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Abstract
Objective—We compared the efficiency of case selection strategies for following up a genome-
wide linkage screen of multiplex families. We simulated datasets under three models by which
continuous environmental or clinical covariates may contribute to disease risk or linkage
heterogeneity: (i) a quantitative trait locus (QTL) underlying a continuous disease risk factor, (ii) a
gene-environment interaction model, (iii) a heterogeneity model defined by distinct covariate
distributions in linked and unlinked families.

Methods—Marker genotypes and covariate values were generated for affected sibling pair (ASP)
families, according to the three models above. We evaluated two case selection strategies relative to
a reference design, which compared all family probands to a sample of unrelated controls (‘all’). The
first strategy ignored covariates and selected probands from families with NPL scores ≥ 0 (‘linked
best’). The second strategy selected probands from families identified by an ordered subset analysis
(OSA), which utilizes family-specific linkage and covariate information.

Results—The ‘linked best’ design provided power very similar to the ’all’ design under all three
models. Under some QTL and heterogeneity models, the OSA design was both most powerful and
most efficient.

Conclusions—Incorporating allele sharing and covariate information from ASP families into a
case-control study design can increase power and reduce genotyping cost.
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Introduction
Substantial resources have been invested in the collection of affected sibling pair (ASP)
families to facilitate linkage analyses of complex human diseases. A whole-genome linkage
analysis is often a first step toward the goal of identifying novel susceptibility genes, followed
by association analysis. The linkage screen narrows the search by identifying genomic regions
most likely to contain a disease susceptibility locus (DSL), and association analysis provides
a much higher mapping resolution by virtue of linkage disequilibrium (LD) between alleles at
genotyped marker(s) and the DSL. It is well established that case-control association analyses
are more powerful than family-based association analyses in the absence of population
stratification [1–3]. Recently, there has also been an interest in developing methods for the
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joint analysis of families, unrelated cases and unrelated controls [1,4,5]. In addition to the
protection against population stratification provided by family-based association analysis [6],
there is great practical value in continuing to work with the family datasets collected in the
past for whole-genome linkage scans. This value is further enhanced by identifying study
designs that make optimal use of the information about the likely DSL location provided by
these family datasets.

Due to the complexity of the investigated phenotypes, it is important to incorporate
environmental and clinical covariates into study design choices. This may include
endophenotypes, if available. There are many different ways in which such covariates may
either influence the disease risk directly, or partially explain the genetic heterogeneity
commonly observed for complex diseases. The study presented here examined the efficiency
of two case selection strategies under three plausible simulation models, referred to as
‘covariate models’, for genetically heterogeneous datasets: a quantitative trait locus (QTL)
underlying a continuous covariate that is a risk factor for the disease, a multiplicative gene-
environment interaction (GxE) model, and a heterogeneity model in which covariate
distributions differ between linked and unlinked families, but in which the covariate does not
influence the penetrance. The simulated datasets were analyzed by a two-stage approach, in
which a stage 1 linkage analysis was followed by a stage 2 case-control association analysis
that used one case per family. The two case selection strategies used only a subset of all family
probands for association testing and were compared to a reference design, in which probands
from all available families were compared to a sample of unrelated controls.

Materials and Methods
Data Simulation

With the simulation package SIMLA [7], we used a prospective logistic regression model as
the penetrance function for binary disease outcomes generated on nuclear families with sibship
size two. If D = 1 for affected and D = 0 for unaffected individuals, and the β parameters
represent the natural logarithm of the odds ratios (ORs), this penetrance function can be written
as

(1)

where x1 = 1 for the susceptible genotype(s), x1 = 0 for the referent genotype(s), and x2 is the
value of a normally distributed continuous covariate E. As previously described, the x1 and
x2 values for probands and non-proband pedigree members were assigned by appropriate
simulation algorithms [7]. Covariate values were simulated so that 2.3% of the population were
at the reference level (baseline risk) and 20% had a risk increase of at least OR(E) = exp(β2),
compared to the baseline risk (see appendix for details). In SIMLA, this was accomplished by
assigning the 80th percentile of the covariate distribution as the upper reference point [7].
Reference points, but not β2 values, were fixed across simulation models. For each replicate,
1,000 families with two affected siblings were retained for analysis to match standard linkage
ascertainment strategies. Parents were assumed to be unavailable for genotyping.

