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Abstract

The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid 

homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. 

The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial 

cells critical for control of vascular tone and endothelial permeability. The ion Ca2+ is stored 

inside the intracellular organelles and released into the cytosol in response to environmental cues. 

The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors 

which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic 

reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3Rs clusters, a key event responsible 

for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts 

related to architecture and dynamics of IP3Rs clusters, and their specific role in propagation of 

Ca2+ signals in endothelial cells.
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Introduction

In the late 19th century, Wilhelm His Sr. first introduced the term “endothelium” when he 

described differences between the layers of cells that line the mesoderm. After the inception 

of the idea of an endothelium as a specific tissue type or organ, the understanding of its 

exact location spanned many years of debate and technological advancements to pinpoint 

(Reviewed in [1]. Notedly, with the discovery of its form, came the discoveries of its 

function. In the recent century, we have transitioned from asking where the endothelium 

exists to determining the precise function of the endothelium and how this function is 

regulated in health and disease.

The endothelium is considered as an autocrine, paracrine, and endocrine organ capable of 

regulating a broad range of vascular functions including tissue-fluid homeostasis, vascular 

tone, thrombogenesis, inflammation, and vessel growth [2], [3], [4]; Reviewed in [5], [6], 

[7]. The large body of data related to the functions of endothelial cells have nowadays 
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centered upon an important feature: vascular permeability. Considering that the inner 

vascular lining is formed by mature, quiescent endothelial cells, its primary function is not to 

proliferate or migrate but rather to act as a semi-permeable barrier between the vascular 

system and surrounding tissues.

Permeability of the endothelial barrier represents one of the hallmark processes for the 

maintenance of proper tissue-fluid homeostasis [8], [6], [7]. Once the endothelial barrier is 

compromised in response to humoral or mechanical stimuli, the barrier loses its selective 

control, causing excessive leakage of protein-rich fluids across the barrier. Vascular leakage 

is not only an integral part of many diseases - including systemic capillary leak syndrome 

[9], dengue fever [10] and Ebola viruses [11], [12], angioedema [13], anaphylaxis [14], 

acute lung injury [15], [16], variety of eye [17] and central nervous system [18], [19] 

disorders - but also the major dose-limiting factor in many immunotherapies [20]. The basis 

of such an event lies in the disruption of the inter-endothelial junctions, which are finely 

regulated, in part, by intracellular calcium signaling.

The ion Ca2+ is a secondary messenger paramount to a multitude of physiological and 

pathological processes in human body - muscle contraction, metabolic regulation, and 

fertilization to name a few. Within endothelial cells, the ion Ca2+ also plays a fundamental 

role in the majority of intracellular processes including, but not limited to, cell proliferation, 

motility, cell-cell adhesion, and cell death. While few recent reviews focus on the role of 

intracellular calcium in regulation of vascular tone through control of nitric oxide production 

[21], [22], [23], endothelial cell migration and proliferation - a hallmark of angiogenic 

response of mature endothelium [24], [25], and endothelial progenitor cells [26] to 

environmental cues, we focus here on the role of IP3R channels, an ion channel whose 

gating is important to the control of calcium homeostasis. Novel findings in IP3R 

architecture and dynamics give further insight into regulation of IP3-evoked calcium 

signaling and, thereby, regulation of endothelial permeability.

The role of intracellular Ca2+ signaling in regulating endothelial barrier function

Endothelial barrier function—Endothelial cells form an inner monolayer, termed the 

endothelium, lining the vessels of the blood, and lymphatic systems, and the endocardium. 

The endothelium acts as a semi-permeable barrier that regulates passage of fluids, solutes, 

gases, nutrients, as well as transmigration of blood cells from circulation into surrounding 

tissues. A passage of macromolecules such as albumin across the endothelial barrier is 

essential to the maintenance of tissue-fluid homeostasis. Two main pathways, paracellular 

and transcellular, are involved in this process. The transcellular pathway, also known as 

transcytosis, uses receptor-mediated vesicular transport to actively distribute 

macromolecules across the endothelium. In contrast, the paracellular pathway utilizes 

interendothelial cell-cell junctions that connect adjacent endothelial cells and restrict 

permeability to macromolecules larger than 3 nm in diameter [27], [28], [29]. Hence, 

albumin, a molecule of 3.8 nm in diameter and 15 nm in length [30], [31], which represents 

~60% of all plasma proteins [32], [33], is mainly retained in circulation. This higher 

concentration of albumin in the circulation compared to the interstitial space creates 

transendothelial oncotic pressure, a driving force of fluid reabsorption from the interstitium 
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[34], [35]. Loss of interendothelial junctions in disease settings causes proteinaceous tissue 

edema, a pathological condition associated with leakage of protein-rich fluids in the 

interstitum [13], [15, 16].

Interendothelial junctions are comprised of adherens junctions (AJs), tight junctions (TJs), 

and gap junction (GJs) [36], [37, 38], [39]. AJs, composed of Vascular Endothelial (VE)-

cadherin adhesion complexes, are the primary cell-cell adhesions in the endothelium except 

for the brain and retinal blood barriers [40], [41], [42], also reviewed in [7]. Numerous 

signaling pathways - including those induced by free cytosolic calcium (Ca2+) - regulate the 

integrity of AJs [43, 44], [45], [46, 47]. The ion Ca2+ is a versatile and ubiquitous secondary 

messenger implicated in destabilization of endothelial barrier function [48], [49], [50], [51], 

[52], [53]. It participates in signal transduction by binding to intracellular proteins, most of 

which contain the EF-hand motif [54, 55], and causing conformational changes in their 

tertiary structure [56], [57]. In most cases, these conformational changes result in activation 

of protein functions.

