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INTRODUCTION

MS is a significant cause of neurological and cognitive disability in young people.
Pathologically it is characterized by inflammatory demyelination and, in chronic lesions,
axonal loss?. The cause of reduced cortical metabolism described in MS remains
uncertain? 3. While MS is typically regarded as a disease primarily affecting WM, cGM is
increasingly complicit in physical and cognitive disease progression. However, the
relationships between WM and cGM disease progression remain controversial. Although
some studies suggest a relationship between normal appearing WM (NAWM) atrophy and
cGM damage® °, others suggest that cGM disease progression is either independent from or
only partly related to WM abnormalities®: 7. Louapre et al, utilizing DT at 7T, found a lack
of spatial specificity between NAWM tracts and the overlying cGM8. Steenwijk et al®
reported a stronger relationship between cGM atrophy and WM tract pathology in RRMS
compared to SPMS patients, concluding that the association between NAWM and cGM
becomes increasingly independent with disease progression. The assertion that cGM and
WM progression is either dependent or partly independent is supported by histopathological
and radiological series demonstrating the role of meningeal mediated processes in both
cortical and leucocortical lesion but not WM T2h-I development0: 11,

Although few studies* > 9 have examined the regional relationship between cortical
structure and WM disease, the association between regional WM volume and perfusion and
cortical volume and perfusion is not previously studied. CBF and CBV reduction are
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previously shown either in the absence of, or adjusting for, inter-group structural differences
suggesting that cortical perfusion could serve as a surrogate of disease severity and tissue
integrity under specific conditions!2-14, Aviv et al2 demonstrated focal cGM CBV
reduction in cognitively impaired compared to preserved SPMS patients after adjusting for
global WM T2h-1 volumes. Hojjat et al'®> demonstrated significant CBF reduction in the
absence of structural differences in impaired compared to cognitively-preserved RRMS
patients. Lastly, Debernard et al4 found CBF reduction in the absence of cGM volume
differences in unimpaired RRMS patients compared to healthy controls (HC) using pCASL
perfusion. While prior studies reported regional variation in CBF and CBV, none examined
the regional associations between lobar WM (normal appearing and lesional) and cGM
volume and perfusion reduction. Consistent with growing evidence for partly independent
mechanisms of disease progression in WM and cGM, we hypothesized that an independent
association would be found between lobar WM disease and cGM volume and perfusion.

METHODS

Study participants

38 MS (19 each SPMS and RRMS) patients from two tertiary referral MS clinics and 19
healthy, age-matched controls were prospectively recruited over a one-year period.
Exclusion criteria included history of drug/alcohol abuse, relapse or steroid use < 6 months,
pre-MS psychiatric history, head injuries involving loss of consciousness, cardiac disease,
and MRI contraindications. Demographic data was obtained for each subject. This study was
approved by local ethics committee and written consent was obtained from each participant
prior to study enrollment.

Cognitive testing

All patients and HC underwent MR imaging, neurological examination, and EDSS
assessment within one week. Patients were tested using the Minimal Assessment of
Cognitive Function in Multiple Sclerosis battery comprising 7 tests covering 5 cognitive
domains, including: processing speed, memory, executive function, visuospatial perception,
and verbal fluency. Only cognitively-preserved patients were enrolled in the study given the
greater potential for confounding pathophysiological factors with greater disease progression
characterized by cognitive impairment and the previously published association between
cognitive impairment, disease progression and hypoperfusion?: 15 16,

Image acquisition

All MRI data were acquired on a 3T MRI system (Achieva, Philips Healthcare, The
Netherlands) with an 8-channel phased array coil. The MRI sequences included: axial proton
density/T2 (TR/TE/flip angle= 2500ms/10.7ms/90°; FOV= 230x230 mm?; acquisition
matrix= 256x263; slice thickness= 3 mm); axial T1-weighted TSE (TR/TE/flip angle=
9.5ms/2.3ms/12°; FOV= 240x240 mm?; acquisition matrix= 256x219; slice thickness= 1.2
mm); axial phase-sensitive inversion recovery (TR/TE= 3374ms/15ms; FOV= 230%230
mm?; acquisition matrix= 400x255; slice thickness= 3 mm); axial field-echo, echo-planar
dynamic susceptibility contrast (DSC) perfusion (TR/TE/flip angle= 1633ms/30ms/60°;
FOV= 220x220 mm?; acquisition matrix= 96x93; slice thickness= 4 mm; no gap; signal
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bandwidth= 1260 Hz/pixel; sections= 24). During the perfusion scan, ten mL of Immol/mL
concentrated Gadobutrol (Gadovist, Bayer, Toronto, Canada) was administered by a power
injector at a rate of 5 mL/s, followed by 25 mL bolus of saline at 5 mL/s, and a total of 60
images were acquired with the injection occurring at the 5™ volume. A segmented inversion
recovery look-locker EPI sequence was performed immediately before and after the axial
DSC sequence (TR/TE/flip angle= 29ms/14ms/20°; inversion time= 15.8ms; FOV=
220220 mm?; acquisition matrix= 128x126: 15 k-space lines per acquisition; slice
thickness= 4 mm; 60 time points). A 3 second delay occurred following the last imaging
time point to facilitate longitudinal magnetization recovery.

