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Abstract

A perspective of work in our laboratory on the examination of biologically active compounds, 

especially natural products, is presented. In the context of individual programs and along with a 

summary of our work, selected cases are presented that illustrate the impact single atom changes 

can have on the biological properties of the compounds. The examples were chosen to highlight 

single heavy atom changes that improve activity, rather than those that involve informative 

alterations that reduce or abolish activity. The examples were also chosen to illustrate that the 

impact of such single atom changes can originate from steric, electronic, conformational or H-

bonding effects, from changes in functional reactivity, from fundamental intermolecular 

interactions with a biological target, from introduction of a new or altered functionalization site, or 

from features as simple as improvements in stability or physical properties. Nearly all the 

examples highlighted represent not only unusual instances of productive deep-seated natural 

product modifications and were introduced through total synthesis, but are also remarkable in that 

they are derived from only a single heavy atom change in the structure.
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INTRODUCTION

Some years ago, I was asked to write a perspective on our work. Although the perspective is 

long overdue, variations on the topic highlighted by the title were digested for some time as 

a consequence of the invitation. Every individual that examines the interaction of a small 

molecule with its biological target, including proteins and nucleic acids, asks or faces the 

question every day on what impact a single atom can have. Whether it is in the context of 

drug discovery and the design of small molecules that selectively bind a therapeutic target, 

the delineation of a molecular mechanism of action of a natural product or chemical probe, 

the examination of signal transduction by endogenous signaling molecules, or the study of 

the interaction of substrates or inhibitors with an enzyme, the identification of structural 

features responsible for intermolecular ligand binding affinity and selectivity is fundamental 

to understanding and advancing science at the chemistry–biology interface.1–4 For chemists 

and medicinal chemists, the impact of not just the molecule, a substructure in the molecule, 

or even a substituent or functional group within the molecule, but the impact and nuanced 

role of even an individual atom in the molecule is fascinating, often exhibiting a remarkable 

influence.5 Even in fields not directly related to understanding the behavior of biologically 

active molecules, including reagent design, ligand development, catalysis, molecular 

recognition, complex molecule total synthesis, material science, and many others, the 

decisive role a single atom in a molecule can play is well appreciated. All those working in 

such fields will have their own favorite examples, whether from their own work or from that 

of others. At the risk of disappointing many, I have focused only on examples drawn from 

our own work. Hopefully no one will mistake the focus on our examples as an effort to take 

credit for countless other observations that lie at the heart of so much of what we all do and 

enjoy. Rather, it is meant to highlight the intricate details and occasional triumphs in 

molecular level design for those not intimately involved. In our efforts, the work has been 

conducted in studies typically designed to answer fundamental questions on ligand–target 

interactions and have been a part of our program since my career began. Thus, along with 

highlights of advances made in many of our long standing programs, the perspective also 

focuses on examples within this work where a single atom change exhibited a productive 

and remarkable impact.

Our work most often has been conducted with biologically active natural products.6–11 The 

cases presented constitute the addition, removal, or exchange of a single heavy atom. In 

many instances, the changes may entail more than one atom (e.g., NH vs O), but for the sake 

of simplicity and at the expense of accuracy, I will refer to such changes as single heavy 

atom changes. The examples were chosen to illustrate that the productive impact of single 

heavy atom changes can originate from steric, electronic, conformational or H-bonding 

effects, from changes in intrinsic reactivity, from intermolecular interactions with a protein 

or nucleic acid target, from introduction of a new functionalization site, or from effects as 

benign as altering stability or physical properties. The examples highlighted herein also 

represent single heavy atom changes that were found to substantially improve the activity, 

rather than those that entail informative alterations that reduced or abolished activity. Natural 

products display a constellation of properties and multiple functions integrated into a 

compact, highly functionalized molecule. This is in contrast to other biomolecules like 
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proteins where separate functional domains are often linearly linked, rather than integrated 

into a more compact structure. As a result, each structural component, functional group, or 

substituent within a natural product is often, but not always, integral to the expression of its 

biological activity. When the productive properties of a natural product are directly related to 

its emergence in Nature where it has undergone continuous optimization by natural 

selection, it may not be easily subjected to structural modifications. Thus, the significant 

improvements highlighted herein not only represent unusual instances of productive deep-

seated modifications of natural products that were accessed by total synthesis, but are also 

remarkable in that they are derived from only a single heavy atom change.

Vancomycin and its redesign to overcome bacterial resistance

It is likely that the work of ours that is most easily recognized as arising from single heavy 

atom changes or exchanges is our efforts on the redesign of vancomycin for resistant 

bacteria.12,13 The biological target for the glycopeptide antibiotics, including vancomycin, is 

bacterial cell wall precursors containing D-Ala-D-Ala.14–16 Antibiotic binding to D-Ala-D-

Ala results in inhibition of cell wall maturation. Since this cell wall target is unique to 

bacteria and not found in mammalian hosts, it is responsible for the selectivity of the 

antibiotic class for bacteria. The mechanism of resistance to vancomycin first emerged in 

Enterococci,17,18 was co-opted from non-pathogenic bacteria and not independently evolved 

by the pathogenic bacteria,19 and involves a single heavy atom exchange in the biological 

target.20 This modification is the exchange of an ester oxygen for an amide NH. The 

synthesis of the bacterial cell wall precursors continue with installation of the pendant N-

terminus D-Ala-D-Ala. Like the producer organisms, resistant bacteria sense the presence of 

the antibiotic21 and initiate an intricate late stage remodeling of their peptidoglycan termini 

from D-Ala-D-Ala to D-Ala-D-Lac to avoid the antibiotic.22 As a result of the single heavy 

atom exchange, the binding affinity of vancomycin for the resistant ligand is reduced 1000-

fold. Binding studies were conducted with vancomycin (1) and the model ligands 2–4 that 

included examination of the ketone ligand 3, which contains a methylene that lacks both a 

lone pair and is incapable of H-bonding.23 Unlike the often cited origin of the diminished 

binding, these studies revealed that it is the introduction of a destabilizing electrostatic 

repulsion (100-fold), more so than a lost H-bond (10-fold), that is responsible for the 

majority of the 1000-fold loss in binding affinity of vancomycin for D-Ala-D-Lac (Figure 

1).