The role of calcium-dependent kinases—In endothelial cells, the ion Ca2+ 

orchestrates a set of signal transduction events through activation of calcium-dependent 

kinases and phosphatases (Figure 1). These signaling molecules alter endothelial barrier 

function by multiple convergent mechanisms [6], [7]. The ion Ca2+ activates serine/

threonine kinases including protein kinase Cα (PKCα), myosin light chain kinase 

(MLCK)-210 (endothelial-specific isoform), and Ca2+/calmodulin dependent protein kinase 

II (CaMKII). In turn, these kinases induce disassembly of AJs, thereby increasing 

permeability of endothelial barrier to plasma proteins [58], [59], [60], [61], [62, 63], [47], 

[64]. For example, PKCα phosphorylates p120-catenin [65], [66], [47], a protein of the VE-

cadherin adhesion complex that binds to the juxtamembrane region of the VE-cadherin [67]. 

Phosphorylation of p120-catenin at the S879 residue decreases binding affinity of p120-

catenin to VE-cadherin, resulting in dissociation of p120-catenin from the VE-cadherin 

adhesion complex [47]. This event enables binding of an adaptor protein (AP)-2 complex to 

VE-cadherin [68], [69] and subsequent initiation of internalization [47], [67] and proteolytic 

processing of VE-cadherin [70], [71].

PKCα is also responsible for the activation of RhoA, a small GTPase that reorganizes the 

actin cytoskeleton through activation of the downstream effectors, Rho-associated coiled-

coil forming protein kinase (ROCK) and Diaphanous-related formin-1 (mDia1) [72], [73], 

[74]. PKCα induces activation of RhoA signaling by phosphorylating both a Guanine 

Nucleotide Dissociation Inhibitor (GDI) [44, 75] and a Guanine Nucleotide Exchange Factor 

(GEF) p115RhoGEF [76], [77], [78]. Phosphorylation enables GTP exchange mediate by 

p115RhoGEF by inhibiting GDI binding to RhoA [75, 76]. RhoA activates ROCK, which in 

turn phosphorylates myosin light chain phosphatase (MLCP) at Thr-695, Ser-894, and 

Thr-850 [79, 80], [81], inhibiting MLCP activity [79]. This process enables phosphorylation 

of myosin-II, an actin motor that assembles the acto-myosin contractile apparatus, at Ser19/

Thr18 by MLCK-210 [82], [83], [84]. RhoA also mediates translocation of mDia1 to AJs, 

allowing polymerization of F-actin filaments [85]. mDia1-dependent assembly of actin 

filaments is reinforced by CaMKII-dependent activation of Mitogen-activated protein kinase 
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3/1 (MAPK3/1 or ERK1/2), which phosphorylates actin-binding protein caldesmon at 

Ser789 to prompt re-organization of the actin cytoskeleton [58], [60], [63].

Another mechanism of endothelial barrier destabilization involves proline-rich tyrosine 

kinase 2 (Pyk2) that is responsible for phosphorylation of Vascular Endothelial Tyrosine-

Protein Phosphatase (VE-PTP), a constituent of AJs [86], [87]. VE-PTP, also known as 

PTPβ, provides a constitutive mechanism for VE-cadherin dephosphorylation at critical 

tyrosine residues Y658 and Y685 and, hence, prevents VE-cadherin internalization [88], 

[89]. Phosphorylation of VE-PTP at Y1981 residue causes a dissociation of VE-PTP from 

VE-cadherin thereby increasing endothelial permeability [89]. In addition, Pyk-2 positively 

regulates Ca2+ entry in endothelial cells by inducing phosphorylation at Y361 of stromal 

interaction molecule 1 (STIM1), a calcium sensor localized in the endoplasmic reticulum 

[90, 91], [92]. Pyk-2-dependent phosphorylation of STIM1 is required for its interaction 

with calcium release-activated calcium channel (Orai1) and Ca2+ entry from extracellular 

stores [92]. Importantly, phosphorylation of STIM1 at Y361 is required for development of 

pulmonary edema in inflammatory lung [92]. Although, studies in dermal microvascular 

endothelial cells isolated from neonatal foreskin challenge the role of Orai1 in agonist-

induced barrier disruption [93], further understanding of Orai1 function with respect to 

intracellular signaling might explain tissue-specific role of Orai1 in microvascular 

endothelial cells.

The role of calcium-dependent phosphatases—The ion Ca2+ also enables the 

activation of calcineurin (CaN), a serine/threonine phosphatase [94, 95]. CaN 

dephosphorylates the microtubule end binding protein 3 (EB3) at S162 allowing 

reorganization of the microtubule cytoskeleton [46]. It also dephosphorylates STIM1 and 

prolongs calcium entry from extracellular stores [96]. In addition, activation of CaN rapidly 

dephosphorylates the transcription factor nuclear factor of activated T-cells (NFAT) protein 

to initiate NFAT nuclear import [94], [97], [98]. NFAT signaling in endothelial cells is linked 

to upregulation of transcripts associated with cytokine-cytokine receptor interaction (C-X-C 

motif chemokines [CXCL] 10 and 11) and the cell adhesion (Vascular cell adhesion protein 

1 [VCAM1]) pathways [52]. These factors facilitate entry of neutrophils into pulmonary 

circulation, augmenting vascular injury. Therefore, calcium signals also contribute to the 

inflammatory response by inducing expression of specific proteins in activated endothelium 

(Figure 1).

