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Abstract

Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance 

is associated with a broad range of human health conditions and diseases. Cells are constantly 

challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and 

provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells 

mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional 

program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome 

against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that 

this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by. 

In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic 

regulation of the PSR, particularly focusing on the key cellular metabolic sensor AMP-activated 

protein kinase (AMPK), and their implications in the two major age-related diseases—diabetes 

mellitus and neurodegenerative disorders.
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Introduction

Under a variety of environment stressors, it is imperative for cells to sustain the internal 

homeostasis to maintain normal cellular functions. Such stressors include heat shock, heavy 

metals, acidosis, oxidants, and metabolic poisons. Environmental insults perturb cellular 

proteome homeostasis, or proteostasis, triggering the heat-shock response (HSR) or 

proteotoxic stress response (PSR). Cellular proteostasis refers to the delicate, dynamic 

equilibrium among protein synthesis, folding, and degradation inside cells. Proteotoxic 

stressors often cause cellular protein damage or conformational changes, leading to protein 

misfolding. As a means to counter this disturbance and maintain proteostasis, cells markedly 

produce a group of specialized proteins, named heat-shock proteins (HSPs) or molecular 

chaperons. The induction of HSPs by proteotoxic stressors, a hallmark of the PSR [1, 2], is 
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transcriptionally regulated by heat shock factors (HSFs), which recognize the heat shock 

elements (HSEs) located at the promoter regions of HSP genes [3]. In eukaryotes except 

avian cells, HSF1 has been shown as the master inducer of HSP transcription. In the absence 

of stress stimuli, HSF1 remains inactive and becomes readily activated upon stress [4].

Metabolic disturbents, including glucose deprivation, hypoxia, ischemia, and metabolic 

poisons, interfere with mitochondrial production of ATP and provoke metabolic stress. By 

contrast, growth factors stimulate glucose metabolism to generate ATP and therefore 

suppress metabolic stress [5, 6]. Impaired glucose metabolism leads to diminished ATP 

generation and limited biosynthetic precursors, including nucleic acids and fatty acids, 

which are crucial to cellular growth and homeostasis [7, 8]. Regulation of cellular 

metabolism by the key energy sensor AMPK-activated kinase (AMPK) has proven crucial in 

preserving energy homeostasis, thereby maintaining normal cellular functions for survival of 

metabolic stress. Aberrant metabolic regulations have been implicated in various human 

diseases including metabolic syndrome, cancer, and neurodegeneration [9–11]. Like other 

anabolic processes, chaperone-mediated protein folding also consume ATP [12, 13]; 

unsurprisingly, protein misfolding occurs under metabolic stress [1, 14, 15]. Nonetheless, 

little is known of how metabolic stress impacts protein folding and proteostasis specifically. 

In this review, we particularly focus on the metabolic regulation of the PSR, through the 

newly discovered AMPK-HSF1 interactions, and its important implications in both diabetes 

mellitus (DM) and neurodegenerative disorders.

Heat shock factors (HSFs) and the proteotoxic stress response (PSR)

Maintenance of proteostasis is essential for cell survival under proteotoxic stress. The PSR is 

a well-characterized molecular mechanism through which chaperones are markedly induced 

in response to proteotoxic stress to preserve cellular proteostasis. Numerous studies have 

conclusively indicated that the cellular chaperone network plays a pivotal role in maintaining 

protein stability, protecting proteins from misfolding and aggregation, regulating assembly 

of protein complexes, and promoting protein complex translocation [16–18]. The primary 

transcriptional factors initiating the PSR are heat shock factors (HSFs). In mammals the 

HSF family consists of 9 members, which exhibit differential functions in regulating cellular 

proteostasis [19]. Among this family, HSF1 is the master factor controlling the powerful 

transcriptional response to heat and other proteotoxic stressors [20]. In most tissues HSF1 is 

constitutively expressed but remains inactive under non-stress conditions. In the absence of 

stress, HSF1 exists as monomers that are repressed by a protein complex comprising HSPs 

and co-chaperones in the cytoplasm. Upon challenged by stressors, including heat shock, 

heavy metals and proteosome inhibitors, HSF1 is released from this inhibitory complex and 

converted from monomers into trimers with DNA-binding capability. Subsequently, HSF1 

timers become phosphorylated, undergo nuclear translocation, and ultimately bind to the 

heat-shock element (HSE) sequences within the promoters of many HSP genes [21]. This 

multi-step process of HSF1 activation results in a markedly increased cellular chaperoning 

capacity to effectively counter proteotoxic stress.
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HSF family

Thus far, nine HSF family members–HSF1, 2, 3, 4, 5, X1, X2, Y1, and Y2, have been 

identified in mammalian cells. Despite many common features, they differ considerably in 

post-translation modifications, interactions with other proteins, and tissue expression 

patterns [22, 23]. All HSFs contain the highly conserved N-terminal DNA-binding domain 

(DBD), a looped helix-turn-helix structure [24, 25]. Upon activation, HSF1 trimers bind to 

HSEs that consist of several inverted repeats of the pentanucleotide motif nGAAn. Upon 

withdrawal of stress or under a prolonged stress, the transcriptional activity of HSF1 is 

attenuated while HSF1 returns to the monomeric state [26]. The domain immediately 

adjacent to the DBD contains hydrophobic heptad repeats (HR-A and HR-B), which mediate 

HSF1 trimerization. By contrast, the near C-terminal HR-C domain is thought to constrain 

HSF1 trimerization [27, 28]. The C-terminal transactivation domain is necessary for the 

transcription of target genes [29, 30]. In addition, the regulatory domain (RD), located 

between the HR-A/B and HR-C domain, is responsible for suppressing HSF1 activity under 

non-stress condition. Intriguingly, the RD domain of HSF1 can act as an intrinsic sensor for 

heat stress [31], and be targeted by various posttranslational modifications [32, 33]. The 

PSR, triggered by various environmental stressors, induces the expression of several classes 

of molecular chaperones or HSPs, including HSP27, HSP72, and HSP90α. By facilitating 

the folding, transportation, assembly, and degradation of other proteins, HSPs protect the 

proteome from the danger of misfolding and aggregation. Therefore, under proteotoxic 

stress HSPs are essential to proteostasis and cell survival.