This indicated that removal of the destabilizing lone pair/lone pair interaction without even 

reengineering a reverse H-bond could improve affinity for the altered ligand as much as 100-

fold. Thus, a binding pocket modification in the vancomycin core designed to remove the 

destabilizing lone pair interactions by replacement of the residue 4 amide carbonyl with an 

aminomethylene linkage (compound 7) was prepared by total synthesis in initial studies 

(Figure 2).24 This modification entailed removal of a single heavy atom from the antibiotic, 

the residue 4 amide carbonyl oxygen. This change provided an antibiotic analog with the 

balanced dual ligand binding capabilities needed for vancomycin-resistant organisms (D-

Ala-D-Ala and D-Ala-D-Lac binding), while maintaining the ability to bind D-Ala-D-Ala 

required for vancomycin-sensitive bacteria albeit with an approximately 30-fold reduced 

affinity.24
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In a series of subsequent studies, we reported two additional vancomycin analogs that also 

contained single heavy atom exchanges at this key site in its target binding pocket (residue 4 

carbonyl O → S, NH), the latter of which was designed to more effectively address the 

underlying molecular basis of resistance to vancomycin (Figure 2).24–28 On the surface, this 

exchange of the vancomycin residue 4 amide carbonyl oxygen with an amidine NH would 

seem to be simply compensating for the target exchange of an amide NH with an ester 

oxygen. However, it does much more than that. Not only does the exchange reinstate full 

binding affinity to the ligand of the altered biological target (D-Ala-D-Lac), but it also 

maintains near full binding affinity for the unaltered biological target (D-Ala-D-Ala). We 

have suggested, and believe we have shown,29 that it displays this dual binding character 

with the amidine free base serving as a H-bond acceptor for binding D-Ala-D-Ala, and with 

the protonated amidine binding D-Ala-D-Lac, replacing the destabilizing electrostatic 

interaction with a stabilizing electrostatic interaction and possibly a weak reverse H-bond. 

This remarkable dual binding behavior could not have been easily predicted and, as a 

consequence, the residue 4 amidine was not the first of the modifications that we examined.

The behavior of the vancomycin residue 4 thioamide, a key synthetic intermediate in route to 

the corresponding amidine, was just as remarkable. Although it represents a seemingly 

benign single heavy atom exchange in the binding pocket, replacing an amide carbonyl 

oxygen with a sulfur atom to provide a thioamide, it served to completely disrupt binding to 

D-Ala-D-Ala (1000-fold loss in affinity)26 and resulted in a vancomycin analog devoid of 

antimicrobial activity.28 In retrospect, this behavior may be attributed to both the increased 

size of the sulfur atom and the longer C=S versus C=O bond length, which are sufficient to 

displace the ligand from the binding pocket. This unanticipated behavior also serves to 

highlight just how remarkable the properties of 6 are and how well its residue 4 amidine 

serves as an isosteric replacement for the vancomycin residue 4 amide in its interaction with 

D-Ala-D-Ala.

The two rationally designed binding pocket modifications found in 6 and 7 reinstated 

binding to the altered target D-Ala-D-Lac and maintained binding affinity for the unaltered 

target D-Ala-D-Ala. Such dual target binding compounds were found to reinstate 

antimicrobial activity against vancomycin-resistant organisms that employ D-Ala-D-Lac 

peptidoglycan precursors, and remain active against vancomycin-sensitive bacteria. 

Moreover, the in vitro antimicrobial potencies of such compounds correlated directly with 

their absolute dual binding affinities for model target ligands.

These studies were enabled by the modern techniques of total synthesis first used to prepare 

many of the natural products in the family of glycopeptide antibiotics,30–40 which provided 

the foundation on which deep-seated single atom changes or exchanges could be made in the 

vancomycin structure. These studies have been extended further to provide analogs that 

contain peripheral modifications of the pocket-modified vancomycin analogs that introduced 

added mechanisms of antimicrobial action independent of D-Ala-D-Ala/D-Lac binding 

(Figure 3).28,41 These latter efforts provided remarkable vancomycin analogs that: (1) 

contain synergistic binding pocket and one or two simple peripheral modifications, (2) are 

endowed with two or three independent mechanisms of action only one of which is 

dependent upon D-Ala-D-Ala/D-Lac binding, (3) display broad spectrum activity against 
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both vancomycin-sensitive and vancomycin-resistant bacteria (e.g., MRSA, VanA/VanB 

VRE) at stunning potencies (MICs = 0.01–0.005 μg/mL), and (4) are more durable 

antibiotics than even vancomycin,41 which has been in the clinic for 60 years.