Intracellular calcium-release channels in endothelium

Calcium homeostasis is finely regulated in endothelial cells through gating of selective and 

non-selective cation channels that enable cells to uptake, store, and release Ca2+ ions in 

order to manipulate their cytosolic concentration in a spatio-temporal manner [99]. The 

Endoplasmic Reticulum (ER) retains about 75% of total stored Ca2+ ions [100], [101] while 

other stores such as mitochondria, lysosomes, and endosomes hold about 25% [100], [102, 

103], recently reviewed in [104]. Movement of Ca2+ ions in and out the cytosol is commonly 

regulated by channels and pumps [105], [106], [107], also reviewed in [108], [109], [110], 

[111]. The channels, when open, enable rapid diffusion of the ion Ca2+ from intracellular or 

extracellular stores into the cytoplasm downhill concentration gradients. In contrast, the 
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pumps move the ion Ca2+ in an energy-dependent manner against the concentration gradient 

[reviewed in [112], [104, 113]]. The plasma membrane Ca2+ ATPase (PMCA) and the 

sodium calcium exchanger (NCX) both continuously remove the ion Ca2+ outside of the 

cells [114–116] whereas the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) moves the 

ion Ca2+ for storage into ER and SR lumina [117]. These stores release the ion Ca2+ in 

response to extracellular stimuli in order to increase the ion Ca2+ concentration and induce 

calcium signaling in endothelial cells.

There two main types of Ca2+-selective intracellular channels, the inositol 1,4,5-

trisphosphate receptors (IP3Rs) and the ryanodine receptors (RyRs). IP3Rs release Ca2+ ions 

from the ER whereas RyRs release Ca2+ ions from the sarcoplasmic reticulum (SR) [118], 

[119], [120], [121], [122, 123], [124], [125], [126], reviewed in [127], [128]. IP3Rs are 

ubiquitously expressed IP3-gated channels localized on the membrane of the ER [129]. 

These channels consist of four ~260kDa subunits [130], [131], [132], [133] that appear to be 

mostly mobile structures randomly organized into small clusters across the surface of the ER 

membrane [134, 135], [136], [137], [138], [139], [140]. Some evidence from patch clamp 

experiments using isolated nuclei suggest that IP3R clusters of about four channels are 

spontaneously induced by IP3 [141, 142]. Although the underlying mechanism of IP3 -

evoked cluster formation remains unknown, the current view is that binding of IP3 to the 

IP3Rs may trigger conformational changes within the receptor that favor assembly of the 

clusters. Interestingly, at basal cytosolic Ca2+ concentrations, clustered IP3Rs have a ~50% 

reduction in mean open time than lone IP3Rs suggesting that lone receptors are more active 

than clustered ones. However, the presence of free Ca2+ ions in cytosol reverses this 

inhibition [141]. The cytosolic portion of IP3Rs contains a putative Ca2+-sensor region 

(residues 1933–2271), which may modulate properties of the channels. In the presence of 

Ca2+ ions, the clustered IP3Rs demonstrate a higher open probability while showing reduced 

close time as compared to lone receptors; in addition, the receptors within the clusters 

exhibit simultaneous openings and closing [141], indicative of cooperative behavior. 

Therefore, the current model proposes that both secondary messengers, IP3 and Ca2+ ion, 

bind to the IP3Rs and attribute a positive regulation of Ca2+ release. Whereas IP3 rapidly 

promotes assembly of IP3Rs into the clusters, Ca2+ ions allow recruitment of Ca2+ release 

events through cooperative gating behavior of the receptors within the cluster.

IP3 is generated by a class of membrane-associated enzymes, known as phospholipase C 

(PLCs), that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) [143], [144]. These 

enzymes are classified into six distinct families: PLC-β, γ, δ, ε, ζ and η [145]. Eight out of 

thirteen known PLC isoforms have been identified in freshly isolated murine endothelial 

cells [146] from mesenteric arteries (PLCβ1, β3 and β4; PLCγ1 and γ2; PLCδ1, δ3; and 

PLCε) whereas two additional isoforms have been detected in pulmonary (PLCη1 and η2) 

and middle cerebral arteries (PLCδ4 and PLCη1) indicating tissue-specific diversity of the 

phosphoinositide signaling pathways across the arterial beds. Whereas function of PLCδ, 

PLCε, and PLCη isoforms are mainly unknown in endothelial cells, our previous work 

indicates that PLCγ1 is a major isoform responsible for maintenance of basal level of IP3 in 

human lung microvascular endothelial cells [46]. This is consistent with the phenotype of 

PLCγ1 knock-out mice which dies in utero due to loss of both erythroid and endothelial 

progenitor cells [147], [148]. In contrast, PLCγ2 is responsible for IP3 generation 
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downstream of VE-cadherin adhesion disruption suggesting a potential role of PLCγ2 in 

endothelial cell proliferation and migration downstream of inflammatory and pro-angiogenic 

stimuli [46]. PLCβ isoforms act downstream of G-protein-coupled receptors (GPCRs) 

coupled to the G-proteins Gq and G11 [149], [150], [151], [152] or VEGFR2 signaling [153].

Given the fact that sustained elevation of cytosolic Ca2+ is toxic to cells, several negative 

feedback mechanisms regulating the channel activity have evolved [154], [155]. As the 

intracellular ion Ca2+ concentration exceeds a threshold value of 0.92 millimolar, release of 

the Ca2+ ions is inhibited due to the Ca2+ binding to the inhibitory sites of IP3Rs [156], 

[157], [158], [159]. To date, seven Ca2+- binding sites have been discovered in the cytosolic 

portion of IP3R1 [160, 161], [162], [163], yet their significance in IP3R gating remains 

unclear. Mutagenesis analysis of residues overlapping these Ca2+- binding sites have no 

significant effect on IP3R gating [164]. Another model proposes that luminal concentration 

of Ca2+ is directly linked to sensitivity of IP3Rs to the Ca2+ ions [165]. As the luminal 

concentration of Ca2+ falls, IP3Rs loses its sensitivity to IP3 even in the presence of cytosolic 

IP3 and Ca2+. This model, however, needs to be supported with further experiments.

