then tested for differences 

in the within subject mean of the T-value above a given threshold (e.g., T=4). In addition, 

under certain assumptions, we can calculate the number of subjects needed to match the T-

values. That is, if  and , then given a calculated value for T1 

and T2 and assuming the mean and standard deviations are the same (i.e. μ1 = μ2 and σ1 = 

σ2, we can calculate the number of subjects needed to make the T-values equal, i.e. 

 or . Or more specifically, if T1 > T2 this 

will enable us to calculate how many more subjects we would have needed to collect (N_eff) 
in order to find equivalent T-values to the reference case (Nref).
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Results

Voxel variability as a measure of inter-subject alignment

The voxelwise standard deviation metric showed that inter-subject alignment was worse 

(indicated by significantly higher voxelwise standard deviations) using the T1norm approach 

than using the EPInorm approach. This was true for all datasets regardless of whether a) 

distortion correction was performed; b) functional data were collected using a standard EPI 

pulse sequence or a multiband pulse sequence; or c) whether we implemented the T1norm 

approach ourselves or relied on publicly available preprocessed data using this approach. For 

experiment 1a (go/no-go fMRI data processed without distortion correction), the mean + 

standard deviation was lower for the EPInorm approach (EPInorm: 5.9 ± 8.0, T1norm: 7.4 

± 9.7). Figure 3a shows the standard deviation images for T1norm and EPInorm without 

distortion correction as well as the difference. Figure 3b shows violin plots of the mean 

across the image and indicates that the EPInorm mean is lower than the T1norm mean. In 

both cases, it is clear that the T1norm approach shows more voxels with larger subject 

standard deviation values.

Voxelwise standard deviations for experiment 1b (go/no-go fMRI data processed with 

distortion correction) are shown in Figure 4a. As was the case for experiment 1a, more 

voxels had larger standard deviation values across subjects for the T1norm approach than for 

the EPInorm approach. Comparing voxelwise standard deviation values across experiments 

1a and 1b, we observed that the T1norm approach with distortion correction showed more 

subjectwise variability than without distortion correction. This may be due to the fact that 

the EPI image is collected with a single phase encode direction rather than with both; as 

such, the distortions (and signal dropout) are somewhat biased to a specific scenario (and not 

well corrected by the T1norm approach). We thus rank the four processing scenarios for the 

go/no-go fMRI data in terms of the whole brain mean and standard deviation for voxel 

variability in the following order from worst to best: T1norm (with distortion correction): 

11.0+/−13.4, T1norm (without distortion correction): 8.5+/−11.1, EPInorm (without 

distortion correction): 8.0+/−10.5, and EPInorm (with distortion correction): 7.5+/−10.3.

To ensure that our results for experiments 1a and 1b were not simply due to our greater 

familiarity with the EPInorm approach, we additionally evaluated spatial variability across 

subjects following normalization using 30 subjects from a published dataset that was 

carefully normalized using the T1norm approach using a manually curated SPM pipeline 

from Krishnan et al.30 (experiment 2). We reanalyzed these data using the EPInorm 

approach and computed the voxelwise subject standard deviation for comparison purposes. 

As before, the T1norm resulted in a higher mean and standard deviation (10.2 ± 8.8) than the 

EPInorm approach (7.0 ± 5.0). Results are shown in Figure 5. As before, the higher 

voxelwise subject standard deviation is visible for the individual images as well as for the 

difference image. In addition, we also reprocessed the data using the same pipeline as 

experiment 1 and results were consistent with increased variability for the T1norm approach 

(results not shown).
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Inter-subject realignment estimates were lower for EPInorm than for T1norm

Experiment 3, a dataset from the Kennedy Krieger Institute, consisted of 112 resting state 

scans all from typically developing 8–12 year-old children. We processed these data using 

both the T1norm and EPInorm approaches and then assessed between subject alignment for 

each method using the first image from each participant as described in the methods and a 

random subject from the set as a reference. We compared this measure of inter-subject 

displacement across normalization approaches. Results showing the inter-subject image 

displacement relative to the random subject used as a reference are presented in Figure 6. 

We observed significantly smaller displacements (indicative of better alignment) between 

subjects using the EPInorm approach relative to the T1norm approach (Wilcoxon signed-

rank test, V=631, p = 1.59×10−13), which is consistent with our voxelwise standard 

deviation findings.

Experiment 4, the final dataset, ABIDE, consisted of 1100 participants combined via a grass 

roots multisite consortium. The data were collected in separate studies, rather than 

harmonized in a coordinated manner. As such, this study has considerably more variability 

across subjects in parameters, scanner types, and other measures. As part of the ABIDE 

effort, a preprocessed dataset was released publicly which used FSL’s boundary-based 

registration via a T1norm approach24. For comparison, we computed the SPM-based 

EPInorm approach, and as before, we computed the voxelwise subject standard deviation. 