Ramoplanin

The ramoplanins are naturally occurring lipoglycodepsipeptides42,43 that are 2–10 fold more 

active than vancomycin against Gram-positive bacteria, including MRSA and vancomycin-

resistant Enterococci.44,45 Ramoplanin A2 disrupts bacterial cell wall peptidoglycan 

biosynthesis, inhibiting the intracellular conversion of lipid intermediate I to lipid 

intermediate II46 and the more accessible extracellular transglycosylase-catalyzed 

incorporation of lipid II into the glycan strand,47 steps that precede the site of action of 

vancomycin. Resistance to ramoplanin has not been detected and cross resistance between 

ramoplanin and vancomycin has not been observed. Thus, it remains equally active against 

vancomycin-resistant organisms, including VanA/VanB VRE. Like vancomycin, ramoplanin 

acts by binding peptidoglycan precursors (lipid II > lipid I),48 sequestering these substrates 

from enzyme access,49,50 although the structural details of these interactions are not yet 

defined. In fact, ramoplanin embodies all the characteristics of vancomycin that contributes 

to its durability against resistance development. However, its instability derived from rapid 

depsipeptide hydrolysis precludes its use for systemic infections and has limited its clinical 

exploration.42 Our development of the first and still only convergent total synthesis of the 

ramoplanin A1–A3 aglycons51–53 set the stage for its use in the preparation of key analogs. 

In these efforts, we demonstrated that synthetic [L-Dap2]ramoplanin A2 aglycon (9), which 

bears a linking amide in place of the sensitive depsipeptide ester in the backbone of the 49-

membered macrocycle, is roughly 2-fold more potent ramoplanin A2 and its aglycon, and 

stable to hydrolytic cleavage (Figure 4).54,55 Here, the single heavy atom exchange does not 

impact the interaction of the natural product with its biological target or substantially alter 

its functional activity, but it substantially improves its limiting metabolic stability.

In our studies and on this stable amide template, a scan of the complete structure was 

conducted (Ala scan, 15 analogs prepared by total synthesis),56 establishing the impact and 

potential role of each residue and providing insights into the nature of its complex with lipid 

II.56,57 Highlights derived from the alanine scan of this amide modified ramoplanin aglycon 

(9) include: (1) the verification of the dominant role of Orn10 (>500-fold reduction) 

consistent with an integral role in lipid II diphosphate binding, (2) the surprisingly modest 

impact of Orn4 (44-fold), suggesting that its role in binding lipid II is not as critical, (3) the 

disparate importance of each of the residues in a putative lipid II recognition domain 

proposed58,59 in early work (residues 3–10), (4) the significant impact (>20-fold) of nearly 

each residue in the dimerization domain (residues 11–14) later defined by Walker60 

reflective of its greater importance, and (5) the lack of importance of the hydrophobic 

residues 16–17 within the flexible loop that represents the membrane interacting domain 

(residues 15–17, 1–2). We also showed that the lipid side chain is essential for antimicrobial 

activity (200–800-fold reduction) and, in collaboration with Walker, showed it has no impact 

on lipid II binding or transglycosylase inhibition, indicating that its role is likely to anchor 

the antibiotic to the bacterial cell wall.54 Complementing these studies on the stable amide-

modified ramoplanin 9 and other related studies,61 Suzanne Walker used inhibition kinetics 
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and binding assays to establish that ramoplanin preferentially inhibits the transglycosylase 

versus MurG catalyzed reactions of their substrates lipid II versus lipid I, that it exhibits a 

greater affinity for lipid II (KD = 3 nM) than lipid I (KD = 170 nM), and that it binds with a 

2:1 stoichiometry consistent with functional dimerization.49,50

Vinblastine

The biological properties of vinblastine were among the first to be shown to arise from 

tubulin binding, resulting in perturbations in microtubule dynamics that lead to inhibition of 

mitosis.62 In fact, it was the discovery of vinblastine that led to the identification of tubulin 

as an especially effective oncology drug target. As discussed below, vinblastine binds at the 

tubulin α/β dimer–dimer interface where it destabilizes microtubulin assembly derived from 

the repetitive head-to-tail tubulin binding. This action through disruption of a protein–

protein interaction by vinblastine is often overlooked in discussions of such targets 

addressed with small molecules perhaps because the target identification preceded the 

contemporary interest in drugs targeting protein–protein interactions. Even by today’s 

standards, vinblastine and vincristine are superb clinical drugs. They, and their biological 

target tubulin, remain the subject of investigations because of their clinical importance in 

modern medicine, complex structures, low natural abundance, and unique mechanism of 

action.

In a study designed to probe the impact of catharanthine indole substituents on an Fe(III)-

mediated coupling with vindoline,63 two new and exciting derivatives were discovered, 10′-

fluorovinblastine and 10′-fluorovincristine (Figure 5).64 In addition to defining a 

pronounced substituent effect on the biomimetic coupling that helped refine its 

mechanism,65 fluorine substitution at C10′ was found to uniquely enhance the activity (IC50 

= 800 pM, HCT116). This exceptional activity was confirmed with the comparative 

examination of vinblastine and 10′-fluorovinblastine in a more comprehensive human 

cancer cell line panel graciously conducted at Bristol-Myers Squibb (Figure 5).66 10′-

Fluorovinblastine exhibited a remarkable potency (avg. IC50 = 300 pM), being on average 

30-fold more potent than vinblastine (avg. IC50 = 10 nM).