It has also been proposed that several proteins including Ca2+ -binding proteins containing 

the tetra EF- hand, calmodulin (CaM), and the calmodulin (CaM)-like neuronal Ca2+- 

binding proteins (CaBPs), attribute to negative regulation of the IP3Rs [166], [167], [168], 

[169, 170], recently reviewed in [171]. These proteins bind IP3R1 within the first 128 amino 

acid sequence [170, 172] and inhibit binding of IP3 to the receptor at 0.15 millimolar free 

Ca2+ ions in cytosol leading to blocked Ca2+ release [166], [169]. Hence, cytosolic Ca2+ 

ions attribute to both positive and negative feedback regulation of Ca2+ release through 

IP3Rs.

Another type of Ca2+-selective intracellular channel, the ryanodine receptors (RyRs) form 

Ca2+ channels located on the membrane of the sarcoplasmic reticulum (SR). The tetrameric 

RyR channel consist of subunits ~5000 residues in size [173], [174], [175], [176]. There 

exist three isoforms of RyRs in mammals with RyR1 and RyR2 being preferentially 

expressed in skeletal muscles and cardiomyocytes [174], [177], [178]. Endothelial cells 

predominantly express RyR3 isoform [179], [180]. RyRs activity is regulated by ryanodine, 

a plant alkaloid from Ryania speciose [181], [182], which induces channel pore opening at 

nanomolar concentrations and promotes pore closing at micromolar concentrations [183], 

[184], [154], [185]. Furthermore, Ca2+ ions and ryanodine demonstrate cooperative behavior 

[186, 187]. An increase in free cytosolic Ca2+ facilitates stronger binding of ryanodine to the 

RyRs as shown in endothelial cells [188]. In this respect, RyRs and IP3Rs share analogous 

regulation of Ca2+ release by cytosolic Ca2+. Since our review is mainly focused on the 

function of IP3Rs in endothelial cells, we refer to recent publications for additional 

information on structure and function of RyRs [189], [190], [191].

Recent studies have also revealed the presence of intracellular two-pore channels (TPCs) in 

endothelial cells that belong to a family of the voltage-gated ion channels [192], [193], 

[194]. The family is presented by three distantly related proteins (TPC1–3) with TPC2 

specifically localized to the lysosomal, and TPC1 to the endolysosomal systems [192], 

[195]. TPC3 is also targeted to acidic organelles as well as the plasma membrane [196], 
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[197] but is lost in human and rodent species [198]. The crystal structure of a two-pore 

channel from Arabidopsis thaliana suggests that Ca2+ and membrane potential activate two 

distinct six transmembrane (6-TM) domains [199] indicating potential mechanism for Ca2+ 

and voltage sensing. It also proposes that luminal Ca2+ might stabilize the second voltage-

sensing domain in the resting state and thereby shift voltage activation towards more positive 

potentials.

In endothelial cells, TPCs are mainly involved in regulation of cell proliferation [193], [194]. 

TPC2, which promotes Ca2+ release from lysosomal stores, potentiates pro-angiogenic 

effect of Vascular Endothelial Growth Factor (VEGF) on endothelial cells, suggesting a 

specific role of TPC2 in VEGFR2-mediated angiogenesis [193]. In contrast, TPC1 is 

involved in intracellular calcium release from endolysosomal store in response to 

arachidonic acid and mediates specific calcium signaling associated with proliferation of 

circulating endothelial colony forming cells [194].

Function of IP3R channels in endothelium

IP3Rs isoforms—Through cDNA cloning on mammalian cells, three isoforms of IP3Rs 

(IP3R1, IP3R2, IP3R3) have been discovered and characterized in various cell culture models 

[118], [200], [201], [135]. Even though all three isoforms demonstrate about 65–85% 

sequence similarity, they each produce a different magnitude of Ca2+ release due to their 

distinct affinities for IP3 [202], [131], [203], [204], [205]. The in-vitro studies have shown 

that IP3R2 is the most sensitive to IP3 [135], [206] and produces long-lasting and regular 

Ca2+ oscillations [207], [203], [208]. IP3R3, the least sensitive for both secondary 

messengers, instigates monophasic Ca2+ transients [203], [209], [206]. IP3R1 demonstrates 

intermediate affinity for IP3 and generates Ca2+ oscillations, which appear more irregular 

when compared with IP3R2-mediated oscillations [207, 209], [206]. These differences in 

binding affinities for IP3 among receptor types can be further modulated through the 

interaction of the N-terminus ligand-binding domain (LBD; see ‘Organization and structure 
of IP3Rs’) with adenosine triphosphate (ATP), the regulatory proteins - such as CaM, 

CaMBP, CaN, STIM 1 - and homer protein homolog (HOMER) proteins, as well as through 

the receptor phosphorylation [210], [166], [167], [168], [169, 170], [211], [212], [213], [214, 

215], [216], [209], [217], [218]; recently reviewed in [128].

