
REVIEW OF RECENT METHODOLOGICAL DEVELOPMENTS IN 
GROUP-RANDOMIZED TRIALS: PART 2 - ANALYSIS

Elizabeth L. Turner, PhD,
Department of Biostatistics and Bioinformatics, Duke University, Durham, NC

Duke Global Health Institute, Duke University, Durham, North Carolina, USA

John A. Gallis, MSc,
Department of Biostatistics and Bioinformatics, Duke University, Durham, NC

Duke Global Health Institute, Duke University, Durham, North Carolina, USA

Fan Li, MS,
Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA

Melanie Prague, PhD, and
Department of Biostatistics, Harvard T. H. Chan School of Public Health, Harvard University, 
Boston, Massachusetts, USA

Inria, project team SISTM, Bordeaux, France

David M. Murray, PhD
Office of Disease Prevention, Division of Program Coordination and Strategic Planning, Office of 
the Director, National Institutes of Health, Rockville, Maryland, USA

Abstract

In 2004, Murray et al. published a review of methodological developments in both the design and 

analysis of group-randomized trials (GRTs). Over the last 13 years, there have been many 

developments in both areas. The goal of the current paper is to review developments in analysis, 

with a companion paper to focus on developments in design. As a pair, these papers update the 

2004 review. This analysis paper includes developments in topics included in the earlier review, 

such as methods for parallel-arm GRTs, inference for conditional and marginal effects, and new 

topics including methods to account for multiple levels of clustering and alternative estimation 

methods such as augmented GEE, targeted maximum likelihood and quadratic inference functions. 
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We also examine developments in dealing with missing outcome data, including doubly robust 

approaches, software available for analysis, and analysis of alternative group designs (including 

stepped wedge GRTs, network-randomized trials, pseudo-cluster randomized trials and 

individually-randomized group treatment trials). These alternative designs, like the parallel-arm 

GRT, require clustering to be accounted for in both their design and analysis.

INTRODUCTION

In a group-randomized trial (GRT), the unit of randomization is a group and outcome 

measurements are obtained on members of those groups.1 Also called a cluster-randomized 

trial or community trial,2–5 a GRT is the best comparative design available if the intervention 

operates at a group level, manipulates the physical or social environment, cannot be 

delivered to individual members of the group without substantial risk of contamination, or 

under other circumstances (e.g., a desire for herd immunity in studies of infectious disease).
1–5

In GRTs, outcomes on members of the same group are likely to be more similar to each 

other than to outcomes on members from other groups.1 Such clustering must be accounted 

for in the design to avoid an under-powered study and in the analysis to avoid under-

estimated standard errors and inflated type I error for the intervention effect.1–5 For analysis, 

regression modeling approaches are generally preferred and most commonly used because 

of their ease of implementation.6 Several textbooks now address these and other issues.1–5

In 2004, Murray et al.7 published a review of methodological developments in both the 

design and analysis of GRTs. In the 13 years since, there have been many developments in 

both areas. The goal of the current paper is to focus on developments in analytic methods, 

including those relevant to designs described in a companion paper that focuses on 

developments in GRT design.8 As a pair, these papers update the 2004 review. With both 

papers, we seek to provide a broad and comprehensive review to guide the reader to seek out 

appropriate materials for their own circumstances.

DEVELOPMENTS IN THE ANALYSIS OF PARALLEL GROUP-RANDOMIZED 

TRIALS

Methods for Superiority, Equivalence, and Non-Inferiority

In GRTs, superiority trials are more common than equivalence or non-inferiority trials: a 

PubMed search by one of the authors (DMM) of studies published in 2015 identified 562 

superiority GRTs but only 1 equivalence GRT and 2 non-inferiority GRTs. Similarly, 

developments in the methods literature have focused on superiority GRTs, with 

developments for equivalence and non-inferiority GRTs limited to small sections in two of 

the more recent textbooks2,5 and a review paper on sample size methods.9 As a 

consequence, the current review paper focuses on superiority GRTs.
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Methods for Intention-To-Treat and Alternative Intervention Effects

In GRTs, protocol violations can lead to non-compliance at either the group- or member-

level.5 In order to minimize bias, intention-to-treat (ITT) principles are recommended at 

both levels rather than “on-treatment” and “per-protocol” analyses.2,4,5 While group-level 

protocol violations are usually easy to identify, member-level compliance may be more 

difficult to ascertain in practice.2 Jo et al. demonstrate that analyses which ignore 

compliance information could be underpowered to detect an ITT effect and propose a 

multilevel model combined with a mixture model.10 Implications of group-level non-

compliance can be considerable in GRTs, given the small number of groups that are 

randomized in many GRTs.