As depicted in the X-ray structure of vinblastine bound to tubulin,67,68 the C10′ site resides 

at one corner of a T-shaped conformation of the tubulin-bound molecule, where we have 

suggested the 10′-fluorine substituent makes critical contacts with the protein at a 

hydrophobic site sensitive to steric interactions. Although a range of 10′ substituents are 

tolerated, the activity of the derivatives exhibited no relationship with the electronic 

character of the substituents. Rather, they exhibited activity that correlated with the 

substituent size and shape. Thus, small hydrophobic substituents were found to be tolerated, 

but with only one derivative exceeding (R = F) and several matching the potency of 

vinblastine (R = Cl, Me, Br vs H), whereas larger (R = I, SMe) or rigidly extended (R = CN) 

substituents substantially reduced activity (10–100 fold).64 Although the enhanced 

metabolic stability of the 10′-fluoro derivative could in principle contribute to the increased 

potency, the lack of similar effects with related substituents indicate that a feature unique to 

the fluorine substitution is responsible. We have suggested that this is derived from the 

interaction of a perfectly sized hydrophobic substituent further stabilizing compound 
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binding with tubulin at a deeply imbedded site exquisitely sensitive to steric interactions. 

Comparison models of the 10′ substituent analogs built from the X-ray structure of tubulin-

bound vinblastine illustrated a unique fit for 10′-fluorovinblastine (Figure 6)64 and studies 

disclosed later demonstrated that it alone displays a higher tubulin binding affinity.69 Here, a 

singularly unique added heavy atom substantially improved target (tubulin) binding affinity 

and the resulting functional activity (30-fold).

These observations emerged in studies that provided a powerful approach to prepare 

previously inaccessible vinblastine analogs by total synthesis.70–79 It was the potential for 

their improvements that inspired our development of new synthetic methodology created 

deliberately for the intended target.70 Thus, a powerful oxadiazole tandem intramolecular 

[4+2]/[3+2] cycloaddition cascade was introduced80–82 that not only assembled the full 

pentacyclic skeleton in a single step, but also incorporated each substituent, functional 

group, embedded heteroatom, and all necessary stereochemistry for direct conversion of the 

cascade cycloadduct to vindoline.83,84 Combined with the use of a single-step Fe(III)-

promoted coupling of catharanthine with vindoline and a newly developed in situ Fe(III)/

NaBH4-promoted hydrogen atom transfer free radical C20′ oxidation,78,79,85,86 the 

approach provides vinblastine and its analogs in 8–13 steps. This was used to provide 

vinblastine analogs not previously accessible by semisynthetic modification of the natural 

products themselves that contain changes within either the lower vindoline-derived87–96 or 

upper catharanthine-derived subunits97–102 with the late stage divergent103 introduction of 

new functionality. In addition to the examination of C10′ substituents,64 we have prepared 

more than 400 analogs of vinblastine, defining the role of individual structural features and 

substituents. These studies have systematically probed the impact and role of the vindoline 

C16 methoxy group,79 C4 acetate,90–92 C5 ethyl substituent,93 C6–C7 double bond,94–96 

and the vindoline core structure itself,96 and have systematically explored the upper subunit 

C20′ ethyl substituent,97,98 C16′ methyl ester,99 and added C12′ indole substituents.64 

Notably, attempts at the simplification of the structure with the removal of a structural 

feature, a substituent, or even their subtle single heavy atom modifications have led to 

substantial reductions in activity. However and like the addition of a 10′-fluoro substituent, 

added features like that targeting the C20′ ethyl group with added benign complexity 

(ABC)97 can effectivity improve activity. We have shown that the single heavy atom 

replacement of the C20′ alcohol with an C20′ amine is possible85 and that its acylation to 

afford 20′ ureas or amides provides substantial100,101 and even stunning69 potency increases 

as much as 100-fold (IC50 = 75 pM vs 7 nM, HCT116). The ultra-potent vinblastines bind 

tubulin with much higher affinity and likely further disrupt the tubulin head-to-tail α/β 
dimer–dimer interaction by strategic placement of the conformationally well-defined, rigid, 

and extended 20′ urea or amide along the adjacent continuing protein–protein interface. 

Several 20′ amides were discovered that match or exceed the potency of vinblastine, but 

that are not subject to Pgp efflux and its derived vinblastine resistance.102 Within this series 

and reflecting an additional impact of a single heavy atom change, a benzamide substituent 

X was found to predictably impact activity, displaying a fundamental linear relationship 

between potency (−log IC50, HCT116) and the electronic character of the aryl substituent 

(σp) (Figure 7). All benzamides shown in Figure 7 are more potent than vinblastine and 

those that bear an aryl electron-donating substituent, some of which constitute single heavy 
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atom additions, improve the H-bond acceptor ability of the added amide carbonyl that in turn 

proportionally increase the measured tubulin binding affinity (not shown) and functional 

activity (Figure 7).102 Finally, compounds in this series also displayed diminished off target 

activity (Pgp efflux) and diminished Pgp-derived resistance (IC50 ratio between isogenic 

Pgp-derived resistant and sensitive cell lines, 88-fold for vinblastine) that correlated with the 

increasing lipophilic character of the amide substituent.102 Here, single atom changes that 

simply increase lipophilic character (cLogP) were found to directly correlate with and 

diminish resistance derived from Pgp overexpression and drug efflux that limits vinblastine 

clinical use (Figure 8). The compounds emerged from the discovery of a site and 

functionalization strategy for the preparation of a vinblastine analog that contains a single 

heavy atom exchange (C20′ NH2 for OH).85 Its acylation provided the now readily 

accessible vinblastine analogs in three steps from commercially available materials that, 

unlike acylated derivatives of the alcohol itself (inactive), not only increase binding affinity 

to tubulin (on target affinity) and potency in cell-based assays, but also simultaneously 

disrupt efflux by Pgp (off target source of resistance).102 It is a tribute to the advances in 

organic synthesis that such detailed systematic studies can now be conducted on a natural 

product of a complexity as vinblastine once thought refractory to such approaches.