Quantitative MR perfusion

Quantitative CBF (mI/100g/min), quantitative CBV (ml/100g), and MTT (seconds) were
obtained using Bookend MRI perfusion as previously publishedl’. The technique uses pre-
and post-gadolinium ‘bookend’ scans to calculate WM quantitative CBV without need for
an arterial input function while accounting for the effects of intravascular-to-extravascular
water exchange. Tissue concentration-time curve is calculated through arterial input function
sampling, allowing relative CBV and relative CBF determination. The central volume
principle is used to calculate MTT.

Image processing

Structural T1-and proton density/T2-weighted images were co-registered using linear
registration (SPM8; Wellcome Department of Imaging Neuroscience, London, UK). T2h-I
and deep GM structures were segmented by a board-certified neuroradiologist (>10 years’
experience) using the trace function in Analyze 8.0 (Mayo Clinic, Rochester, MN, USA).
T1-weighted structural images were first segmented into GM and WM masks using the
unified segmentation model in SPM8 and checked for accuracy before creating subject-
specific NAWM masks by subtracting T2h from the automated WM segmentation. For
cortical volumetric analysis, the International Consortium for Brain Mapping lobar
(Laboratory of Neuroimaging, Keck School of Medicine, Los Angeles, CA, USA) and
MRIcro Brodmann templates (Neuropsychology Laboratory, Columbia, SC, USA) were
registered to MNI-152 space using the normalize function in SPM. Structural T1-weighted
images, and associated lesional ROIs, and lobar templates were co-registered to the EPI
DSC pre-gadolinium images using linear registration (FSL-FLIRT: FMRIB Software
Library v5.0) and non-linear intensity modulation and multi-resolution, non-linear
registration with four subsampling levels (FSL-FNIRT: FMRIB Software Library v5.0).
Global and lobar cGM and WM volumetric and perfusion metrics were then quantified
separately for bilateral frontal, parietal, temporal and occipital lobes, as previously
described?8.

Statistical analysis

Demographic, clinical, volumetric and perfusion data were summarized for HC, RRMS, and
SPMS patients using mean and standard deviation for continuous variables, and proportions
for categorical variables. To compare RRMS vs. HC, SPMS vs. HC, and SPMS vs. RRMS
for demographic variables (i.e., age, gender, educational years, disease duration and EDSS),
univariate logistic regression model was conducted. Significant confounding factors were
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determined and used for perfusion data analysis. Bonferroni corrected p-value < 0.017
(0.05/3) was considered statistically significant for controlling for multiple comparisons
among the 3 groups. To compare HC, RRMS, and SPMS cohort differences for the imaging
parameter covariates (i.e., CBF, CBV, MTT, lobar GM and WM volume), generalized linear
model with logit link function was used after adjusting for confounding factors. GENMOD
procedure in Statistical Analysis Software (SAS version 9.4 for Windows, SAS Institute Inc,
Cary, NC, USA) was performed to fit the model with Bonferroni adjusted p-value < 0.017
considered statistically significant. Confounding factors of age, disease duration, and EDSS
were assessed for multicollinearity by examining tolerance and variance inflation factor
(VIF = 1/tolerance) in a regression model using SPSS (IBM Corp., Armonk, NY, USA). A
tolerance value <0.1 and VIF >10 were regarded as indicating multicollinearity. Normality
was determined using the Shapiro-Wilk test, and anomalous dependent variables were log
transformed to fit the data to a normal distribution. Natural log-transformation was applied
as appropriate for normalizing the distributions. A general linear regression was
implemented to assess the association between GM and WM regional perfusion data,
between GM and T2h-I regional perfusion data, between WM and T2h-I regional perfusion
data, and between lobar GM and lobar WM volume data while considering confounding
factors and expressed as R2.