In mammals, HSF1, the prototype of HSFs, acts as the master regulator of the PSR. 

Embryonic fibroblasts derived from Hsf1-deficient mice display no stress-induced Hsp gene 

transcription [34], indicating the total necessity of HSF1 for the PSR. However, HSF2 can 

also participate in the PSR through formation of heterotrimers with HSF1 [35–37]. 

Interestingly, it has been reported that HSF2 maintains the HSP70 gene locus epigenetically 

at a de-condensed chromatin state [37, 38]. In mitotic cells, inhibition of the binding of 

HSF2 to the hsp70i promoter promotes cell survival of stress [39]. Congruently, down-

regulation of HSF2 promotes the binding of both HSF1 and RNA polymerase II to mitotic 

chromatins, thereby enhancing stress-induced HSP70 expression [40]. Moreover, HSF4 

could also interact with HSF1 to recruit the chromatin remodeling complex SWI/SNF to the 

stress-related genes [41]. By contrast, HSF3, albeit expressed in mice, does not regulate Hsp 
gene expression [22, 42, 43].

Despite dispensable for the PSR, accumulating evidence indicates that HSF2, HSF3, and 

HSF4 all have important biological functions. For example, HSF2 is required for normal 

spermatogenesis [44], and HSF3 regulates the expression of genes during chicken 

embryonic development [45]. Distinct from HSF2 and HSF3, HSF4 is required for the 

development of lens [46, 47]. Although HSP genes have been long regarded as the primary 

transcriptional targets of HSF1, emerging evidence reveals that HSF1 also regulates the 

expression of numerous non-HSP genes involved in the development and maintenance of 

brain, germ cells, and immune cells [47–49]. In stark contrast to HSF1, 2, 3, and 4, which 

bind to DNA, the biological functions of HSF5 and sex chromosome-linked HSFX1, X2, 

Y1, and Y2 still remain largely unknown.
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Regulation of HSF1

Activation of HSF1 is a complex, multi-step process, wherein post-translational 

modifications, including phosphorylation, sumoylation, and deacetylation, play a key role. 

Following exposure to heat, HSF1 trimers are heavily phosphorylated. At least 12 

phosphorylation sites, either stimulatory or inhibitory, have been recognized on HSF1 [20, 

50]. For example, phosphorylation at Ser326 is critical to HSF1 activation by heat stress 

[51]. Phosphorylation at Ser230 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) 

and phosphorylation at Ser320 by protein kinase A (PKA) also induce HSF1 activation [52, 

53]. By contrast, phosphorylation at Ser307 by ERK and Ser303 by glycogen synthase 

kinase 3 (GSK3) repress HSF1 activity under non-stress conditions [54]. Recently, 

phosphorylation at Ser121 by AMP-activated protein kinase (AMPK) was shown to inhibit 

HSF1 activation [55]. Furthermore, through AMPK activation, the metabolic stressor 

metformin induces Ser121 phosphorylation and thereby impairs the DNA-binding activity of 

HSF1 [55] (Figure 1). Importantly, emerging evidence has uncovered that key oncogenic and 

tumor-suppressing signaling pathways intimately regulate HSF1. For example, the well-

known tumor suppressor neurofibromatosis type I (NF1) negatively regulates HSF1 and its 

mediated PSR [56]. Loss of NF1 alone suffices to activate HSF1 through hyper-activation of 

oncogenic RAS/MAPK signaling [56]. In light of the important role of RAS/MAPK 

signaling in activating HSF1, surprisingly, it is MEK, rather than ERK, that mediates HSF1 

activation by directly phosphorylating Ser326 [57]. Ser326 phosphorylation is crucial to the 

nuclear translocation, DNA binding, as well as stability of HSF1 [57]. Congruently, 

clinically relevant MEK inhibitors inactivate and deplete HSF1, provoking global protein 

destabilization and ubiquitination, aggregation, and amyloidogenesis in human melanoma 

cells, similarly to HSF1 knockdown [57]. Given that hyper-activation of the RAS/MAPK 

signaling cascade occurs in one-third of all human cancers [58], it is not surprising that 

constitutive HSF1 activation is widespread in human malignancies and of significant 

prognostic value [59].

Sumoylation also plays a notable role in regulating HSF1 activity. For example, 

phosphorylation at Ser303 leads to sumoylation at Lys298 on HSF1, thereby suppressing its 

transcriptional activity [60, 61]. Moreover, sumoylation could mediate protein-protein 

interactions by providing a docking site for proteins containing small ubiquitin-like modifier 

(SUMO)-interacting motif [62, 63].

Another modification influencing HSF1 is acetylation. Acetylation at Lys80 causes HSF1 

dissociation from chromatins and subsequently diminishes HSF1 activity [64]. Interestingly, 

sirtuin 1 (SIRT1) serves as a deacetylase for HSF1 at Lys80 and thereby maintains the DNA-

binding competent state of HSF1 [64]. Acetylation of HSF1 is enhanced by pharmacological 

inhibition of SIRT1 and reduced by overexpression of SIRT1, respectively [64]. In contrast 

to impaired DNA binding, acetylation enhances the stability of HSF1 proteins. By 

acetylating multiple lysine residues, the acetyltransferase p300 protects HSF1 from 

proteasome-mediated degradation [65].