In the course of these studies, a new and effective tubulin binding assay was necessarily 

developed69 to accurately measure the impact of the structural modifications, and a number 

of additional natural products were prepared by total synthesis104–109 with use of the newly 

introduced oxadiazole cycloaddition cascade.110,111

Duocarmycins, yatakemycin, and CC-1065

The first family of natural products on which we systematically examined the impact of 

deep-seated structural changes is composed of the duocarmycins, yatakemycin, and 

CC-1065, and a number of these modifications involved single atom changes in their 

structures. The natural products are exceptionally potent antitumor compounds that derive 

their activity through a sequence selective DNA alkylation.112–114 Our studies provided not 

only total syntheses of the natural products,115–127 but also the characterization of their 

DNA alkylation properties, including that of their unnatural enantiomers.128–133 In these 

studies, we defined their DNA alkylation selectivity, rates, and reversibility,134 isolated and 

characterized their adenine N3 adducts,130,132,135 and defined their stereoelectronically-

controlled reaction regioselectivity.136–139 We defined the source of their alkylation 

selectivity as arising from their noncovalent binding selectivity preferentially in the 

narrower, deeper AT-rich minor groove (shape selective recognition),140–144 and identified 

the unusual source of catalysis for the alkylation reaction that is derived from a DNA 

binding induced conformation change that disrupts the stabilizing vinylogous amide 

conjugation (shape dependent catalysis).145–151 We demonstrated and quantified the 

fundamental role the hydrophobic character of the compounds plays in the expression of the 

biological activity, driving the intrinsically reversible DNA alkylation reaction, and defined 

the stunning magnitude of its effect (hydrophobic binding-driven-bonding).152 In 

collaboration with Walter Chazin, we provided high-resolution NMR-derived structures of 

the natural products and their unnatural enantiomers bound to DNA (Figure 9),153–155 and 

established that they are subject to an exquisite “target-based activation”.156 In the course of 
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these studies, we introduced a convenient M13-derived alternative to 32P-end-labeling of 

restriction fragments for DNA cleavage studies.157 Fundamental relationships between 

structure and reactivity or structure and activity,158 and their contributions to the DNA 

alkylation properties and biological activity of the natural products, were established through 

the examination of more than 2000 analogs of the natural products that contained deep-

seated structural changes (e.g., CBI).159–202 A compilation of the data derived from more 

than 30 deep-seated modifications, many of which entailed single heavy atom 

changes,187–202 resulted in the establishment of a predictive parabolic relationship between 

the alkylation subunit reactivity and the resulting cytotoxic potency that spanned a 104–106 

range of reactivity and activity (Figure 10).203–206 Presumably, this fundamental relationship 

reflects the fact that the compound must be sufficiently stable to reach its biological target 

yet remain sufficiently reactive to alkylate DNA once it does. The parabolic relationship 

defined this optimal balance between reactivity and stability, providing a fundamental design 

feature that was used to improve the potency of CC-1065 by a single heavy atom exchange.

The replacement of the CC-1065 alkylation subunit pyrrole NH with a sulfur atom was 

examined and represents the exchange of a single heavy atom.207 Its exploration rested with 

expectations that it would be substantially more stable than the alkylation subunit found in 

CC-1065, leading to a more potent CC-1065 analog. Intuitively, this was expected to arise 

from the strain release provided by a fused thiophene versus pyrrole, which in turn may 

further benefit from the greater electron-withdrawing character of a thiophene. More 

quantitatively, this increased stability could be approximated using semiempirical 

calculations (AM1, MNDO) where the thiophene analog was selected among several 

candidate alkylation subunits as being more stable. Analogs with the altered alkylation 

subunit, which lies at the pinnacle of the parabolic relationship, proved to be both 6-fold 

more stable (solvolysis) and 3–10-fold more potent (IC50, L1210) than those that contained 

the CC-1065 alkylation subunit, and they displayed an unaltered DNA alkylation selectivity 

but greater efficiency than CC-1065. Here, a single heavy atom exchange in the core 

structure of the CC-1065 alkylation subunit provided a near optimal increase in biological 

potency predictably derived from improvements in the stability of the reacting DNA 

alkylation subunit (Figure 10).207

When incorporated into an even further simplified structure, this modification of the 

alkylation subunit provided a potent and efficacious antitumor compound when examined in 

a rodent tumor model (Figure 11).207 Unlike many natural products, members of this class 

not only tolerate such simplifying structural changes,161,208 but their physical (solubility) 

and biological properties (in vivo efficacy) can be improved through such changes. An 

additional instructive example that highlights the productive changes derived from a single 

heavy atom change was the removal of the CC-1065 alkylation subunit C8 methyl 

substituent. Its removal increased both the rate and efficiency of DNA alkylation by 

removing a steric impediment to reaction with adenine and increased the biological potency 

of resulting analogs (Figure 11).192 Here, the modification represents an unusual example of 

the improvement in the biological potency of a natural product by removal of a seemingly 

benign single heavy atom from its structure. Finally and in a culmination of our own efforts, 

a unique reductively activated prodrug design that maps seamlessly onto the compound class 

was developed, which bears multiple structural simplifications (Figure 11).209–213 Selected 
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members of this prodrug class are remarkably efficacious and exhibit a much wider dose 