Expression of endothelial IP3R isoforms vary among the different vascular systems [219], 

[220], [221], [53]. Whereas all three isoforms are expressed in the endothelium of the aorta 

and arteries of systemic circulation in rats and domestic cattle [220], [222], [223], [224], 

[225], [226], IP3R1 is not present in the pulmonary endothelium of either human or mouse 

[53]. Interestingly, some striking difference in the expression pattern of IP3Rs is also noted 

among species. This difference might be attributed to specialized function of the receptor 

isoform in human since in IP3R1 is predominant in endothelial cells of human brain 

microvasculature and mesenteric artery [219], [220] while IP3R3 and IP3R2 are 

preferentially expressed in pulmonary microvascular, and aorta endothelial cells [53], [221] 

as well as in circulating endothelial colony forming cells [227].
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The role of IP3R1 in regulating myogenic vascular tone—Interestingly enough, 

endothelial cell-specific knockout of IP3R1 causes high blood pressure in mice due to 

disruption of NFAT/endothelial nitric oxide synthase (eNOS) signaling [228]. Consistent 

with this finding, other studies demonstrate that expression of IP3R1 in aortic endothelial 

cell is downregulated in spontaneously hypertensive rats [222]. Both IP3R1s and IP3R2s are 

localized at myo-endothelial projections between endothelial and smooth muscle cells and 

selectively regulate inter-cellular communications. They are also involved in control vascular 

tone by activating intermediate conductance of calcium-activated potassium channels, 

thereby hyperpolarizing adjacent smooth muscle cells [224], [229], [230]. It is well-known 

that fluid shear stress induces intracellular Ca2+ oscillations through activation of 

heterotrimeric Gq/G11 proteins, which is coupled to purinergic receptor [231], [232] or 

bound to the plasma membrane in endothelial cells [233], [234]. Deficiency in IP3R1 seems 

to disrupt these adaptive responses to increased blood flow in arteries of systemic circulation 

and causes hypertension [228, 235, 236]. Cumulatively, these findings suggest, that IP3R1-

dependent Ca2+ handling might play a critical role in regulating myogenic vascular tone in 

arteries. It is plausible that IP3R1 is involved in physiological adaptive responses to 

hemodynamic changes in endothelium of systemic circulation whereas it is dispensable in 

the low-pressure system such as pulmonary circulation.

The role of IP3R2 and IP3R3 in regulating endothelial permeability in lung—The 

other IP3R isoforms IP3R2 and IP3R3 are expressed in endothelial cells and have 

implications in both increased endothelial permeability and cytokine production during 

inflammation in the lung [52], [53]. Pro-inflammatory mediators such as serine protease α-

thrombin and histamine induce Ca2+ ion release from ER stores. These mediators bind to 

and activate respective G-protein-coupled receptors (GPCRs), protease-activated receptor 1 

(PAR-1) [237], [238] or histamine receptor 1 (H1) [239], [240], at the surface of endothelial 

cells (Figure 2).

IP3 binds to IP3Rs and initiates Ca2+ release from ER stores [120], [241], [242]. Depletion 

of intracellular stores, in turn, activates a set of intracellular events that mediate capacitive or 

store-operated Ca2+ entry (CCE or SOCE) and thus replenishing Ca2+ in ER (Figure 2) 

[243], [244]. The level of Ca2+ ions within ER is sensed by transmembrane proteins 

localized on ER membrane, STIM1 [90], [245], [246]. STIM1 binds to the Ca2+ ions 

through EF-hand motif at the N-terminus, a portion of the protein located in the ER lumen 

[247], [248]. Depletion of Ca2+ inside the ER leads to oligomerization as well as interaction 

of STIM1 with both the calcium release-activated calcium channel proteins (Orai) and 

transient receptor potential channel 1 (TRPC1) located at the plasma membrane of 

endothelial cells [249–255].

As mentioned above, distinct stimuli can engage specific IP3R isoforms in activated 

endothelium. IP3R3 triggers monophasic Ca2+ transients in response to pro-inflammatory 

mediators such as α-thrombin, and promotes increased permeability of endothelial barrier 

[53]. IP3R2 induces Ca2+ oscillations in response to endotoxin lipopolysaccharide (LPS), 

which is found in the outer membrane of Gram-negative bacteria [52]. This isoform is 

responsible for sustained activation of NFAT-mediated transcripts encoding the proteins 

associated with inflammation [52], [256]. In addition, DAG promotes Ca2+ influx through 
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receptor-operated Ca2+ channels (ROC), the pathway unique from SOCE (Figure 2) [257], 

[258], [259], [260]. DAG interacts with TRPC6 at the plasma membrane [259] and permits 

Ca2+ entry through this non-selective cation channel in endothelial cells [49], [261], [51]. 

DAG can also contribute to inflammatory responses in endothelial cells through direct 

activation of protein kinase C (PKC) [262], [263], [44], [59], [264], [47] or generation of 

lipid secondary messengers such as leukotrienes [265], [266], [267]. Thus, calcium signaling 

emanated at the level of ER channels is amplified by Ca2+ flux from extracellular stores 

through SOCE and ROCE mechanisms.

Organization and structure of IP3Rs

A potential mechanism of channel gating has been suggested based on the recently solved 

quaternary structure of the IP3R1 channel in non-conducting state [133]. The IP3R1 

tetrameric structure consists of four subunits organized around a central axis [133]. Each 

subunit consists of two β-trefoil domains (β-TF1 and β-TF2), three armadillo solenoid folds 

(ARM1-ARM3), α-helical domain (HD), intervening lateral domain (ILD), six α-helices 

(TM1–TM6 or TMD), C-terminal domain (CTD), and a helical linker domain (LNK), which 

connects the transmembrane and the cytosolic bundles of each subunit (Figure 3a–b).

Organization of the permeation pathway—The proposed model suggests that the 

TMD region is essential for Ca2+ ion conduction [133]. The Ca2+ permeation path is lined 

by four TM6 α-helices, which are oriented at 37° with respect to the ER membrane (Figure 

3c). A luminal loop between TMD5 and TMD6 α-helices assembles a luminal vestibule. 