Methods Based on the Randomization Scheme

Matching or stratification in the design has been recommended for some time as a way to 

ensure baseline balance on important potential confounders,1 with constrained 

randomization more recently developed.11 Recent reports suggest that most GRTs follow 

this advice.12–15 Matching and stratification in the design can be ignored in the analysis of 

intervention effects, without harm to the type I error rate, and often the saved degrees of 

freedom will improve power.16,17 Recently, Donner et al. reported that ignoring matching 

can adversely affect other analyses, such as analyses that examine the relationship between a 

risk factor and an outcome;18 for this reason, investigators considering pair-matching should 

consider small strata instead (e.g., strata of 4). Li et al.19 compared model-based and 

permutation methods in the context of constrained randomization adjusting for group-level 

covariates. They found that both the adjusted F-test and permutation test maintained the 

nominal size and had improved power under constrained randomization compared to simple 

randomization.

Model-Based Methods

Model-based methods can be broadly classified according to the interpretation of the model 

parameters. Conditional model parameters are typically estimated using mixed-effects 

regression via maximum likelihood estimation (MLE) and are referred to as cluster-specific 

effects (or as subject-specific effects in the longitudinal analysis literature). Effects are 

conditional on the random effects used to account for clustering and on other covariates 

included in the analysis. Conditional models are often recommended for studies focused on 

change within members or on mediation analyses.7 Parameters of marginal models are 

usually estimated using generalized estimating equations (GEE).20,21 They define the 

marginal expectation of the dependent variable as a function of the independent variables 

and assume that the variance is a function of the mean; they separately specify a working 

correlation structure for observations made on members of the same group. Marginal models 

are often preferred for analyses of population-level effects because the intervention effect 

coefficient is interpreted as a population-averaged effect. In practice, marginal models are 

less frequently used than conditional models.6

Marginal and conditional intervention effects are equal for identity and log links22 and the 

distinction between them is only important for link functions such as the logit for binary 

outcomes. Although some authors have advocated for the log instead of logit link for binary 
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outcomes,23 this approach is not widely used, possibly because of model convergence 

problems for some data.24,25 Alternatively, a modified Poisson approach with log-link and 

robust standard errors could be used in the GEE framework,26 since it does not suffer from 

the same convergence problems as the binomial model with log link,27 but it may be less 

common because of the familiarity of logistic regression among epidemiologists and 

biostatisticians.

In practice, the question about which of conditional or marginal effects are desired depends 

on the research question. It is essential to understand the underlying assumptions of each 

method: conditional models rely on correct specification of untestable aspects of the data 

distribution, while marginal models rely on a correct definition of the population of interest, 

which can make it difficult to generalize results to other populations.28 We address each of 

the two approaches in more detail below.

Conditional Approaches—If the mixed effects model used to estimate conditional 

effects is misspecified, the estimates are difficult to interpret and, even if regression 

diagnostics can help,29 standard errors (SEs) are not robust. Fortunately, Murray et al.30 and 

Fu31 have shown that mixed models are robust to substantial violation of the normality 

assumptions for member- and group-level errors, so long as balance is maintained at the 

group level. Parameter estimation by restricted maximum likelihood estimation (REML) is 

preferred to MLE when few groups are available.32–34 For binary outcomes, alternative 

methods for specifying the test degrees of freedom have been examined in small sample 

GRTs and the between-within method is recommended.32,35

Multiple Levels of Clustering in Conditional Models—GRTs may involve multiple 

levels of clustering due to repeated measures on individuals or groups or additional 

hierarchical levels in the design. Murray1 distinguished between mixed-effects models based 

on the number of measurements included in the analysis and recommended mixed-effects 

analysis of variance (ANOVA) or covariance (ANCOVA), or mixed-effects repeated 

measures ANOVA/ANCOVA, for analyses involving 1 or 2 measurements per person or per 

group; those models can account for all sources of random variation in such data if they are 

properly specified.36 However, that is not the case in analyses involving 3 or more 

measurements per person or per group, where the sources of random variation may be 

different; instead, such analyses require a random coefficients model in which random trends 

and intercepts are calculated for each member (in cohort GRT designs) and group (in cohort 

and cross-sectional GRT designs), average trends and intercepts are calculated for each study 

arm, and the intervention effect is the net difference in the average study-arm trends.36 

Trends are often estimated as linear slopes, but can take another form.