range for efficacy in animal tumor models without dose-limiting toxicity.209 Thus, the 

exceptional potency of this drug class was tamed by a unique reductive activation prodrug 

design especially suited for this class of candidate drugs. Efforts with this class of molecules 

may represent one of the most extensive cases of molecular modification of biologically 

active natural products by total synthesis conducted with the intention of improving their 

properties, defining fundamental features of their mechanism of action, or in the 

development of clinical candidates.214–219

Bleomycin

Bleomycin A2 is a clinically employed antitumor drug that derives its properties through the 

sequence-selective cleavage of DNA in a process that is both metal-ion and O2 

dependent.220–224 We developed a modular total synthesis of bleomycin A2 that permitted 

the total synthesis and examination of nearly 70 analogs of the natural product,225–242 

probing each subunit and substituent in the structure.223 These studies confirmed the origin 

of DNA cleavage selectivity derived from G triplex-like H-bonding in the minor groove,239 

defined fundamental conformational properties of bleomycin that contribute to the efficiency 

of DNA cleavage,240,241 clarified the functional roles of the individual subunits and their 

substituents,223 and in collaboration with JoAnne Stubbe provided a NMR-derived high 

resolution structure of DNA bound deglycobleomycin A2.243 In the course of these studies, 

we introduced the powerful fluorescent intercalator displacement (FID) assay for 

comprehensively establishing DNA binding selectivity or affinity.244,245 These combined 

studies, in conjunction with then emerging structural models,246 defined a remarkable 

combination of functional, structural, and conformational properties integrated into the 

natural product structure and served to underscore that it represents a natural product in 

which each subunit, each functional group, and nearly each substituent productively 

contribute to the expression of its biological properties.223 Two exceptions to this 

generalization are the pyrimidoblamic acid C5 methyl group that could be removed and 

replaced with an H atom without impacting its activity,230 and the histidine imidazole N1 

atom, which could be exchanged for an oxygen atom (oxazole vs imidazole) but not 

removed (pyrrole versus imidazole).237 These represented cases where a single heavy atom 

could be removed or exchanged in the structure without impacting activity. Important among 

our observations was the experimental demonstration of the role the pyrimidine C4 amino 

group plays in H-bonding and DNA recognition, and as the source of the DNA cleavage 

selectivity (Figure 12).239

The feature I want to highlight for the purpose of this perspective was the unrecognized 

subtle impact that the valerate methyl and threonine linker substituents play in 

preorganization and stabilization of a compact conformation implicated in DNA 

cleavage.240,241 Their individual or combined removal do not alter the metal chelation, O2 

activation, or DNA cleavage selectivity of bleomycin, but they do progressively reduce the 

DNA cleavage efficiency. Predicable from first principles of conformational analysis, the 

heavy atom substituents combine to restrict the flexible linker region to a single dominant 

compact versus extended conformation, preorganizing the functional components of the 
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molecule into a rigid conformation productive for DNA cleavage by the bound complex 

(Figure 13).

Analogous observations were made in efforts targeting the protein phosphatase inhibitors 

fostreicin, cytostatin, and phostriecin (sultreicin)247–255 where the presence and 

stereochemistry of benign methyl substituents on an aliphatic chain substantially impact the 

biological activity through conformational restriction of an otherwise flexible chain.252,255

Enzyme inhibitors, fatty acid amide hydrolase

A number of additional instructive examples of the impact of a single atom change can be 

illustrated in a program that emerged from the discovery of oleamide as an endogenous 

signaling molecule promoting physiological sleep.256–259 Even small changes in the simple 

structure of the signaling molecule oleamide (e.g., saturation of the double bond, its 

relocation by a single atom, and trans vs cis configuration) results in a loss in activity.257 

The discovery of the physiological role of oleamide represented the delineation of the first of 

a growing class of endogenous signaling fatty acid primary amides,260 and was disclosed 

shortly after the identification of anandamide,261 a fatty acid ethanolamide, as the 

endogenous ligand for the cannabinoid receptors. This work led to the discovery and 

characterization of the enzymes responsible for the release (PAM) of signaling fatty acid 

primary amides262 and the degradation of signaling fatty acid amides (fatty acid amide 

hydrolase, FAAH).263–266 It provided orally active, long acting, potent, and selective α-

ketoheterocycle inhibitors of serine hydrolases including FAAH, used a powerful proteome-

wide activity-based protein profiling (ABPP)-based selectivity assessment for reversible 

enzyme inhibitors,267–269 characterized inhibitor bound FAAH X-ray structures,270–272 and 

provided the first in vivo validation of FAAH as a candidate therapeutic target.273–284 This 

work showed that preventing the enzymatic hydrolysis of an endocannabinoid (anandamide) 

provides an effective approach for the treatment of pain that avoids the side effects of a 

traditional blunt force agonist acting on the target receptors (CB1 and CB2).273,274 Since 

this only potentiates an activated signaling pathway by increasing the concentration and 

duration of action of the released signaling molecule at its site of action, it provides a 

temporal and spatial pharmacological control not available to a receptor agonist. It is the 

work that has been conducted as part of an extraordinary collaboration with Ben Cravatt, 

Richard Lerner, Aron Lichtman and many others, and has inspired efforts to target other 

enzymes controlling endocannabinoid signaling for the treatment of pain and 

inflammation,280 for the modulation of other GPCR targets, and provided the foundation for 

FAAH inhibitors that progressed into the clinic.282–284

Our systematic examination of α-ketoheterocycles285–289 as inhibitors of FAAH290–304 was 

initiated at a time when only a handful of articles on α-ketoheterocycles had been published. 