Figure 7 again shows the voxelwise subject standard deviation across the brain. As before, 

the T1norm resulted in higher standard deviations throughout the brain, but especially on the 

edges of the brain where we expect the highest values. The mean and standard deviation of 

voxelwise variability for the T1norm and EPInorm approaches were 13.6 ± 9.8 and 9.1 

± 5.7, respectively. A violin plot of the voxel values as well as a scatter plot of T1norm vs 

EPInorm in Figure 7 shows an even greater difference in variability for both T1norm and 

EPInorm than for the other datasets evaluated (likely due to the fact that ABIDE is a 

multisite dataset). We also see the same pattern in which the EPInorm exhibits less 

variability than the T1norm data in terms of voxelwise subject standard deviation. We also 

reprocessed the ABIDE data using the same T1norm pipeline as in experiment 1. Results 

were consistent in showing greater subjectwise variability using the T1norm compared to the 

EPInorm approach regardless of whether FSL’s boundary-based registration was used to 

align each subject’s EPI and T1 data followed by nonlinear warping of the T1 data to MNI 

space or whether SPM’s coregistration algorithm was used to align each subject’s EPI and 

T1 data followed by nonlinear warping of the T1 data to MNI space using SPM’s unified 

segmentation normalization procedure (results not shown).

Assessing the impact of inter-subject alignment strategy on group-level inferences

To assess the practical impact of variability in inter-subject alignment on our ability to draw 

inferences at the group level, we also analyzed the go/no-go task data (Experiments 1a and 

1b) in SPM. To compare methods, we looked at distributions of T-values for the false-alarm-

versus-hit contrast and calculated effective sample sizes. Figure 8 shows maps of the false-

alarm-versus-hit contrast generated from both EPInorm and T1norm in experiment 1a 

(without distortion correction; thresholded at T>4.0). It is clear from the figure that the 

EPInorm approach results in higher T-values associated with task activity. The maximum 
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(minimum) T-value for EPInorm is 9.68 (−7.26) and for T1norm is 8.31 (−5.77). If we 

calculate the average T-value above 4.0 (to ensure we are comparing effect sizes only in 

voxels that were strongly task-related) and test the difference between the two approaches, 

we find they are significantly different at p<0.05 (p=4.3×10−20). In addition, as described in 

the methods, we can calculate the number of subjects needed to obtain a T-value for the 

T1norm approach that is equal to that for the EPInorm approach using this mean T-value. 

We do this for the single slice in the top right corner of the figure that shows expected 

activation patterns for the go/no-go task, and also for the more general whole brain case. 

This suggests, for the no distortion correction case, an effective sample size of 

, using the EPInorm approach relative to the original Nref 

= 81 for the single slice case. Put another way, and subject to the assumptions mentioned 

earlier, if we take the T1norm mean T-value as a reference, the EPInorm has amplified the 

effective N by almost 25%. In the whole brain case, we find 

, i.e., a 12% ‘boost’ to the effective sample size relative to 

the T1norm approach. Note that these results are not particularly dependent on the specific 

T-value used. We evaluated the change in effective sample size for T-values between 2 and 5, 

and in all cases, we observed a higher effective N for the EPInorm approach relative to the 

T1norm approach without distortion correction. The change in the distribution of voxel 

values between the two approaches can be observed by comparing the T1norm and EPInorm 

voxel values show in Figure 8. The averaging approach was used to ensure the effect was 

consistent across multiple task-related voxel values rather than selecting only the maximum 

voxel value (which, if used, showed an even larger benefit of the EPInorm approach 

compared to the T1norm approach).

Figure 9 shows maps of the false-alarm-versus-hit contrast generated from both EPInorm 

and T1norm in experiment 1b (with distortion correction; thresholded at T>4.0), and 

qualitatively, the maps for EPInorm and T1norm are much more similar when distortion 

correction is performed compared to the case without distortion correction in Figure 8. The 

maximum (minimum) T-value for EPInorm is 9.73 (−8.18) and for T1norm is 10.45 (−6.30). 