Variable Group Size in Conditional Models—Johnson et al. focused on the analysis of 

Gaussian outcomes from GRTs with variable group size.37 They compared ten model-based 

approaches and found that a one-stage mixed model with Kenward-Roger32 degrees of 

freedom and unconstrained variance components performed well for GRTs with 14 or more 

groups per study arm. A two-stage model weighted by the inverse of the estimated 

theoretical variance of the group means and with unconstrained variance components 
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performed well for GRTs with 6 or more groups per study arm. A number of other models 

resulted in an inflated type I error rate when there was substantial variability in group size.

Marginal Approaches—When the GEE approach is used to estimate marginal effects, 

unbiased intervention effects can be estimated even if the working correlation structure is 

incorrect (e.g. using robust SEs via the sandwich estimator), although precision is increased 

if the working matrix is correct. Where degrees of freedom are limited for the test of interest, 

as often happens in GRTs, SE estimation is often biased downward and no method corrects 

for it in all cases, although several have been proposed.38–44

Multiple Levels of Clustering in Marginal Models—While multilevel clustering is 

easy to account for in mixed-effects regression, there is less literature for the GEE approach. 

The alternating logistic regression approach45 for binary and ordinal outcomes can be used 

to account for correlation due to repeated measures on individuals within groups and can be 

implemented within a GEE framework in both R (the alr package) and SAS (PROC GEE).
46 The second-order GEE approach which, in contrast to regular GEE, models the working 

correlation structure as a function of covariates, can be implemented in R ( geepack in 

R47).48 For more general working correlation matrices, the user typically needs to perform 

additional programming in order to provide the appropriate covariance matrix and 

convergence may not be achieved. In addition, although the intervention effect is unbiased 

when the marginal model is not correctly specified, the SEs estimated using GEE may be too 

small. To correct this, a robust sandwich estimator of the variance can be used but such an 

approach leads to loss of power.49 Because of this accuracy-power trade-off, mixed-effects 

models may be a better option to deal with GRTs involving more than two levels, although 

the effects estimated in such models are conditional rather than marginal effects.

Variable Group Size in Marginal Models—Although GEE analysis can accommodate 

variable group size, informative group size can negatively impact efficiency. In this case, 

Williamson et al.50 showed that GEE weighted by group size can correct bias in the 

estimated intervention effect. This approach is equivalent and less computationally 

demanding than within-cluster resampling.51

Advanced GEE Approaches to Improve Efficiency—For binary outcomes, GEE is 

more conservative (i.e. the intervention effect will be estimated closer to the null) than 

mixed-effects models.28,52 Moreover, the SE of the estimated intervention effect is also 

typically larger when using GEE so that much recent effort has focused on efficient 

estimation. GEE is most efficient when the true correlation structure of the data is chosen as 

the working correlation structure. Hin et al. compared multiple selection criteria for the 

working correlation matrix.53 An alternative approach is augmented GEE (AU-GEE), a 

method developed for independent data using a causal inference framework,54 which has 

been extended to clustered data.55 AU-GEE uses covariate information to improve efficiency 

in a two-stage approach that specifies a model for the potential outcomes under the treatment 

not received. AU-GEE is unbiased and robust to misspecification of the potential outcome 

model, though correct specification improves efficiency. As for the analysis of all trials, only 

baseline covariates should be included in AU-GEE for the analysis of GRT data because 
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adjustment for post-baseline covariates may lead to bias.56 Alternative methods are available 

to account for post-baseline, time-varying confounding.57–59

Alternatives to GEE—The quadratic inference function (QIF) method is an alternative to 

GEE for the estimation of marginal effects. Song et al.60 demonstrate that QIF has 

advantages over GEE: it is more efficient and more robust to outliers; it has a goodness-of-fit 

test of the marginal mean model and permits straightforward extensions to model selection. 