Protein-protein interactions, in addition to posttranslational modifications, regulate HSF1 as 

well. For example, HSF1 is repressed by its own transcriptional targets HSPs, thereby not 

only maintaining HSF1 at the inactive state under non-stress conditions but also constituting 
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a negative feedback mechanism to attenuate HSF1 activity during stress recovery [66]. In 

support of this, HSP90-HSF1 interactions mitigate the translocation of HSF1 into the 

nucleus and impair HSP72 induction by hyperthermia in the rat myocardial infraction model 

[67]. By contrast, ATF1-HSF1 interactions recruit the chromatin-remodeling factor BRG1 

and histone acetyltransferases, both p300 and CREB-binding protein (CBP), to assemble a 

potent HSF1 transcription complex [68].

Transcription-independent action of HSF1

It has been widely recognized that HSF1 promotes cellular and organismal survival of 

proteotoxic stress and prolongs lifespan; in stark contrast to these beneficial effects, its 

surprising pro-oncogenic role has just begun to emerge recently [56, 69, 70]. In models for 

diverse types of cancer, including malignant peripheral nerve sheath tumor, mammary 

carcinoma, melanoma, and hepatocellular carcinoma, the pro-oncogenic role of HSF1 has 

been demonstrated [56, 57, 71].

The underlying mechanisms, unsurprisingly, are diverse, given the large transcriptional 

network HSF1 regulates. It has been shown that HSF1 augments the oncogenic RAS 

signaling cascade, suppresses oncogene-induced cell death and senescence, promotes 

cellular migration and epithelial-mesenchymal transition (EMT), as well as enhances 

lipogenesis [72]. Of note, new evidence further indicates that HSF1 plays a critical role in 

preserving proteostasis and suppressing amyloidogenesis to promote oncogenesis [57]. 

Canonically, all these multifaceted effects of HSF1 have been ascribed to its eminent 

transcriptional action.

Unexpectedly, a new study reports that through a transcription-independent mechanism, 

HSF1 preserves mTROC1 integrity and supports robust protein translation by suppressing c-

Jun N-terminal kinase (JNK), thereby promoting stress resistance and growth [73]. JNK, 

acting as a cellular sensor of proteotoxic stress, constitutively associates with mammalian 

target of rapamycin complex 1 (mTORC1). Upon rapid activation by proteotoxic stress, JNK 

phosphorylates both regulatory-associated protein of mTOR (RAPTOR) and mTOR directly, 

leading to mTORC1 dissociation and subsequent translation inhibition. Importantly, HSF1 

physically interacts with and sequesters JNK apart from mTORC1, thereby maintaining 

protein synthesis and cellular growth [73]. Of note, HSF1 exerts this effect independently of 

its transcriptional regulation, highlighting a new mode of action of this ancient 

cytoprotective factor.

Metabolic control of the PSR in diabetes mellitus

Impacts of metabolic states on proteostasis

Although less appreciated, metabolic disturbance can impact proteostasis. For example, 

metabolic dysregulation in diabetes induces protein aggregation in pancreatic β-cells [74, 

75]. In rodents, the metabolic disturbance induced by high-fat diets or associated with 

diabetes promotes β-amyloid deposits in the brain [76, 77].

It has been well recognized that an array of signaling pathways, including mTORC1 and 

AMPK, sense the cellular energy state and respond to metabolic changes closely. While 
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AMPK senses fluctuations in the intracellular AMP:ATP ratio, mTORC1 senses the 

availability of nutrients such as amino acids. Activated by nutrients, mTORC1 controls 

cellular growth by regulating protein translation and autophagy [78]. Interestingly, it has 

been shown that metabolic stress activates AMPK, which, in turn, inhibits mTORC1 [79]. 

AMPK directly phosphorylates RAPTOR, a key binding partner of mTOR, at two sites, 

Ser722 and Ser792, which subsequently induces 14-3-3 binding to RAPTOR [79]. 

Therefore, metabolic stress, through AMPK activation, impairs the mTORC1-mediated 

protein synthesis [80].

Metabolic states can also inflict protein damage. Metabolic syndrome, including obesity, 

hyperglycemia, hyercholesterolemia, hypertriglyceridemia, and insulin resistance, greatly 

increases the risk of developing type 2 diabetes (T2D) [81]. Of note, metabolic syndrome is 

frequently accompanied by oxidative stress, owing to impaired mitochondrial ATP 

production and subsequent induction of reactive oxygen species (ROS) [82]. Accumulation 

of ROS is detrimental to cells by damaging cellular macromolecules including lipids, 

nucleic acids and proteins. Protein oxidation by ROS alters the conformations, solubility, 

and stability of proteins [83], provoking proteotoxic stress. For example, high glucose-

induced oxidative stress results in protein misfolding and aggregation in obese Zucker rats 

[74]. Inevitably, oxidative stress activates HSF1 and its mediated PSR [84]. Thus, metabolic 

dysregulation, at least in part through oxidative damage, deteriorates protein quality and 

disrupts proteostasis.

Metabolic regulation of HSF1 and the PSR

Intriguingly, recent studies have revealed that the PSR, one of the key protein quality-control 

machineries, is also implicated in metabolic syndrome and DM. For example, in diabetic 

monkeys, HSF1, HSP70, and HSP90 proteins are all diminished in the liver; by contrast, 

their expression is elevated in the pancreas [85], likely reflecting the compensatory 

mechanism to restore proteostasis in this tissue. Interestingly, dietary or calorie restriction, a 

metabolic intervention effectively suppressing age-related diseases, including cardiovascular 

diseases, cancer, neurodegeneration, and T2D, and prolonging lifespan, also regulates HSF1 

[86, 87]. In calorie-restricted cells, the age-related diminishment of HSF1 DNA binding is 

reversed [87]. Contrary to calorie restriction, amino acid deprivation impairs HSF1 DNA-

binding activity and suppresses the expression of HSP mRNAs [88]. Similarly, depletion of 

glutathione also suppresses the HSF1 activation by heat shock [89]. Moreover, under fasting 

HSF1 activity in mouse livers is low; however, re-feeding markedly increases HSF1 activity 

and HSP expression in the liver [71]. Taken together, accumulating evidence reveals a 

complex HSF1 regulation by the cellular metabolic state. Despite these paradoxical findings, 

it remains possible that the ultimate impacts of nutrients on HSF1 may depend on the 

severity of nutrient inaccessibility.