Clinical characteristics, global volumes and perfusion

MS subgroups did not significantly differ in sex, disease duration and years of education,
although the SPMS cohort was older (p=0.0041) and had higher EDSS (p=0.0006) scores
than RRMS (Table 1). SPMS patients demonstrated a longer disease duration but this did not
reach statistical significance (p=0.02). The SPMS cohort had greater global atrophy in cGM
and WM compared to RRMS and HC subjects (p=0.002, p=0.0026 and p=0.0049 and
p=0.0011 respectively, Table 2). RRMS exhibited lower global WM (p=0.0115) but not GM
volume compared to HC. GM and WM CBF and CBV were reduced and MTT prolonged in
SPMS compared to RRMS subjects. GM CBF reduction and MTT prolongation were
present in RRMS and SPMS compared to HC. No significant WM CBF or CBV difference
was observed for any RRMS/SPMS comparison with HC WM MTT was significantly
prolonged for SPMS versus HC. No significant T2h-I volume, CBF or MTT differences
were seen between RRMS and SPMS patients, although SPMS patients had higher T2h-I
CBYV than RRMS patients.

Lobar volumetric group comparisons

SPMS patients had reduced cGM volumes in the temporal and occipital lobes, and reduced
WM volumes in the occipital lobe compared to RRMS patients (Table 3). SPMS patients
also demonstrated reduced occipital lobe WM and temporal and occipital cGM compared to
HC. Frontal and parietal lobe WM volume reduction was observed for all comparisons and
RRMS also demonstrated a reduced temporal WM volume compared to HC. Overall, a weak
association was present between lobar cGM and lobar NAWM volume (Table 4,
Supplementary Figure 1) in both RRMS (R? 0.14-0.48) and SPMS (R? 0.16-0.48) patients
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with no statistical significance achieved for any lobar region. Association was stronger in
HC (R2 0.53-0.79)

Lobar perfusion group comparisons

The distribution of significant lobar cortical perfusion differences between group
comparisons is demonstrated in the Figure. Lobar cGM CBF reduction and MTT increase
was present in all lobes in SPMS patients compared to the other groups, with the exception
of MTT increase within the left occipital lobe for the SPMS versus RRMS comparison,
which did not reach statistical significance. Lobar cGM CBV reduction was present in the
bilateral frontal lobes of SPMS patients compared to the other groups, and in the bilateral
occipital lobes of SPMS versus HC. No significant lobar cGM CBF, CBV reduction or MTT
prolongation was found between RRMS and HCs. No significant lobar perfusion differences
were observed between any group comparison for NAWM. Strong association was shown
between cGM and NAWM global and lobar perfusion for all group comparisons and lobes
(A2 0.77-0.98, p<0.0001; Table 4, Supplementary Figure 2). Overall, SPMS patients
demonstrated stronger associations between lobar T2h-1 and cGM and NAWM perfusion
compared to RRMS patients (Table 4, Supplementary Figure 3 and 4; cGM CBF A2 0.31-
0.77 and NAWM CBF A2 0.35-0.85 versus cGM CBF A2 0.07-0.61 and NAWM CBF A2
0.06-0.69 respectively).

Associations between perfusion and volumetric data

No significant associations were found between perfusion and volumetric data in any
regression analysis (i.e., for cGM, T2h-1 or NAWM).

DISCUSSION

We demonstrated a weak association between lobar volumes of cGM and NAWM in MS
patients despite cGM and NAWM volume reduction with increasing disease severity.
Similarly, although lobar NAWM and cGM perfusion were highly correlated, the
distribution of lobar cGM perfusion reduction was distinct from underlying lobar NAWM
perfusion which showed no significant between-group differences. These results do not
conflict with the notion that the pathophysiology of WM and cGM disease may occur
independently and that the strength of association varies relating to the disease severity. The
strong association between cGM and NAWM perfusion and lack of association with
volumetric measures suggests a potential role for perfusion as an independent surrogate of
disease activity.