In large samples, QIF is more efficient than GEE when the working correlation structure for 

the data is misspecified.61 However, the SEs may be under-estimated for small and medium 

sample size or for variable group size.62 More recent work by Westgate63,64 provides 

improvements by using a bias-corrected sandwich covariance estimate and by 

simultaneously selecting the QIF or GEE while selecting the best working correlation 

structure.65 Despite the many attractive properties of QIF, at this time there are few 

applications in public health.66–68

A second alternative estimation method is targeted maximum likelihood estimation (tMLE).
69 tMLE is a maximum likelihood-based G-computation estimator that targets the fit of the 

data-generating distribution to reduce bias in the parameter of interest. It is based on a 

machine learning approach that fluctuates an initial estimate of the conditional mean 

outcome and minimizes a loss function to provide an estimate of the parameter of interest.70 

The approach has been used in public health71,72 and shows much promise for GRTs73,74 

because it can improve efficiency by simultaneously accounting for missing data and chance 

baseline covariate imbalance without committing to a specific functional form.75

Permutation Methods

Permutation analysis was introduced for GRTs by Gail et al. for the COMMIT trial.76 They 

found that the permutation test had nominal type I and II error rates across a variety of 

settings common to GRTs, when the member-level errors were Gaussian or binomial, even 

when very few heterogeneous groups were randomized to each study arm, and even when 

the ICC was large, so long as there was balance at the level of the group. Murray et al.30 

extended this work, showing that unadjusted permutation tests offer no more protection 

against confounding than unadjusted model-based tests, while the adjusted versions of both 

tests perform similarly. The permutation test was more powerful than the model-based test 

when the data were binomial and the ICC≥0.01. Fu31 extended the work to heavy tailed and 

very skewed distributions and reported similar results.

Li et al. compared model-based and permutation methods in the context of constrained 

randomization adjusting for group-level covariates. They found that both the adjusted F-test 

and permutation test maintained the nominal size and had similar power, but cautioned that 

the randomization distribution must be calculated within the constrained randomization 

space to prevent inflating the type I error rate.19
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DEVELOPMENTS IN THE ANALYSIS OF ALTERNATIVES TO THE PARALLEL 

GRT

Stepped Wedge GRT

Both between- and within-group information is available to estimate the intervention effect 

from a stepped wedge group randomized trial (SW-GRT).77,78 However, because the control 

condition is typically observed earlier than the intervention condition, time is a potential 

confounder and should be accommodated in the analysis of SW-GRTs, typically by 

accounting for time as a predictor.79 As for parallel GRTs, clustering by group must be 

accounted for, and longitudinal measures on individuals can be accommodated within either 

the mixed-effects or GEE framework, though more easily using mixed-effects models (see 

both Multiple Levels of Clustering sections). Conditional approaches are more commonly 

used in practice and reported on in the methods literature.79,80 Several authors have 

highlighted other characteristics specific to SW-GRT including lagged intervention effects81 

and fidelity loss over time.79

Network-Randomized GRT

Because the network properties of a network-randomized GRT are primarily used at the 

design stage,82 and because they differ from regular GRTs only in the novel way in which 

groups are defined, the theory on the analysis of parallel-arm GRTs can be applied to 

parallel-arm network-randomized GRTs.83 For example, in a ring trial of an Ebola vaccine,
83 in which a network was defined as all individuals who had regular physical contact with 

the incident (index) case of Ebola and in which all contacts received the vaccine (placebo or 

active), standard GRT methods were used. For network-randomized GRTs in which the 

intervention is not directly administered to all individuals and in which it is expected that the 

intervention spreads over the network (e.g. the snowball trials of a HIV prevention 

intervention for drug users84 or a microfinance intervention85), methods86,87 are available to 

estimate both the direct and indirect effects of the intervention. When network information is 

available and the outcome of interest is known to be a disseminated process, adjusting for 

network features such as information on the location of each individual within the network 

(i.e. group) can improve both the efficiency and power of the analysis.88

Pseudo-Cluster Randomized Trial

Teerenstra et al.89 compared analytic methods for continuous outcomes in pseudo-cluster 

randomized trials (PCRT) and Campbell and Walters discussed principles in their recent 

textbook.5 Clustering by the unit of randomization at the first stage (e.g. provider) must be 

accounted for in both the design and analysis of PCRT. No explicit sample size or analytic 

methods are known to be available for non-continuous outcomes.