Imbalanced energy intake and expenditure is closely associated with metabolic diseases 

including DM. Two key players in sensing cellular nutritional status and preserving energy 

homeostasis are insulin signaling and mitochondria. Metabolic signaling has been implicated 

in regulating HSF1 and the PSR. For example, it was proposed that insulin signaling inhibits 

HSF1 activation [90]. Stimulation of insulin-like growth factor receptor (IGFR in mammals, 
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DAF-2 in C. elegans) leads to activation of PI3K/AKT signaling and subsequent 

phosphorylation of the transcriptional factor Forkhead Box O (FOXO), impairing its nuclear 

translocation. Importantly, FOXO is required to cooperate with HSF1 in co-regulating a 

subset of target genes including small hsp genes [91]. Furthermore, in C. elegans insulin/

IGF-1-like signaling can negatively regulate HSF1 through DDL1 (homologue of human 

CCDC53), which forms a repressive protein complex with HSF1 [92]. In addition, activation 

of peroxisome proliferator–activated receptor gamma coactivator 1- (PGC-1, a key regulator 

of mitochondrial biogenesis, has also been reported to inhibit HSF1. Through physical 

interaction, PGC-1α represses the transcriptional action of HSF1 directly [93]. In further 

support of the metabolic regulation of HSF1, other key metabolic sensors including SIRT1 

and AMPK are able to modify HSF1 as well. AMPK phosphorylates and SIRT1 deacetylates 

HSF1, respectively [54, 63]. Congruently, high-fat diets impair AMPK-dependent 

phosphorylation of PGC-1α and increase the expression and activity of SIRT1, thereby 

activating HSF1 [94]. Thus, it is conceivable that metabolic dysregulation associated with 

DM likely affects the HSF1-mediated PSR, contributing to disruption of proteostasis.

Protective roles of HSF1 and HSPs in DM

Ample evidence has implicated dysregulation of the chaperone network in the pathogenesis 

of DM. For example, HSP72 expression induced by hyperthermia is markedly impaired in 

rats developing streptozotocin (STZ)-induced T2D [95]. Similarly, exercise fails to induce 

the expression of HSF1 and HSP72 in the skeletal muscle of diabetic rats [96]. In diabetes 

patients, HSPs are also markedly diminished, correlating with insulin resistance [97, 98].

Importantly, reduced HSP72 expression impairs insulin-stimulated glucose uptake in DM 

patients [99]. Moreover, Hsp72 knockout mice display exacerbated obesity, insulin 

resistance, and lipid accumulation in the skeletal muscle [100]. Mechanistically, deletion of 

Hsp72 reduces oxygen uptake and fatty acid oxidation rate in primary myocytes [100]. 

Conversely, restoring HSP72 expression improves insulin resistance and glucose 

metabolism. In mice, transgenic HSP72 overexpression protects against high-fat diet or 

obesity-induced insulin resistance, which is tightly associated with suppressed JNK 

phosphorylation [101]. Furthermore, enhanced HSP72 expression increases mitochondrial 

oxidation and ameliorates insulin resistance in the skeletal muscles in mice [102]. Also, by 

suppressing the aggregation and amyloidogenesis of human islet amyloid polypeptide (h-

IAPP), a peptide hormone co-secreted with insulin, HSP72 overexpression protects 

pancreatic β-cells from toxicity [103]. Moreover, BGP-15, a small-molecule stimulant of 

HSP72, has been shown to improve insulin sensitivity, suppress inflammation, increase 

mitochondrial activity, and restore metabolic homeostasis in Goto-Kakizaki (GK) rats, a 

non-obese T2D model [102, 104, 105]. Importantly, BGP-15 significantly improves insulin 

sensitivity in insulin-resistant patients and displays no adverse effects [104]. Furthermore, 

heat shock in combination with mild electrical stimulation, which induces Hsp72 expression, 

markedly improves insulin sensitivity and glucose homeostasis in db/db mice [106]. 

Similarly, treatment with ADAPT-232, an adaptogen known to induce HSF1 and HSP72 

expression, notably rescues growth retardation in a transgenic C. elegans model expressing 

h-IAPP [103]. In addition to HSP72, HSP27 also plays a beneficial role in diabetes. In mice, 
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transgenic HSP27 overexpression antagonizes cytokine-induced islet apoptosis and mitigates 

STZ-induced T2D [107].

Congruent with the effects of HSPs in diabetes, expression of a constitutively active HSF1 in 

pancreatic β-cells enhances glucose-driven insulin secretion, elevating serum insulin levels 

and reducing blood glucose levels in neonatal STZ-induced diabetic rats [108]. These effects 

are correlated with activation of glucokinase and neuronal nitric oxide synthase [108]. As 

the pivotal regulator of HSP expression under stress, HSF1 is subjected to multi-layers of 

regulation, including negative feedback control by its own transcriptional targets, HSPs, and 

kinase-mediated phosphorylation events [109]. Interestingly, ERK, GSK3, and JNK kinases, 

all of which are associated with insulin resistance, have been shown to phosphorylate and 

suppress HSF1 [110] (Figure 2). By inhibiting GSK3 to activate HSF1, physical activity/

exercise, a lifestyle intervention well known to reduce the incidence of T2D, induces the 

expression of HSPs [111]. Furthermore, mild heat treatment has been shown to decrease 

fasting plasma glucose levels in T2D patients and prevent insulin resistance in high-fat diet-

fed rats [112, 113]. Similarly, a recent study demonstrated that activation of HSF1 by the 

natural compound celastrol regulates energy expenditure in mice fed high-fat diets [114]. 

Through stimulation of PGC-1 signaling, celastrol-induced HSF1 activation enhances 

mitochondrial function, regulates white fat browning, and prevent obesity, insulin resistance, 

and hepatic steatosis [114].