As before, we calculated the average T-value above 4.0 and tested the difference between the 

two approaches with distortion correction but found that this difference was not significant 

p>0.15. To compare effective sample sizes with distortion correction, we used the T1norm 

data as the reference because the T-values were slightly, although not significantly, higher 

than those from EPInorm with distortion correction. When distortion correction is 

performed, we calculated the effective number of subjects needed for the EPInorm approach 

relative to the T1norm approach to be , relative to the 

original Nref = 81 for the single slice case. This represents a 3% boost in the effective sample 

size. In the whole brain case, we find , again a 3% 

increase to the effective sample size relative to the EPInorm approach. Interestingly, the 

average T-values for the EPInorm approach without distortion correction were higher than 

the T-values for EPInorm with distortion correction (though the maximum T-value was 

higher for the EPInorm approach with distortion correction).
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EPInorm produced larger T-values than T1Norm without distortion correction

Figure 10 shows the T-values extracted from single subjects. To do this, a mask was created 

including all voxels for which the group level T-values were larger than 4 for all of the four 

cases (T1norm, EPInorm, T1norm with distortion correction, EPInorm with distortion 

correction). We then calculated the mean of the T-values within the group mask for each 

subject. Paired t-tests showed significant differences among almost all of the cases, though, 

the most significant difference was the T1norm (without distortion correction) compared to 

the other three cases. The EPInorm approach without distortion correction had a 

significantly higher mean than both with distortion correction cases for this analysis, though 

the overall means are relatively close. Reported p-values (see Figure 10) are uncorrected; if 

we Bonferroni correct for the 6 comparisons, all of the results are still significant at p<0.05 

with the exception of the comparison between the EPInorm without distortion correction and 

EPInorm with distortion correction.

Discussion

Given the large number of studies using either the T1norm or the EPInorm approaches, we 

compared these two approaches using several straightforward metrics on multiple datasets. 

Results indicated that the T1norm approach consistently shows higher variability across 

subjects than does the EPInorm approach. In addition, the inter-subject realignment 

estimates were lower for data processed using the EPInorm approach, suggesting more 

similarity among subjects in alignment relative to the T1norm approach. Finally, the group 

T-values generated using go/no-go data processed using the EPInorm approach were higher 

than those generated using the T1norm approach. Comparing T-scores resulting from the 

two normalization methods suggests that the EPInorm approach effectively amplifies the 

sample size by between 12% and 25%. The results also suggest that distortion correction 

substantially improves the T1norm approach, but has less of an impact on the EPInorm 

approach (which is already doing a type of distortion correction).

Our results also suggest EPInorm without distortion correction provides results as good as or 

in some cases better than EPInorm or T1norm with distortion correction. This is consistent 

with previous work which has directly used high resolution EPI data to develop templates 

and found increased activation as a result35. In our case, we show similar enhancement in 

activation even for standard EPI acquisitions with little T1 contrast. Our results are also 

consistent with Huang et al. who showed that using a study specific EPI template resulted in 

greater t-values and activated voxels within a pre-defined region of interest36.

A reliance on distortion correction pulse sequences, while attractive as it offers a physics-

based approach for reducing distortions17,18, suffers from some limitations as well. Studies 

often collect these data, but in our experience, many do not use them, likely because it adds 

additional steps to the processing pipeline and also can be further complicated by motion 

within the run. And, though many studies currently collect distortion correction sequences 

and share data that has been corrected37 there are a huge number of legacy studies which are 

being shared but did not collect such sequences38. In addition, despite the relatively simple 

and short acquisition, many prospective studies still do not collect distortion sequences.
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Distortion correction strategies also typically assume there is no motion between the 

distortion correction sequence and the fMRI acquisition. This can be particularly 

problematic when participants move their head and no additional distortion correction is 

collected in this new position. Furthermore, because distortions are different depending on 

which phase encode direction is used, and most fMRI scans collect only a single phase 

encode direction, there are limits to what can be corrected. Signal dropout is of course 

another issue that disproportionally affects EPI data relative to T1 data39,40. It would be 

interesting to design a study to isolate the impact of the geometric distortion and signal 

dropout properties that the EPI data experience, and to study how these image properties 

propagate error through the T1norm and EPInorm pipelines. In our opinion, the signal 

dropout is likely having the largest impact on the results, introducing error in the 

coregistration between the T1 and EPI data that is then propagated when the transformation 

to standard space estimated using the T1 image is then applied to the EPI data, but this 

should be studied in future work.

It should also be noted that EPInorm can be applied (optimally) to each functional MRI run. 

This minimizes concerns about subject motion (and geometric distortion differences) 

between runs creating increased variability in spatial normalization. Of course, motion 

within a run would still cause potential issues, and to address this problem, emerging 

approaches collect distortion correction information more regularly throughout the scan41,42. 

Alternatively, one could collect reverse phase encoded images at every other timepoint, 

however at the cost of cutting the temporal resolution in half. And finally, there are also 

approaches which jointly estimate multiple factors such as distortion correction and 

movement interactions or EPI Nyquist ghost effects43,44.