Individually Randomized Group Treatment Trial

Baldwin et al. compared four analytic models for IRGTs and three methods for calculating 

degrees of freedom.90 A multilevel model adapted to reflect clustering in only one study 

arm, combined with either Satterthwaite91 or Kenward-Roger32 degrees of freedom, 

provided better type I error control, better efficiency, and less bias, even with 
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heteroscedasticity at the member level. This finding is consistent with earlier reports by Pals 

et al.92 and Roberts et al.93 More recently, Roberts & Walwyn94 and Andridge et al.95 

considered the circumstance in which members are associated with more than one small 

group or change agent. Both found that ignoring membership in multiple groups further 

inflates the type I error rate. Roberts & Walwyn reported that multiple member multilevel 

models maintained the nominal type I error rate; they also provide sample size and power 

formulae.94

DEVELOPMENTS TO ADDRESS DATA CHALLENGES

Missing Outcome Data

Two recent reviews6,96 indicate that missing outcome data is common in GRTs, though 

investigators frequently analyze only available data without accounting for the missing data 

pattern. When the covariate-dependent missingness (CDM) assumption is plausible, both 

mixed effects and GEE models provide unbiased estimates of the intervention effect when 

the CDM covariates are included in an analysis of all available data.97,98 AU-GEE also can 

provide unbiased effects by including all CDM covariates in the augmentation component55 

and has the advantage that all estimates can still be interpreted as marginal effects. Other 

two-stage approaches such as multiple imputation (MI) or inverse probability weighting 

(IPW) can provide unbiased intervention effects under certain conditions for more general 

missing at random (MAR) patterns and may provide increased precision compared to 

covariate-adjusted conditional or marginal models for CDM.97,99 Although there is less 

literature on how to deal with missing not-at-random (MNAR) data,100 sensitivity analyses 

are recommended.101 A recent review showed that very few GRTs performed any sensitivity 

analyses for their missing data assumptions.6

To avoid possible type I error, MI should account for the clustered data structure.102,103 

Fixed group effects should not be used due to reduced power.104 For binary outcomes, Ma et 

al.105 and Caille et al.106 show that the preferred MI method depends on the number of 

groups and the design effect, and note that bias may arise for some approaches even for 

CDM missingness. Using group-specific mean imputation may be adequate for continuous 

outcomes.98,102 Hossain et al.98 show that if the missing data mechanism has an interaction 

between a covariate predictive of the outcome and study arm, the imputation strategy must 

account for this interaction to be unbiased.

Whereas MI requires specifying the distribution of the missing data conditional on 

covariates, IPW requires specifying the probability of being missing depending on 

covariates. Theoretically, both approaches can be used for any type of outcome and for both 

CDM and more general forms of MAR mechanisms.99 While IPW requires an additional 

assumption of positivity (all participants have a non-zero probability of being observed), it 

may be viewed as easier to define, particularly in the presence of non-intermittent 

missingness.107 Importantly, and as for MI, if the missing data mechanism has an interaction 

between a covariate predictive of the outcome and study arm, the weights must be generated 

by accounting for this interaction in order to be unbiased.108 Prague et al.109,110 developed a 

doubly robust estimator in the context of IPW, which provides an unbiased estimate if either 

the marginal mean model or the missing data model is correctly specified. They 
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demonstrated that a doubly-robust augmented GEE approach can simultaneously account for 

both CDM and baseline covariate imbalance in GRTs when the parameter of interest is a 

marginal effect. Combining MI and IPW is a promising new approach which may have 

superior performance to IPW or MI alone when there are missing covariates in addition to 

missing outcomes.111

Baseline Imbalance of Covariates

While design strategies such as restricted randomization8 can help to achieve baseline 

covariate balance, they may not be easy to implement (e.g. if group characteristics are 

unknown in advance) and chance imbalance may arise regardless. In this case, some form of 

model-based covariate adjustment could be used such as standard multivariate regression for 

conditional models or AU-GEE for marginal models.55 The advantage of AU-GEE in this 

case is that it is doubly robust in that the consistency of intervention effect estimate requires 

correct specification of either the marginal mean structure or the treatment model, and it 

separates covariate adjustment from intervention effect estimation thereby reducing the risk 

of choosing the adjustment models to obtain the most significant results. The standard 

multivariate regression adjustment approach does not enjoy either of these benefits.