This loop contains both a short P-helix and a selectivity filter comprised of highly conserved 

residues [268], [133]. An important feature of a luminal vestibule is the presence of a 

positively charged ring, which is formed by the His2541 residues located within the P-helix 

of a tetrameric channel (Figure 3c). This ring is predicted to repel the positively charged 

Ca2+ ions in the non-conducting channel. In conductive state, the P-helices are anticipated to 

undergo a structural rearrangement allowing passage of Ca2+ ions beyond a luminal 

vestibule [133]. The gateway for ion-permeation is located at the constriction spot between 

four of the TM6 helices that each contain several hydrophobic residues oriented towards the 

permeation pathway (Figure 3c). In the non-conducting channel, these hydrophobic residues 

form a pore of 5Å in diameter that restricts passage of the hydrated Ca2+ ion of 8–10 Å in 

diameter [133]. In contrast to a luminal vestibule, a cytosolic vestibule formed above the 

pore is comprised of negatively charged residues, which are anticipated to promote a 

translocation of the Ca2+ ions into the cytosol [133].

Function of the cytosolic region—The cytosolic part of IP3R1 contains two β-trefoil 

domains, three ARMs, and an α-helical domain (Figure 3a–b). The modular organization of 

armadillo folds predicts their role in assembling different interfaces for binding of IP3, Ca2+ 

ion, and the regulatory proteins [171]. The β-TF1 domain at the N-terminus (residues 5–

225) constitutes a suppressor domain whereas β-TF2 and two α-helices armadillo repeats of 

ARM1 assemble the IP3-binding core (IBC) region. These three domains form a triangular 

structure, also known as ligand-binding domain (LBD) [269], [270], [126], above the CTD 

bundle. The α-helical, ARM2, and ARM3 domains connect the LBD to the channel-forming 

region. Even though the exact mechanism underlying IP3-evoked conformational changes 
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within the pore is not fully understood, it is proposed that gating of IP3Rs occurs through a 

long-range communication between the LBD region and the pore [133].

The current model suggests that the binding of IP3 to the IBC causes a closure of IP3 -

binding pocket and, sequentially, a twist-like movement of the suppressor domain [133]. The 

model indicates that the interactions between the suppressor and ARM3 domains carry the 

signal from the LBD to the pore. Interestingly, the suppressor domain also establishes 

interaction with β-TF2 and ARM2 domains of adjacent subunit suggesting that movement of 

the suppressor domain might transmit the signals to adjacent subunits. Consistent with this 

model, deletion of the suppressor domain or mutation of the Y167, site involved in the 

interaction with β-TF2, prevents IP3-evoked gating of the channel [271], [272], indicating an 

importance of the suppressor domain in the transmission of long-range allosteric changes.

It also has been proposed that CTD domain plays an important role in gating of the IP3R 

channel. The studies using IP3R mutant lacking the 43 residues from the CTD domain have 

demonstrated that it is required for channel gating [273]. The CTD domain is comprised of 

the long helical bundle spanning the cytosolic portion of the receptor [133]. Both 

biochemical and structural studies indicate that the N-terminal and the C-terminal parts of 

the receptor are closely associated with respect to each other [274]. The quaternary structure 

of the receptor reveals the presence of the electrostatic interactions between the CTD and β-

TF2 domains from the adjacent subunits. The CTD also interacts with LNK, the bride 

between the cytosolic and transmembrane parts of the receptor, and possibly transmits the 

signal to the TMD6 [133].

Therefore, ligand-evoked gating of the channel relies on both extensive inter- and intra-

subunit interactions within the receptor comprised of four subunits. The first near-atomic 

resolution structure of the IP3R1 [133] reveals conservation of the ion-conduction pore 

among tetrameric channels [275]. The specific features are carried through additional 

domains attached to the pore. A unique architecture in the CTD domain suggests a 

distinctive mechanism of IP3R gating that requires direct coupling between the CTD and 

LBD domains of adjacent subunits [133].

IP3-evoked Ca2+ release events

The fundamental question is “How does the ion Ca2+ elicit an array of signaling events 

alternating from proliferation, survival, and death?” Because diffusion of the ion Ca2+ is 

altered due to binding to numerous proteins and lipids in the cytosol, in many instances, it is 

only effective in initiating signal transduction events locally, in the proximity of the ion Ca2+ 

release or entry. The ion Ca2+ is released from intracellular stores through IP3Rs in three 

major events called blips, puffs, and waves (Figure 4). A blip is the elementary release event, 

a result of a passive diffusion of the Ca2+ ions from the ER through the lone channel (Figure 

4), [276]. This event allows movement of the ion Ca2+ along the gradient in a stochastic and 

autonomous process occurring at intermittent IP3R sites across the ER [277], [276]. Blips 

typically last for 10 ms and are responsible for basal cytosolic Ca2+ concentration of about 

40 – 80 nanomolar in resting endothelial cells [53].
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A greater release of Ca2+ ions lead to puffs, a result of simultaneous openings of 5–6 

channels grouped into the clusters lasting for about 100 milliseconds, [278], [279], [280], 

[281], [282], [283]. As opposed to blip events, puffs originate within the clusters suggesting 

that engagement of lone IP3R channels into multichannel assembly plays a critical role in 

transition from blip to puff (Figure 4) [284, 285]. The clusters igniting puffs are ~50 nm 

wide and distributed at ~3 μm from each other [286]. Multiple studies have experimentally 

established a direct correlation between frequency of puffs ignition and the number of IP3Rs 

present within the cluster [285], [287], [276], [288]. This relationship suggests that larger 

IP3R clusters have a disproportional influence on intracellular Ca2+ signaling and may act as 

an important ignition switch for regenerative Ca2+ waves (Figure 4). However, it should be 

considered that blips and puffs do not solely serve as components of a global Ca2+ release, 

rather, they are signaling events in themselves.

As IP3 concentration increases, puffs can trigger regenerative Ca2+ waves that spread across 

cell [286], [289] due to coordinated opening of a numerous channels of IP3Rs within the ER 

(Figure 4). It has been proposed that Ca2+ ions trigger higher frequency puffs through 

activation of neighboring channels. The current model suggests that puff frequency might set 

up a threshold for regenerative Ca2+ waves where greater oscillation frequency attributes to 

higher excitability of nearest IP3Rs and thus the transition from local (puffs) to global 

(wave) calcium release event [290–293], [294]. In this respect, organization and distribution 

of IP3R clusters become critical features. Below, we discuss the mechanisms regulating the 

receptor clustering in light of our recent work [53].