Collectively, a large body of evidence has revealed important roles of HSF1 and HSPs in 

both proteostasis and energy metabolism, thus supporting the contribution of their 

dysregulation to the pathogeneses of DM and further suggesting them as valuable 

therapeutic targets.

AMPK: a key mediator of the metabolic stress response

How does metabolic dysregulation impact the PSR? It has been widely recognized that 

AMPK plays a pivotal role in sensing cellular energy state and initiating the metabolic stress 

response (MSR). AMPK is a heterotrimeric protein consisting of α, β, and γ subunits that 

are encoded by seven individual genes in total. There are two α isoforms (α1 and α2), two β 
isoforms (β1 and β2), and three γ isoforms (γ1, γ2, and γ3). The N-terminus of the α 
subunit contains a serine/threonine kinase domain that is activated by upstream kinases. The 

C-terminal domain of the β subunits serves as a linker to connect the C-terminal domain of 

the α subunits and the N-terminal domain of the γ subunits, and acts as a glycogen sensor 

[115, 116]. The γ subunits contain regulatory adenine nucleotide-binding sites and four 

tandem repeats known as cystathionine-b-synthase (CBS) domains. Through these CBS 

domains, the γ subunits are able to bind AMP, ATP, or ADP, thereby sensing the cellular 

energy status. Phosphorylation of Thr172 on the α1 subunit, a key modification activating 

AMPK, is mediated by the tumor suppressor liver kinase 1 (LKB1/STK11) or Ca2+/

calmodulin-dependent protein kinase kinase (CaMKK [117, 118].

AMPK is activated by elevated intracellular AMP:ATP ratio. Under energy stress, increased 

intracellular AMPs leads to ATP replacement from the exchangeable sites on the γsubunits, 

causing a modest increase in AMPK Thr172 phosphorylation [119]. The ATP replacement 

also suppresses de-phosphorylation of Thr172, further enhancing AMPK activity [119]. 
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Pharmacological metabolic stressors including metformin, arsenite, and antimycin A, or 

pathological conditions including ischemia and hypoxia, can also activate AMPK through 

depletion of ATP [120–123]. In addition, 5-aminoimidazole-4-carboxamide ribonucleoside 

(AICAR), an adenosine analog, is widely used as a pharmacological activator of AMPK. 

Following uptake mediated by the adenosine transporter, inside cells AICAR is converted by 

the adenosine kinase into mono-phosphorylated forms, which mimic AMP [124].

Energy homeostasis is essential for cellular survival of metabolic stress. A large body of 

evidence has pinpointed a critical role of AMPK in preserving energy homeostasis. AMPK 

is known to regulate lipid metabolism in numerous tissues [117, 118]. Through direct 

phosphorylation, AMPK inactivates two key lipogenic enzymes, acetyl-CoA carboxylase 

(ACC) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate limiting 

enzymes for fatty acid and cholesterol synthesis, respectively [125]. In addition to 

lipogenesis, protein synthesis is another major ATP-consuming process. Under metabolic 

stress, AMPK is activated to inhibit both the lipogenesis, mediated by ACC and HMGCR, 

and the protein synthesis, mediated by mTORC1. mTORC1, sensitive to the inhibition by 

rapamycin, is a protein complex comprised of mTOR, DEPTOR, mLST8, PRAS40, and 

RAPTOR. mTORC1 phosphorylates ribosomal S6 kinase (p70-S6K) and eukaryotic 

translation initiation factor 4E (elF4E)-binding protein 1 (4EBP1), both of which are key 

players in controlling protein translation [126]. In the past decade, several studies have 

revealed that mTORC1 is regulated by the tumor suppressing LKB1-AMPK signaling 

pathway. Indirectly, AMPK inhibits mTORC1 activity through activation of the tumor 

suppressors tuberous sclerosis complex 1 and 2 (TSC1 and TSC2). Through their GTPase 

activity, TSC1 and TSC2 inactivate the small G protein Ras homologue enriched in brain 

(Rheb), a key activator of mTORC1 [127]. AMPK activates TSC2 though phosphorylation 

of both Thr1227 and Ser1345 [128], subsequently inactivating Rheb and suppressing 

mTORC1. Moreover, AMPK is able to inhibit mTORC1 activity by phosphorylating 

RAPTOR directly [79].

In addition to key enzymes and kinases, AMPK also regulates various transcription factors 

or co-activators to mediate metabolic reprogramming and enhance cellular survival under 

metabolic stress. For example, AMPK activates FOXO3 to enhance stress resistance, 

glucose metabolism, and cell survival [129]. By contrast, AMPK inhibits the lipogenic 

transcription factor SREBP-1c, another means to suppress lipogenesis [130]. AMPK also 

phosphorylates and stabilizes TP53 through inhibition of the SIRT1-mediated TP53 

deacetylation [131]. A prominent regulator of mitochondrial biogenesis and function is 

PGC-1. Overexpression of PGC-1 in cultured cells promotes energy expenditure and 

increase cardiac mitochondrial biogenesis [132, 133]. AMPK phosphorylates PGC-1 directly 

to enhance its transcriptional activity and thereby promote mitochondrial biogenesis [134]. 

In mice expressing a dominant-negative AMPK transgene, mitochondrial biogenesis cannot 

be induced by energy deprivation in the skeletal muscle [135]. Taken together, by 

orchestrating a systemic cellular response to metabolic stress, AMPK activation reduces 

ATP consumption but enhances ATP production, thereby restoring energy homeostasis.
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Implications of the AMPK-mediated HSF1 suppression in DM

Emerging studies have begun to shed light on the previously unappreciated link between 

metabolic stress and the HSF1-mediated PSR. A recent study revealed that metabolic stress, 

provoked by metformin or nutrient deprivation, inactivates the HSF1-mediated PSR through 

AMPK [55]. Upon activation, AMPK phosphorylates HSF1 at Ser121 directly, which 

impairs its nuclear translocation and DNA binding and subsequently renders cells vulnerable 

to proteotoxic stress [55]. Intriguingly, heat stress suppresses AMPK and its mediated MSR 

[55]. Moreover, AMPK can also suppress the PSR indirectly through PGC-1. Another recent 

study showed that both PGC-1 and HSF1, through physical associations, are co-localized on 

several HSP gene promoters [93].Importantly, PGC-1 acts as a repressor of the HSF1-

mediated HSP transcription [93]. Thus, under metabolic stress AMPK is able to suppress the 

activation of HSF1 and its mediated PSR, both directly and indirectly.