Alternatively, Hansen and Bowers112 proposed a balancing criterion and studied its 

randomization distribution in order to simultaneously test for balance of multiple covariates 

in both RCTs and GRTs. Leyrat et al.113 suggested to use the c-statistic of the propensity 

score model to measure covariate balance at the individual level. Leon et al.114 

recommended propensity score matching to correct for baseline imbalance; in a simulation 

study, they report a median 90% reduction in bias. Nevertheless, the Consolidated Standards 

for Reporting of Trials (CONSORT)115 recommends that the adjustment covariates be 

specified a priori for primary analyses so that secondary analyses could test sensitivity of the 

primary findings to adjustment for covariates identified post hoc.

Software

Table 1 identifies three software programs that can be used to analyze data from GRTs. The 

table is organized around topics considered in the current paper. While none of the three 

software programs can readily implement both QIF and tMLE for GRTs, the R program 

offers the most ready-to-use functionality given its broad applicability to the methods cited 

in the current paper.

REPORTING OF RESULTS

The CONSORT guidelines for individually randomized trials were extended to GRTs in 

2004115 and most journals now require authors to conform to these guidelines. Based on a 

review of 300 GRTs published between 2000–2008, Ivers et al. reported that 60% and 70% 

accounted for clustering in the sample size calculation and in the analysis, respectively, 56% 

used restricted randomization, and most (86%) allocated more than 4 groups per arm.14 A 

more recent review of 86 trials published in 2013–2014 showed that 77% and 78% 

accounted for clustering in the sample size calculation and in the analysis, respectively, and 

that 51% used some form of restricted randomization.15
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Given concerns about the ethical conduct of GRTs,116,117 recent reports on conduct and 

reporting have focused on the ethics of GRTs. For example, Sim and Dawson discuss the 

challenges associated with obtaining informed consent in GRTs.118 The Ottawa Statement 

on the ethical design and conduct of GRTs was published in 2012119 with a reevaluation in 

2015.120

DISCUSSION

In this review, we have summarized many of the most important advances in the analysis of 

GRTs during the 13 years since the publication of the earlier review by Murray et al.7 Many 

of these developments have focused on developments in marginal model parameter 

estimation (e.g. augmented GEE, QIF and tMLE) and missing data methods. Some topics 

that space limitations have prevented include review of recent developments in survival 

outcomes,2,121–125 measurement bias,126,127 validity,128,129 Bayesian methods,4,130–132 

cost-effectiveness analyses4,133–136 and mediation analyses to uncover mechanisms of 

action.137–140

Through this review, we have sought to ensure that the reader is reminded of the value of 

well-thought out analysis of GRTs and of keeping up to date with the many recent 

developments in this area. Pairing this knowledge with our companion review of 

developments in the design of GRTs,8 we hope that our review leads to continued 

improvements in the design and analysis of GRTs.
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APPENDIX: GLOSSARY

Augmented GEE
“Augmenting the standard GEE with a function of baseline covariates.”55 These methods 

adapt semiparametric theory developed by Robins141 and Robins, Rotnitzky, and Zhao142 

for observational studies with time-varying exposures and missing data problems, 

respectively. They consist of leveraging the estimating equation by a predictor function for 

counterfactual outcomes under the intervention not received by the group/cluster considered 

missing.55

Baseline covariate balance
The group-level and individual-level covariate distributions are similar in all study arms.11

Choice of balancing criterion
Li et al. describe several balancing criteria to assess how well a GRT is balanced across 

covariates. These include the “best balance” (BB) metric of de Hoop et al.143 the balance 

criterion (B) of Raab and Butcher,11 and the total balance score introduced by Li et al.19

Coefficient of variation
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A measure of between-group variation, defined in Table 1 of our companion paper.8

Cohort GRT design
A cohort of individuals is enrolled at baseline and those same individuals are followed up 

over time.

Constrained randomization
Refers “to those designs that go beyond the basic design constraints to specify classes of 

randomization outcomes that satisfy certain balancing criteria, while retaining validity of the 

design.”144

Cross-sectional GRT design
A different set of individuals is obtained at each time point.

Designed balance at the group level
When there are equal numbers of groups randomized to each study arm.