Regulation of IP3R clustering in endothelial cells

Dynamics of IP3Rs clusters in endothelial cells—Regenerative ion Ca2+ release 

relies on recruitment of neighboring IP3Rs via a process known as Ca2+-induced Ca2+ 

release (CICR). Therefore, propagation of Ca2+ signals is critically dependent on 

organization of the IP3Rs as well as optimal distribution of the receptors within the ER 

membranes. IP3Rs assemble the clusters in unstimulated pulmonary endothelial cells [53] as 

well as other cell types [139], [134, 135]. IP3R3s form less abundant clusters than IP3R2s in 

endothelial monolayers, which can be explained by their different binding affinities to IP3. 

This suggests that local spikes in basal IP3 production that are mediated by PLCɣ1 [46], 

[295] are sufficient to promote clustering of both IP3Rs in unstimulated endothelial cells 

[53].

Consistent with IP3Rs distribution in other cell types [135], [134], [138], [139], GFP-IP3R3 

form highly mobile structures in resting endothelial monolayers [53]. The IP3R3 clusters 

appear to be very infrequent structures within the ER membrane that undergo spontaneous 

assembly and disassembly. Furthermore, consistent with hypothesis of “hot spots” for 

calcium release [277, 296, 297], some clusters demonstrate sporadic assembly and 

disassembly at the same location, perhaps in response to changes in local concentrations of 

IP3. Furthermore, stimulation of the endothelial cells with α-thrombin promptly induces de 
novo formation of IP3R3 clusters, which demonstrates exponential growth in size [53] Our 

recent work identified the microtubule-associated protein EB3 as a key regulator of 

formation of IP3R3 clusters in endothelial cells [53].
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The role of microtubule cytoskeleton in IP3Rs clustering—The role of the 

microtubule cytoskeleton in organization of IP3-evoked Ca2+ signals has been established in 

various cell types [298], [299], [300], [301], [302], [303], [225], [53]. IP3Rs are shown to 

establish the transient associations with microtubules [304], [53], which in turn, actively 

participate in the redistribution of IP3Rs within the ER membrane [301], [305], [300]. The 

microtubule cytoskeleton also contributes to initiation and propagation of Ca2+ waves in 

endothelial cells [225, 299], that may occur through spatial organization and temporal 

dynamics of IP3R3s within ER membranes [306], [53], [307]. Furthermore, few reports 

indicate that the microtubule cytoskeleton facilitates delivery of IP3 to IP3Rs [308, 309], 

possibly contributing to initiation of Ca2+ spikes in secretory cells [310]. More recent 

studies in endothelial cells indicate that microtubules establish transient interactions with 

IP3R3 localized at the ER membrane and play a critical role in assembling agonist-evoked 

IP3R3 clusters [53].

While it is possible that the microtubule cytoskeleton promotes calcium signaling through 

multiple independent mechanisms, it has become apparent that it contributes to spatio-

temporal organization of calcium release from ER stores. Microtubule dynamic is critical for 

this function because accumulation of specific proteins at the growing microtubule plus ends 

might provide the mechanism for tethering and stabilizing protein complexes such as IP3Rs 

clusters at ER membrane.

EB3 is a major regulator of IP3Rs clusters in stimulated endothelial cells—The 

EB family consists of three members: EB1, EB2, and EB3 [311]. The EB proteins have 

demonstrated a high affinity for the outer part of growing microtubules, so-called the ‘+tips’ 

[312], [313], [314]. EBs are involved in establishing a protein network at the ‘+tips’ through 

recruitment of other proteins. Specifically, EB proteins interact with the CAP-Gly domain 

proteins (such as cytoplasmic linker and p150-Glued proteins) and proteins containing the 

short EB-binding motif S/TxIP [315], [316], [317], [318], [319], [320].

IP3Rs contain a EB-binding motif within a short unstructured region of the α-helical domain 

(HD), which connects the LBD to the channel-forming region [133]. The S/TxIP - 

containing motif conserved among mammalian IP3Rs enables the interaction of IP3Rs with 

EB3 and, albeit, a much weaker interaction with EB1 [53]. Intriguingly, EB3, but not EB1, 

is required for α-thrombin-evoked clustering and gating of IP3R3 in endothelial cells. 

Depletion of EB3 or disruption of the IP3R3 binding interface through a single-point 

mutation within EB-binding motif reduces number of the IP3R3 clusters in response to α-

thrombin challenge [53]. The formed clusters are short-lived [53], suggesting that tethering 

of IP3R3s to microtubule +tips by EB3 might play an essential role in stabilization of IP3R3s 

intremolecular associations within the cluster.

Fascinatingly, IP3R3 mutant bearing a single-point mutation (T804 to A) - this mutation 

disrupts the interaction with EB3 - reveals a striking difference in cluster dynamics of the 

mutant as compared to native protein [53]. Stimulation of endothelial cells with α-thrombin 

causes de novo formation of IP3R3(T804A) clusters; however, the number of clusters is 

significantly less than those formed by native receptor [53] indicating that the interaction of 

the receptor with microtubule tips might stabilize receptor clusters. Disruption of this 
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interaction, either through depletion of EB3 or mutation of IP3R3, alters organization of 

IP3R3 clusters and thereby inhibits propagation of calcium signals in endothelial cells.