Representative of all efforts in medicinal chemistry directed at enzyme or receptor targets, 

single atom changes in the ligand had remarkable impacts on target affinity, target 

selectivity, PK properties, and in vivo efficacy. Optimization of candidate α-

ketoheterocycles led to the identification of OL-135273 and later CE-12299 as potent, 

selective, and efficacious in vivo inhibitors of FAAH (Figure 14).
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The examination of OL-135273 included a systematic exploration of the central activating 

heterocycle.298 Several activating heterocycles were found to improve the inhibitor potency 

relative to the oxazole found in OL-135 and representative examples are presented in Figure 

15. In short, the introduction of an additional heteroatom at position 4 (oxazole numbering, 

potency: N > O > CH) substantially increased inhibitory activity that may be attributed to a 

combination of the increased electron-withdrawing properties of the activating heterocycle 

as well as a reduced destabilizing steric interaction302 at the active site observed in the X-ray 

of the complex of FAAH with OL-135.

We also defined a role for the central activating heterocycle distinct from that observed with 

serine proteases287,288 that explained pronounced substituent effects. The work illustrated 

the importance of the electrophilic character of the ketone in driving FAAH inhibition. A 

well-defined linear correlation between the Hammett σp constant of the α-ketooxazole C5 or 

C4 substituent and FAAH inhibition was established that is of a magnitude to dominate the 

behavior of inhibitors (ρ = 3.0–3.4), indicating that a unit increase in σp results in a stunning 

1000-fold increase in Ki.293,294 This provided a predictive tool for the rational design of α-

ketoheterocycle-based serine hydrolase inhibitors beyond FAAH where modulation of the 

inhibitory potency could be accomplished by substitution of an oxazole, in some instances 

by an added single heavy atom, predictably modulating the intrinsic reactivity of the 

electrophilic carbonyl (Figure 16).

The first X-ray structures of the α-ketoheterocycle-based inhibitors bound to FAAH were 

disclosed in 2009 in collaboration with Ray Stevens.270 These co-crystal structures of 

OL-135 and its isomer with FAAH confirmed that the catalytic Ser241 is covalently bound 

to the inhibitor electrophilic carbonyl, providing a deprotonated hemiketal mimicking the 

enzymatic tetrahedral intermediate (Figure 17). It also represents an unusual case of 

exchanging the location of two complementary heteroatoms in the core structure of the 

inhibitor, each of which is essential to the activity. Neither heteroatom can be replaced with 

a CH, both heteroatoms are required, but their locations can exchanged. Additional co-

crystal structures of key α-ketoheterocycles271,272 systematically probed the three active site 

regions central to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-

binding pocket and membrane access channel, (2) the active site catalytic residues and 

surrounding oxyanion hole that covalently binds the α-ketoheterocycle inhibitors, and (3) 

the cytosolic port and a newly identified anion binding site. These structures, including a 

representative member of the inhibitors containing a conformationally constricted C2 acyl 

side chain,299 confirmed covalent attachment through nucleophilic addition of Ser241 on the 

inhibitor electrophilic carbonyl and they captured the catalytic residues in an “in action” 

state. They also revealed an unusual Ser217 OH-π H-bond to the activating heterocycle and 

defined a prominent role that bound water in the cytosolic port plays in stabilizing inhibitor 

binding through interaction with the pyridyl nitrogen of the OL-135 substituent. These 

studies established that the dominant role of the activating heterocycle is its intrinsic 

electron-withdrawing properties and identified the key role of an ordered cytosolic port 

water in mediating the stabilizing hydrogen bonding of optimized oxazole substituents.
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CONCLUSIONS

Central to science at the chemistry–biology interface is the ability of small molecules to 

selectively bind a unique protein or nucleic acid target and elicit a response in a biological 

milieu. Especially informative are studies on small molecules found in Nature, biologically 

active natural products. Beyond their importance in modern medicine, unraveling the role 

their structure features play in the expression of their functional biological activity is 

molecular level science at its finest. This can include not only the identification of structural 

features that convey the affinity and selectivity for a biological target or those that are central 

to their molecular mechanism of action, but also how these features are intimately integrated 

into a complex, compact structure that simultaneously displays a constellation of functions. 

It is even more remarkable that a single heavy atom in such compounds can impact the 

underlying intermolecular interactions or functions in such pronounced ways. In the context 

of our work, examples were highlighted herein in which single heavy atom changes or 

exchanges substantially and atypically improve the activity, rather than those that 

informatively reduce or abolish activity. The examples illustrate that their productive impact 

can originate from steric, electronic, conformational or H-bonding effects, from changes in 

intrinsic reactivity, from fundamental intermolecular interactions with a protein or nucleic 

acid target, from introduction of a new functionalization site, or from effects as simple as 

altering stability or physical properties. It is, I believe, an instructive series of examples 

where modifications that entail even a single heavy atom change can have remarkable 

impacts on the expression of the biological properties of the natural products. In a field 

where the simplification of complex structures has been perceived as the most expeditious 

path forward and where single heavy atom removal might fall into the complex end of this 

category, rarely does one contemplate the addition or even exchange of a single heavy atom. 

Yet, as shown herein, such small changes can have predicable and especially productive 

effects. Key to exploring such nuanced structural modifications is the total synthesis of the 

modified compounds, the development of synthetic strategies and methodology suitable for 

systematic structural exploration, and a commitment to their implementation in such studies. 