Intraclass correlation
A measure of between-group variation, defined in Table 1 of our companion paper.8

Covariate-dependent missingness (CDM) assumption
The assumption that “missingness in outcomes depends on covariates measured at baseline, 

but not on the outcome itself.”98

Doubly-robust augmented GEE approach
Combining augmented GEE and IPW, a doubly-robust estimator is obtained, which provides 

an unbiased estimate if either the marginal mean model or the missing data model is 

correctly specified.109,110

Equivalence
Assessing whether the new intervention is equivalent to the comparison intervention.

G-computation estimator
A computational method to estimate causal effect in structural nested models. These models 

are designed to deal with confounding by variables affected by intervention.145

Individually Randomized Group Treatment Trials
“Studies that randomize individuals to study arms but deliver treatments in small groups or 

through a common change agent.”8,92

Informative cluster size
When the outcome measured is related to the size of the cluster.50

Missing at Random (MAR) assumption
Rubin’s (1976) definition is that “data are missing at random if for each possible value of the 

parameter φ [the parameter of the conditional distribution of the missing data indicator given 

the data], the conditional probability of the observed pattern of missing data, given the 
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missing data and the value of the observed data, is the same for all possible values of the 

missing data.”146

Network-Randomized GRT
“The network-randomized GRT is a novel design that uses network information to address 

the challenge of potential contamination in GRTs of infectious diseases.”8,82,84,147

Non-inferiority
When a trial is designed to show that the new intervention is not worse than the comparison 

intervention.

On treatment analyses
When groups are analyzed “according to the intervention they actually received.”2

Per protocol analyses
When groups “not receiving the correct intervention are excluded.”2

Pseudo-cluster randomized trial
Intervention is allocated to individuals in a two-stage process. “In the first stage, providers 

are randomized to a patient allocation-mix…. In the second stage, patients recruited to the 

PCRT are individually randomized to intervention or control according to the allocation 

probability of their provider.”8

Stepped Wedge GRT
“A one-directional crossover GRT in which time is divided into intervals and in which all 

groups eventually receive the intervention.”8,78

Superiority
When a trial is designed to establish whether a new intervention is superior to the 

comparison intervention (e.g., another drug, a placebo, enhanced usual care). However, the 

statistical test is still two-sided, allowing for the possibility that the new intervention is 

actually worse than the comparison.

Within-cluster resampling
Randomly sample one observation from each cluster, with replacement. Then analyze this 

resampled dataset. Repeat this process a large number of times. “The within-cluster 

resampling estimator is constructed as the average” of all of the resample-based estimates 

(see Hoffman et al.51 pp. 1122-3).
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Table 1

Summary of known functions and procedures to analyze GRTs using methods described in the current review.

Software

Method SAS Stata R

Outcomes analysis of all available data

Mixed-effects models PROC MIXED mixed lme4

PROC NLMIXED melogit nlme

PROC GLIMMIX mepoisson

Generalized estimating equations (GEE) PROC GENMOD1 xtgee geeglm/geeM

Targeted maximum likelihood (tMLE) N/A N/A N/A2

Quadratic inference function (QIF) %qif N/A qif3

Permutation tests %ptest N/A N/A

Accounting for missing outcomes

Multiple imputation for clustered data %mmi_impute4 REALCOM Impute pan

%mmi_analyze mi impute4 jomo5

Inverse probability weighting (IPW) PROC GENMOD6 N/A7 CRTgeeDR

Causal-inference based methods8

Augmented GEE (AU-GEE) N/A N/A CRTgeeDR

Doubly robust AU-GEE N/A N/A CRTgeeDR

Footnotes:

1
. PROC GEE is another option, but is in experimental phase and has limited usefulness for GRTs over and above PROC GENMOD.

2
. In R, tmle is available for tMLE, but at the time of writing, does not allow for clustering.

3
. As of the writing, the authors have been unable to load the package and it only allows equal cluster size, but Westgate has modified the code for 

GRTs with variable cluster size in the appendix of his paper63

4
. Only useful for continuous outcomes.

5
. In R, mice is available for multiple imputation but at the time of writing, does not account for clustering.

6
. Cannot account for imprecision in the weights.

7
. xtgee cannot accommodate individual-level weights but only group-specific weights.

8
. Both of the listed methods are related: AU-GEE accounts for baseline covariate imbalance and doubly robust AU-GEE, an extension of AU-

GEE, accounts for both baseline covariate imbalance and missing data.

N/A: not available at the time of writing.
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