Our proposed model also suggests that formation of IP3R3 clusters is essential for 

recruitment of neighboring IP3Rs via Ca2+-induced Ca2+ release since IP3-evoked Ca2+ 

signals are massively attenuated in EB3 deficient cells. The importance of EB3 in calcium 

signaling is clear from analyses of isolated lungs where knockout of EB3 in endothelial cells 

protects lungs from increased vascular leakage and pulmonary edema [53]. Thus, the 

microtubule cytoskeleton provides a critical mechanism for assembling stable IP3Rs clusters 

and effective Ca2+ signals in endothelium in the context of inflammation. Targeting this 

interaction with specific inhibitors might provide an attractive strategy for treatment of 

vascular leakage and pulmonary edema.

Conclusion remarks and future directions

Intracellular Ca2+ signaling is one of the major mechanisms involved in the communication 

between endothelial cells and the environment. Changes in mechanical (pressure and shear 

stress) and chemical (growth factors, hormones, and cytokines) stimuli are processed by 

endothelial cells through receptor-mediated outside-in signaling. The ion Ca2+ is a second 

massager that is released from ER stores and ignites a myriad of signal transduction 

pathways upon the activation of endothelial cell surface receptors. The hierarchy of IP3-

evoked Ca2+ release events is predicted to differentially regulate the cellular responses. 

While elementary Ca2+ signals in form of blips and puffs might be critical for regulation of 

vascular tone, globalization of Ca2+ signals through regenerative Ca2+ waves might 

contribute to vascular inflammation and leakage. Understanding a spatial-temporal 

organization of Ca2+ release in endothelial cells remains a major challenge in the field of 

endothelial biology.

Dynamic reorganization of IP3Rs within ER membrane is crucial in igniting neighboring 

channels and transitioning from local to global calcium release events. The microtubule 

cytoskeleton contributes to assembly of stable IP3Rs cluster and sets up a positive-feedback 

loop for the amplification of Ca2+ signals associated with the progression of several 

pathologies including vascular leakage and inflammation. Increasing our understanding of 

IP3R regulation at the molecular level will lay a ground work for the design of therapeutic 

interventions that target specific function of the receptor associated with pathology while 

leaving intact physiologically important function.
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Figure 1. Intracellular Ca2+ signaling in endothelial cells associated with vascular leakage and 
inflammation
Increase in cytosolic Ca2+ concentration activates specific kinases and phosphatases that, in 

turn, promote vascular leakage and inflammation. The serine/threonine kinase PKCα 
induces phosphorylation of p120-catenin and, through this mechanism, contributes to 

disassembly of AJs. PKCα also promotes reorganization of actin cytoskeleton and acto-

myosin contractility by activating RhoA signaling. CaM-dependent activation of both 

MLCK-210 and CaMKII facilitates reorganization of actin cytoskeleton through the 

phosphorylation of actin motor myosin-II and caldesmon. In addition, CaM activates the 

phosphatase CaN, which dephosphorylates the microtubule accessory factor EB3, thereby 

coordinating reorganization of the actin and microtubule cytoskeleton. CaN also mediates 

activation of NFAT and promotes cytokine production by endothelium.
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Figure 2. Model of receptor-mediated signaling in activating Ca2+ release and entry in 
endothelial cells during inflammation
The signal transduction begins with the binding of the ligand (hormone, cytokine, and etc.) 

to specific G-protein coupled receptor (GPCR) at the surface of endothelial cells. Initial 

Gα11/Gαq-coupled activation of phospholipase C (PLC) β directs cleavage of 

phosphatidylinositol 4,5-bisphosphate (PIP2) into the two secondary messengers, 

diacylglycerol (DAG) and inositol trisphosphate (IP3). IP3 induces clustering and activation 

of IP3Rs on the ER membrane whereas DAG instigates Ca2+ entry through Transient 

Receptor Potential Cation channels, member 6 (TRPC6) located at the plasma membrane. 

The latter might contribute to increase in cytosolic Ca2+ concentration igniting global Ca2+ 

release through IP3Rs. Depletion of the ER Ca2+ stores triggers oligomerization of Stromal 

interaction molecule 1 (STIM1) that is required for activation of TRPC1 channel and Ca2+ 

entry from extracellular space. Lipopolysaccharide (LPS) also can activate Ca2+ entry 

through the TRPC6 channel by binding to toll-like receptor 4 (TLR4).
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Figure 3. Domain structure of IP3R1
(a) Schematic representation of IP3R1 domains with corresponding amino acids. (b) 
Organization of individual IP3R1 molecule within tetrameric channel; different domains are 

indicated by color as in (a). (c) Structure of the central core of IP3R1 channel (tetramer); 

axis is indicated by the dashed line. (d) The bundle of TM6 helices forming the conduction 

pathway of the IP3R1 channel; four individual TM6 domains are highlighted by color. The 

P-helices (P) lining the luminal vestibule and selectivity filter (SF) loops are indicated. The 

pore is formed by chain of hydrophobic residues as indicated by color on the right. β-TF1 

and β-TF2, β-trefoil domains; ARM1-ARM3, armadillo solenoid folds; HD, α-helical 

domain; ILD, intervening lateral domain; TM1–TM6 or TMD, α-helices; CTD, C-terminal 

domain; LNK, a helical linker domain. Modified from Fan et al [133] with permission of the 

publisher. Copyright ©2015, Nature Publishing Group.
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Figure 4. Elementary Ca2+ release events evoked by IP3
Ca2+ release occurs in 3 major events: blip, puff and wave. Blips represent release of Ca2+ 

through a single IP3R channel, which can be lone or part of the cluster. Puffs are 

characterized by coordinated opening of multiple channels organized into the cluster. 

Regenerative Ca2+ waves are attributed to activation of IP3R across the entire cell. Both IP3 

and Ca2+ ignite Ca2+ release form neighboring IP3Rs clusters.
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