It is a tribute to the advances in organic synthesis that natural products of the complexity of 

vancomycin and others highlighted herein can now be rationally, though not yet routinely, 

subjected to systematic probes of their structure and function with deep-seated structural 

modifications, even those involving single atom changes. Perhaps we are approaching a time 

when such complex structures, like the typically simpler compounds of traditional drug 

discovery, can be routinely embraced with confidence that their already remarkable 

constellation of properties can be just as effectively improved by subtle, impactful structural 

modifications. Finally, throughout the course of my career and in each of our programs, the 

questions about such molecules have also progressed from how do we identify them and can 

we make them, to can we understand them and can we improve on them? Similarly, the 

question of the impact of single atoms in such structures has progressed from “what 

difference can a single atom make?”, to “can a single atom make a difference?”, and now to 

“what single atom can make a difference?”. Hopefully, a sense of that journey is also 

summarized in this perspective.305
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Figure 1. 
Vancomycin binding to model ligands that contain single heavy atom exchanges.
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Figure 2. 
Vancomycin analogs that incorporate single heavy atom changes in the binding pocket.
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Figure 3. 
Vancomycin analog that contains a single atom change in the binding pocket, reinstating 

activity against vancomycin-resistant bacteria, and two peripheral modifications that add two 

additional independent mechanisms of action.
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Figure 4. 
Structure of [L-Dap2]ramoplanin A2 aglycon and a single heavy atom exchange in 49-

membered macrocycle that substantially improves hydrolytic stability shown to limit the 

clinical use of ramoplanin.
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Figure 5. 
10′-Fluorovinblastine and 10′-fluorovincristine, unique impact of an added single heavy 

atom substituent that improved target (tubulin) binding affinity and functional activity (30-

fold).
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Figure 6. 
Model of the 10′-fluoro binding site of 10′-fluorovinblastine (R = F, top) generated by 

adding the fluorine substituent to the X-ray structure of tubulin-bound vinblastine67 (R = H, 

bottom).64 Modeled complexes with larger substituents (R = Cl, Me, Br, I) exhibited 

increasingly larger destabilizing steric interactions as the substituent size progressively 

increased.
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Figure 7. 
Active analogs required a single heavy atom exchange into the vinblastine structure (C20′ 
NH2 for OH). In a plot of −log IC50 (nM, HCT116) versus substituent σp, the analogs 

additionally displayed a predictable modulation of activity by a substituent (X) electronic 

effect, impacting benzamide carbonyl H-bonding with tubulin, some representing single 

heavy atom additions. All analogs shown are more active than vinblastine.
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Figure 8. 
Plot of 20′ amide cLogP versus differential activity (IC50 ratio) for isogenic HCT116 

resistant (Pgp overexpression) and sensitive cell lines that progressively exchange in single 

heavy atoms or heteroatoms. The correlation defines a linear relationship between 

diminished resistance (ratio) that arises from reduced/abolished Pgp efflux, and a modulated 

physical property of the compounds (lipophilic character, cLogP) that can be predictably 

impacted by single atom changes. All compounds shown are more potent than vinblastine 

and display less resistance (vinblastine ratio = 88).
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Figure 9. 
NMR structures of natural (+)- and ent-(−)-duocarmycin SA bound in the same AT-rich site 

of a deoxyoligonucleotide, illustrating the alkylation sites on complementary DNA stands 

offset by one base pair. Only the binding region of DNA is shown.
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Figure 10. 
Single heavy atom exchange in the CC-1065 alkylation subunit that improves potency 

through a predicable reduction in intrinsic reactivity, placing it at an optimal point on a 

parabolic relationship between functional reactivity and activity.
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Figure 11. 
Additional simplifying structural modifications, an example of removal of a single heavy 

atom (Me group) that improves potency by making the underlying DNA alkylation reaction 

sterically more accessible, and a recent efficacious prodrug design on a simplified structure.
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Figure 12. 
Structure of bleomycin A2, NMR structure of bleomycin bound to a DNA cleavage site (full 

deoxyoligonucleotide and bleomycin disaccharide removed for clarity), key H-bonding role 

the pyrimidine C4 amine plays in guanine recognition, and role the minor groove guanine 

C2 amine plays in the recognition of bleomycin.
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Figure 13. 
The C2 and C4 methyl groups of the valerate linker in bleomycin induce a rigid, compact 

versus extended conformation productive for DNA cleavage, see Figure 12. Each heavy 

atom substituent independently increases the efficiency of DNA cleavage without impacting 

metal chelation, O2 activation, or the cleavage reaction and without making direct contact 

with the target.
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Figure 14. 
FAAH inhibitors.
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Figure 15. 
Representative OL-135 analogs containing iterative single heavy atom changes or exchanges 

in the activating heterocycle. Reduction in the steric size of the heterocycle position 4 heavy 

atom (potency: N > O > CH) contributes to increased inhibitor potency.
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Figure 16. 
−Log Ki (μM) for FAAH versus Hammett σp, defining and quantitating a linear correlation 

between enzyme inhibition and the electronic impact of oxazole substituents on intrinsic 

reactivity of the electrophilic carbonyl of an α-ketoheterocycle (ρ = 3.0), some arising from 

single heavy atom substitution.
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Figure 17. 
Superimposition of the X-ray structures of OL-135 (green) and its isomer (blue) bound to 

FAAH that illustrates the compensating impact of exchanging the location of two 

complementary heteroatoms.
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