Metformin, a metabolic stressor that potently activates AMPK, is a first-line medicine to 

treat T2D and prescribed to over 120 million people worldwide [136]. Instead of acting on 

LKB1 or AMPK directly, metformin mobilizes AMPK by inhibiting complex I of the 

mitochondrial electron transport chain, thereby causing cellular energetic stress [136]. 

Beyond lowering blood glucose levels by improving insulin sensitivity [137], metformin 

also prevents massive accumulation of autophagic vacuoles and thereby alleviates β-cell 

death in T2D patients [138]. Congruently, a long-term follow-up study reveals that 

metformin treatment reduces the mortality of T2D patients by 36% [139].

Undoubtedly, metformin exerts a wide array of beneficial metabolic effects on T2D; 

however, emerging evidence reveals that metformin is also able to suppress the HSF1-

mediated PSR through AMPK activation [55]. Thus, through disruption of proteostasis, 

metformin may not protect pancreatic β-cells, especially those suffering from IAPP 

amyloidogenesis, or even exacerbate their failure in T2D. Importantly, this new finding 

further suggests that activation of HSF1 and its mediated PSR, in combination with 

metformin, may represent a more effective therapeutic strategy for T2D.

Metabolic control of the PSR in neurodegenerative disorders

Disruption of proteostasis in neurodegenerative disorders

It has been well recognized that disruption of proteostasis is causally associated with aging 

and age-related diseases, particularly neurodegenerative disorders, in humans. 

Neurodegenerative disorders, including Huntington’s disease (HD) and Alzheimer’s disease 

(AD), are often characterized by protein misfolding, aggregation, and amyloidogenesis. 

Impaired cellular stress responses and diminished capacity of cellular machineries to clear 

misfolded and aggregated proteins likely contribute to severe disruption of proteostasis in 

these neurodegenerative disorders [140].

Protective roles of HSF1 and HSPs in neurodegenerative disorders

HD is an autosomal dominant neurodegenerative disease caused by expansion of the CAG 

trinucleotides, encoding for glutamine, in the first exon of the HTT gene [141, 142]. 

Huntingtin proteins with the polyglutamine (polyQ) tract are prone to misfolding and 

Su and Dai Page 10

Cell Mol Life Sci. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aggregation, resulting in neuronal toxicity [143]. The clinical symptoms of HD include the 

progressive movement disorders, dementia, cognitive impairment, and a shorten lifespan. In 

various HD models, it has been shown that HSF1 suppresses the aggregation of polyQ 

proteins; by contrast, loss of HSF1 accelerates its accumulation [144]. Overexpression of a 

constitutively active HSF1 in R6/2 mice, a widely used transgenic HD model, reduces polyQ 

aggregation and rescues body weight loss [145]. Furthermore, activation of HSF1 by the 

small molecule HSF1A ameliorates polyQ misfolding and protects neuronal precursor cells 

from toxicity in a Drosophila model of polyQ-mediated neurodegeneration [146]. 

Interestingly, nuclear factor of activated T cells (NFAT) appears to be required for the HSF1-

mediated suppression of polyQ aggregation. Deletion of NFAT exacerbates polyQ 

aggregation and shortens the lifespan of R6/2 mice [147]. Mechanistically, NFAT and HSF1 

cooperate to induce the expression of PDZ domain containing 3 (PDZD3) and B-Crystallin/

HSPB5, two important players in preventing polyQ aggregation [147].

Another polyQ disease is spinal and bulbar muscular atrophy (SBMA), an adult-onset motor 

neuron disease caused by the expression of CAC repeats in the gene coding androgen 

receptor (AR) [148–150]. Heterozygous deletion of Hsf1 increases accumulation of 

pathogenic AR in both neural and non-neural tissues, and aggravates neurodegeneration in 

AR-97Q mice, a popular transgenic model for SBMA [151]. Conversely, lentiviral delivery 

of Hsf1 into the motor cortex and striatum suppresses AR accumulation and alleviates 

neurodegeneration in these mice [151].

Worldwide nearly 44 million people are afflicted with AD, one of the most devastating 

neurodegenerative disorders. AD is characterized by the progressive loss of cholinergic 

neurons, leading to behavioral, motor and cognitive impairments [152]. Amyloids are 

protein aggregates that are enriched for β–sheet structures and resistant to degradation. 

Deposition of A peptides, called amyloid plaque, is the primary pathological feature of AD 

and results in impaired synaptic activity and neuronal damage [153]. A peptides are 

generated from the amyloid precursor protein (APP) through β- and γ-secretase cleavages 

[154]. Another key pathological feature of AD is aggregation of the microtube-associated 

protein Tau, also known as neurofibrillary tangle, in the brain [155]. Hyper-phosphorylation 

of Tau proteins results in increased Tau aggregation and microtubule destabilization, causing 

neurodegeneration [156, 157]. In a mouse AD model expressing the human amyloid 

precursor protein (APP) transgene, A accumulates to form insoluble amyloid plaques in the 

brain; and HSF1 suppresses the formation of Aβ amyloids and ameliorates cognitive deficits 

[158]. Furthermore, in the Samaritan Alzheimer’s rat model in which A peptides are infused 

directly into the ventricles of the brain, lentiviral delivery of HSF1 into the cerebella 

markedly reverses the reduction in the number of Purkinje cell bodies [159]. These 

beneficial effects of HSF1 are believed to be mediated primarily through HSP expression. 