Weak associations between NAWM volume and GM volume and perfusion in the present
study argues against a mechanism of secondary cGM anterograde or retrograde axonal
degeneration and suggests independent pathophysiological processes acting on WM and
GM. This assertion is supported by various pathological and imaging studies® 22-24 which
have shown that cGM lesions may develop prior to the appearance of WM plaques??, arise
independently of, and are poorly correlated with T2h-1 formation23:24, A number of
pathological and imaging papers have increasingly implicated an independent etiology for
cGM lesion formation attributed either to the direct presence of meningeal-derived
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neurotoxic substances or secondary microglial activation mediated through meningeal/
supbial inflammation and manifest as a gradient of demyelination centered upon the subpial
cortex24 27,

Numerous papers have examined the spatial relationship between lobar T2h-1 and cGM
integrity using quantitative and functional parameters other than perfusion. A recent
correlative study of quantitative cortical T2* at 7T and 3T-derived surface and tract based
analysis found a correlation between WM tract DT and cGM integrity although this was not
spatially specific, reflecting a common sensitivity to MS pathological changes8. Steenwijk et
al® used DTI at 3T to investigate the association between regional GM atrophy and
pathology in anatomically connected WM tracts in RRMS, SPMS and primary-progressive
MS patients demonstrating a relationship between NAWM tract FA and deep GM and cGM.
The model of variance associated with cGM thickness was greatest in RRMS patients but
declined in SPMS and primary-progressive patients. Strong association between NAWM
integrity and cGM thickness was found only in the mildly impaired group when patients
were dichotomized by EDSS category of 4. The authors concluded that NAWM integrity
contributes to cGM atrophy only in early MS. Bodini et al* used Tract-Based Spatial
Statistics to explore the relationship between cGM atrophy and FA in connected NAWM
tracts in primary-progressive MS patients, and found that only 4/11 regions studied showed a
quantitative association between reduced NAWM FA and GM atrophy. Jehna et al® found
spatial interdependence between focal cortical volumes, lesion location and probabilistic
fiber pathways, suggesting that WM tracts and cGM volume are regionally dependent and
injured due to similar disease processes suggesting that lesional axonal transection?? leads to
Wallerian degeneration and retrograde GM atrophy. Their study was performed in “low
disabled” individuals with significantly lower age (29.5yrs) and disease duration (7.3yrs)
compared to the present cohort. In contradistinction, we did not demonstrate a stronger
association between NAWM/ T2h-l and cGM volume or perfusion with earlier disease,
likely explained by longer disease duration and older age in our RRMS group compared to
Jehna’s cohort and the different functional techniques used. The near universally stronger
cGM and NAWM perfusion association and deteriorating perfusion metrics with disease
progression also confirmed in prior studies'2:14:16. 26, 27 gggests that perfusion is sensitive
to a common pathophysiological mechanism reflecting concomitant but not necessarily co-
dependent cGM and WM pathology in MS. Findings are supported by a recently reported
DTI study® suggesting that perfusion could serve as a useful surrogate of disease activity in
addition to routine structural imaging.

Limitations of the study are the lobar rather than functional domain approach adopted to
examine associations between NAWM, T2h-I and cGM. This could result in functionally
unrelated regions being included within the lobar cGM assessed. However, a lobar approach
is previously used in a recent publication showing that the presence of juxtacortical T2h-I
may affect the degree of lobar cortical thinning28. Alternative approaches assessing
association between large-scale functional brain networks and cGM integrity may provide
greater insight into the volumetric and functional spatial relationship and the effect on
cognition?®. Greater insight into the association between NAWM, T2h-l and cGM may be
illustrated by a longitudinal rather than a cross sectional study design, therefore representing
a limitation of the present study. Lastly, the small sample size is relatively modest limiting

AJNR Am J Neuroradiol. Author manuscript; available in PMC 2018 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mulholland et al. Page 7

generalizability to a broader MS patient population. Despite these sample size limitations we
were able to demonstrate important differences in association between volumetric and
perfusion variables.

In conclusion, the weak spatial association between WM disease and cGM atrophy does not
conflict with the notion of an independent pathophysiology of WM and cGM disease.
Perfusion reduction with disease severity particularly in cGM suggests that perfusion is
sensitive to the pathophysiological mechanism of MS disease severity and may be a useful
surrogate of cortical disease progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure.
Whole brain depiction of perfusion differences in cortical Gray matter between HC, RRMS

and SPMS patients. Units for CBF (ml/100g/m), CBV (ml/100g), MTT (seconds)
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