There are several limitations to our approach. We mainly focused on data without the use of 

distortion correction, primarily because this is the most widespread use of the T1norm 

approach. In addition, the distortions and signal dropout in the EPI scan can be complex. In 

some cases, the EPInorm approach may be detrimentally stretching out signal to cover 

dropout regions that have been lost; in other cases, the EPInorm approach may also be doing 

a better job of aligning the voxels within the brain. In this empirical study, the “right 

answer” is relative to the conditions and nature of the data tested. Here, we include several 

datasets of different types and tasks to increase the generalizability of our conclusions, but 

some datasets from some scanners may behave differently. We did not exhaustively compare 

all T1-based registration algorithms15, including those demonstrably more accurate in 

published studies such as surface-based registration45–47. However, previous research 

comparing the impact of T1-based registration algorithms on prediction and reproducibility 

metrics derived from group-level statistical parametric images found that higher-order 

polynomial warps compared to affine alignment had only a minor impact48. While surface-

based algorithms have been shown to further improve the T1-to-T1 warping compared to 

now standard higher-order polynomial volume-based normalization algorithms, they still 

require proper EPI-to-T1 alignment, which is suspect to the warping and signal dropout 

aspects of the EPI scan, and thus we predict that they would show similar results as the 

T1norm approach used in this paper. However, future studies should more extensively 

compare the impact of other T1-based approaches on the analysis of fMRI data. Some newer 

studies are collecting very high-resolution EPI images, which may benefit even more from 
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the EPInorm approach; however, if distortions are minimized in such acquisitions then the 

T1norm approach may provide some benefits. Note, one other advantage of the EPInorm 

approach is it allowed spatial normalization to proceed without the requirement of the extra 

T1 scan (which in some cases may not be available).

Conclusions

We show results suggesting that the widely used T1norm approach (without distortion 

correction) does not spatially normalize the EPI data as well as the EPInorm approach. The 

differences are striking, consistent across multiple datasets (differing in how the data was 

collected and processed), and should give pause to those who plan to use the T1norm 

approach without distortion correction. Interesting, distortion correction substantially 

improves the results for the T1norm approach, but has much less of an effect on the 

EPInorm approach, presumably because it is already doing a distortion correction of sorts 

through the nonlinear transformation.
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Figure 1. 
Side-by-side comparison of EPInorm and T1norm approaches for a single subject 

transparently overlaid on the T1 image from that subject. The T1norm process is unable to 

compensate for distortions throughout the brain, which are not present in the T1 scan (blue 

circles).
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Figure 2. 
Schematic of the EPInorm and T1norm approaches.
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Figure 3. 
T1norm vs EPInorm in experiment 1a: (a, left) T1 norm voxelwise subject standard 

deviation, (a, middle) EPInorm voxelwise subject standard deviation, (a, right) difference 

(T1norm – EPInorm). b) violin plot of the voxels showing a subject standard deviation of 

over 25, T1norm shows a higher whole brain mean.
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Figure 4. 
T1norm vs EPInorm in experiment 1b: (a, left) T1 norm voxelwise subject standard 

deviation, (a, middle) EPInorm voxelwise subject standard deviation, (a, right) difference 

(T1norm – EPInorm). b) violin plot of the voxels showing a subject standard deviation of 

over 25, T1norm shows a higher whole brain mean.
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Figure 5. 
T1norm vs EPInorm in UC Boulder dataset: (left) T1 norm voxelwise subject standard 

deviation, (middle) EPInorm voxelwise subject standard deviation, (right) difference 

(T1norm – EPInorm).
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Figure 6. 
Alignment of first image for each participant relative to a random KKI subject. The EPInorm 

approach showed significantly more similarity (p<0.05) among subjects in alignment 

relative to the T1norm approach (Wilcoxon signed-rank test, V=631, p = 1.59×10−13).
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Figure 7. 
T1norm vs EPInorm in ABIDE dataset: (a, left) T1 norm voxelwise subject standard 

deviation, (a, middle) EPInorm voxelwise subject standard deviation, (a, right) difference 

(T1norm – EPInorm), b) violin plot of the voxels showing a subject standard deviation of 

over 25, T1norm is clearly much higher.
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Figure 8. 
T values corresponding to false alarms versus hits for the go/no-go task without distortion 

correction for a) T1norm, b) EPInorm.
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Figure 9. 
T values corresponding to false alarms versus hits for the go/no-go task with distortion 

correction for a) T1norm, b) EPInorm.
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Figure 10. 
Single subject T-values for the four cases (T1norm, EPInorm, T1norm with distortion 

correction, EPInorm with distortion correction): EPInorm shows the highest mean T-values 

and T1norm without distortion correction is significantly lower than the other three 

approaches.
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