Congruently, HSP70 has been shown to protect against neurodegeneration in the central 

nervous system [160–162]. HSP70 not only suppresses the toxicity of A accumulation by 

interfering with A homeostasis, but also blocks A self-assembly and thereby suppresses the 

production of toxic A [163, 164]. Also, HSP70 promotes the clearance of A by up-regulating 

the insulin-degrading enzyme (IDE) [165]. Moreover, HSP70 can interact with Tau proteins, 

thereby blocking its aggregation and promoting its degradation [166, 167]. In addition to 

HSP70, HSP90 also assist Tau degradation via the proteasomal and autophagic-lysosomal 
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pathways [166, 168]. Moreover, HSP90 binds misfolded A to prevent it from aggregating 

[169, 170].

Implications of the AMPK-mediated HSF1 suppression in neurodegenerative disorders

In neurodegenerative disorders, cellular energy homeostasis is frequently disrupted. For 

example, in HD and AD mitochondrial biogenesis is impaired [171]. In the brain, AMPK is 

activated by ischemia, hypoxia, and glucose shortage, all of which provoke metabolic stress 

and are associated with AD [172–174].

Recent studies have implicated AMPK in neurodegenerative disorders directly, including 

HD and AD. The oxidative stress, induced by the mutant HTT with polyQ expansion, 

activates AMPKα1 and causes neurotoxicity in striatal progenitor cells and in the striatum of 

R6/2 HD mice [175]. Congruently, alleviation of oxidative stress suppresses AMPK 

activation and mitigates the neurotoxicity in mice, suggesting a causative role of AMPK 

activation in the progression of HD [175]. AD is frequently associated with aberrant energy 

metabolism, including reduced glucose uptake, mitochondrial dysfunction, impaired 

cholesterol metabolism, and disrupted calcium homeostasis [176–179]. It has been shown 

that AMPK, activated by the aggregation of Aβ peptides, phosphorylates Tau proteins 

directly at Thr231 and Ser296/404, interrupting the binding of Tau to microtubules and 

causing Tau aggregation in primary moue neurons [180, 181]. Moreover, in transgenic mice 

expressing a mutant human APP, AMPK, activated by elevated intracellular calcium levels, 

phosphorylates Tau proteins, leading to dendritic spine loss and inducing AD [181]. 

Furthermore, AMPK activation is reported to induce cell death in primary cortical neurons 

by mediating glutamate release [182]. Also, AMPK activation leads to hippocampus 

neuronal death under drastic dietary restriction [183]. Of note, AMPK activation may also 

aggravate neurodegeneration through disruption of neuronal proteostasis (Figure 3). A recent 

study revealed that metabolic stressors including metformin stimulate the AMPK-mediated 

HSF1 inactivation [55]. Moreover, another study showed that metformin activates AMPK to 

up-regulate -secretase, inducing the generation of Aβ peptides both extraneuronally and 

intraneuronally [184]. It was also shown that metformin aggravates tauopathy in mice by 

enhancing Tau protein aggregation [185]. Importantly, it has been reported that in patients 

with diabetes metformin use is associated with increased risk of cognitive impairment [186]. 

Conversely, both pharmacological and genetic inhibition of AMPK signaling alleviate the 

Aβ-induced impairments in hippocampal synaptic plasticity in mice [187]. Together, these 

findings support a causative role of AMPK activation in the pathogeneses of AD and other 

neurodegenerative disorders, and further imply that AMPK inhibition may be a promising 

therapeutic strategy to improve neuronal proteostasis and antagonize neurodegeneration. 

Importantly, it also suggests that patients afflicted with neurodegenerative disorders should 

be cautious to take metformin.

However, AMPK is also reported to inhibit Tau phosphorylation in vitro in the rat cortical 

neuron model [188, 189]. In addition, acetylation of Tau protein inhibits its ubiquitination 

and proteasomal degradation, causing tauopathy [190]. By deacetylating Tau, SIRT1 

prevents accumulation of phosphorylated Tau proteins [190]. Interestingly, the expression of 

SIRT1 is diminished in AD patients’ brains [191]. Thus, through activation of SIRT1, 
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AMPK could enhance the proteasomal degradation of Tau proteins and thereby prevent its 

aggregation. Furthermore, mitochondrial dysfunction, a crucial contributing factor in the 

pathogenesis of AD, is highly correlated with metabolic stress in AD patients. Mitochondria 

are enriched in synapses, which are highly metabolically active organelles and maintain the 

normal functions of neurons. Accumulation of Aβ amyloids interferes with the electron 

transport through the mitochondrial membrane, leading to mitochondrial dysfunction [192]. 

On the contrary, SIRT1, by sensing basal NAD+ levels, protects cells from mitochondrial 

dysfunction. Activation of SIRT1 promotes mitochondrial biogenesis and subsequently 

antagonizes metabolic stress [193]. Importantly, studies using Sirt1 knockout mice have 

shown that SIRT1 plays an important role in activating AMPK and improving mitochondrial 

functions [193]. Therefore, activated SIRT1-AMPK signaling can rescue mitochondrial 

dysfunction and ultimately prevent neural injury. In line with a protective role of AMPK, 

rats treated with AICAR, an AMPK activator, display mitigated AD-like pathologies and 

improved spatial memory [194]. Furthermore, an epidemiological study revealed that long-

term metformin usage is associated with mitigated cognitive decline and reduced risk of 

dementia in T2D patients [195], suggesting a protective role of metformin.

Taken together, contradictory evidence also exists implying the beneficial roles of AMPK 

and metformin in AD and other neurodegenerative disorders. Despite ample evidence 

strongly implicating AMPK in neurodegenerative disorders, its precise action still remains 

controversial. In light of the widespread usage of metformin worldwide, this question is of 

great importance to public health and warrants extensive investigations.

Summary and Perspective

The evidence presented in this review illuminates an intimate connection between metabolic 

state and proteostasis, with a special emphasis on the regulation of HSF1 by AMPK. While 

HSF1 senses proteotoxic stress and plays a pivotal role in preserving cellular proteostasis by 

mediating the PSR, AMPK senses metabolic stress and acts as a key player in preserving 

cellular energy homeostasis by mediating the MSR. Aberrancies in both proteome and 

energy homeostasis are closely associated with age-related diseases, including cancer, T2D, 

and neurodegenerative disorders. Sharply contrasting with its pro-oncogenic role, 

intriguingly, proteostasis protects against T2D and neurodegeneration. Thus, the newly 

discovered metabolic regulation of the PSR not only helps to better elucidate the 

pathogeneses of these diseases but also may have important implications in therapeutic 

interventions.
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Non-standard abbreviations

ACC acetyl-CoA carboxylase
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AD Alzheimer’s disease

AICAR 5-aminoimidazole-4-carboxamide ribonucleoside

AMPK AMP-activated protein kinase

APP amyloid precursor protein

AR androgen receptor

AKT v-Akt murine thymoma viral oncogene homolog

CaMKII Ca2+/calmodulin-dependent protein kinase II

CAMKK Ca2+/calmodulin-dependent protein kinase kinase β

DM diabetes mellitus

EIF4EBP1 eukaryotic translation initiation factor 4E (elF4E)-binding protein 1

ERK extracellular signal-regulated kinase

GSK3β glycogen synthase kinase 3 β

HD Huntington disease

HSE heat shock element

HSF heat shock factor

HSP heat shock proteins

HSR heat shock response

IAPP islet amyloid polypeptide

IDE insulin-degrading enzyme

IKKβ inhibitor of nuclear factor kappa-B kinase subunit beta

IR insulin receptor

IRS-1/2 insulin receptor substrate-1/2

JNK c-Jun N-terminal kinase

LKB1 liver kinase B1

mTORC1 mammalian target of rapamycin complex 1

MSR metabolic stress response

PDK phosphoinositide-dependent kinase

PGC-1α peroxisome proliferator–activated receptor gamma coactivator 1-alpha

PI3K phosphoinositide 3-kinase
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polyQ polyglutamine

PSR proteotoxic stress response

STZ streptozotocin

SUMO small ubiquitin-like modifier
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Figure 1. Suppression of the HSF1-mediated PSR by metabolic stressors
A: Proteotoxic stressors activate HSF1 and its mediated PSR. Under proteotoxic stress, 

Ser326 phosphorylation is a key post-translational modification activating HSF1. In 

addition, heat stress also inactivates AMPK and blocks its mediated Ser121 phosphorylation, 

a modification inhibitory to HSF1 activation. Under proteotoxic stress, induced HSP 

expression through the PSR plays a critical role in preserving cellular proteostasis and 

enhance survival. B: In contrast to proteotoxic stressors, metabolic stressors, including 

metformin and nutrient deprivation, suppresses HSF1 activation through AMPK activation. 

Activated AMPK phosphorylates HSF1 directly at Ser121 to impair the nuclear translocation 

and DNA binding of HSF1. In addition, AMPK can suppress the transcriptional activity of 

HSF1 indirectly through PGC-1α. Upon phosphorylated and activated by AMPK, PGC-1α 
acts as a transcriptional repressor by physically interacting with HSF1. Though suppression 

of the PSR, metabolic stressors exacerbate the disruption of proteostasis by proteotoxic 

stressors.
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Figure 2. The HSF1-mediated PSR antagonizes insulin resistance and preserves proteostasis
A: In insulin-sensitive cells, insulin signaling mobilizes AKT, which subsequently leads to 

inactivation of GSK3β [196], a negative regulator of HSF1. In addition, other HSF1 

suppressors, including ERK, JNK and AMPK, also remain at a normal or latent state. As a 

consequence, the HSF1-mediated PSR is operational to induce abundant HSP expression. 

Importantly, HSP27 and HSP72 suppress both IKKβ and JNK [197–199], two key kinases 

that inhibit insulin receptor substrate-1/2 (IRS-1/2) through direct serine phosphorylation 

and thereby impede insulin signaling [200]. Moreover, HSP90 can stabilize and enhance the 

activation of both PDK and AKT [201, 202], two essential components within the insulin 

signaling cascade. Thus, in addition to preserving cellular proteostasis, the HSF1-mediated 

PSR maintains robust insulin signaling, enhancing glucose uptake and glycogen synthesis 

but suppressing gluconeogenesis. B: In insulin-resistant cells, activated IKKβ and JNK, 

owing to lipid overload, inflammation, and oxidative stress, markedly phosphorylate 

IRS-1/2, causing their dissociation from IR and proteasomal degradation [203, 204]. 

Impaired insulin signaling further leads to enhanced GSK3β activity. In addition, 

inflammation and oxidative stress closely associated with the insulin-resistant state also 

activate ERK and JNK. However, it still remains controversial whether AMPK is activated 

under insulin resistance. Whereas lipid overload can suppress AMPK [205], oxidative stress 

is reported to cause its activation [206]. Collectively, these negative regulators deactivate 

HSF1 and its mediated PSR, depleting cellular HSPs to further exacerbate the impairment of 

insulin signaling and disruption of proteostasis.
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Figure 3. AMPK activation may disrupt neuronal proteostasis to promote neurodegeneration
A: In neurodegenerative disorders, accumulation of protein aggregates and amyloids in 

neurons causes AMPK activation, which, in turn, may inactivate the HSF1-mediated PSR. 

This HSF1 inactivation leads to increased protein aggregates and amyloids, exacerbating 

neurotoxicity and neurodegeneration. B: By contrast, AMPK inhibition may improve 

neuronal proteostasis by enhancing the HSF1-mediated PSR, thus representing a promising 

anti-neurodegeneration therapeutic strategy.
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