Genotype and covariate data for 500 unrelated controls were generated conditional on their
‘unaffected’ status. We used a 50 cM map of 501 single-nucleotide polymorphism (SNP)
markers spaced 0.1 cM apart, with all but one marker (SNP252) having two equally frequent
alleles. The disease locus was located in the middle of the map at a distance of 0.05 cM from
marker 252. The minor allele frequency (MAF) of SNP252 was chosen to be the same as the
frequency of the disease susceptibility allele, and the extent of LD between marker and disease
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alleles was varied by specifying their founder haplotype frequencies in SIMLA according to
r2 values of 0.05, 0.1 and 0.3. Disease genotypes were excluded from the analysis. All other
marker loci were in linkage equilibrium with each other and with the disease locus, and Hardy-
Weinberg equilibrium in the underlying population was assumed for all loci. We used the
known (simulated) marker allele frequencies in the analysis files.

Simulation Models
Table 1 summarizes the three simulation models considered here. The models were chosen to
yield a constant locus-specific sibling recurrence risk ratio, λs = 1.15, using the formulae in
the appendix. Model 1 was a QTL model with three genotype-specific covariate means and
standard deviations (SDs) for the general population. The covariate was assumed to be a risk
factor for the disease with OR(E) > 1.0, and hence part of the penetrance function in equation
(1), setting β1 = β3 = 0, β2 = ln(OR(E)) > 0. Thus, the QTL indirectly influenced the disease
risk via the covariate effect on the penetrance, and the covariate (and QTL genotype)
distributions differed between affected and unaffected individuals. The SD was assumed to be
the same for the three QTL genotypes and determined the proportion of the variance explained
by the linked QTL (heritability h2), with the total variance being a combination of major QTL
and polygenic effects, nonspecific shared or unshared environmental factors and random error.
Model 2 was a gene-environment interaction (GxE) model, in which the presence of GxE
interaction between the DSL and continuous covariate was defined as more than multiplicative
joint effects. As in the QTL model, the covariate was part of the penetrance function shown in
equation (1) with β1 = β2 = 0, β3 = ln(OR(GxE)) > 0. In contrast, Model 3 was a heterogeneity
model, in which linked (β1 = ln(OR(G)) > 0, β2 = β3 = 0) and unlinked families (β1 = β2 = β3
= 0 for the DSL linked to the marker map) were distinguished by covariate distributions with
subgroup-specific means, with the same SD for each distribution. In this case, the covariate
was not part of the penetrance function, and thus not a risk factor for the disease, and it did not
have a genetic basis in the form of a QTL. Examples for such a covariate include age at onset,
severity or clinical subtype (measured on a continuous scale) of the disease. We would like to
point out that the size of the OR values in table 1 should be interpreted in conjunction with the
assumed covariate distribution. The same λs value of 1.15 can be obtained with much smaller
OR values by changing the reference points. For example, for Model 1 with α = 0.2, recessive
inheritance, an overall λs = 1.15, corresponding to λs = 1.75 in the linked subset, can be obtained
with OR(E) = 3 when 20%, instead of 2.3%, of the population are at the reference level (baseline
risk) for the continuous covariate and 47.5%, instead of 20%, have at least a one-unit increase
in risk. For Model 2 with α = 0.2, recessive inheritance, the same λs can be obtained with OR
(GxE) = 3 with 20% of the population at baseline risk and 62.6% having at least a one-unit
increase in risk.

Data Analysis and Study Designs
For the stage 1 linkage analysis, we used the MERLIN software [8] to compute nonparametric
multipoint lod scores derived from family-specific NPL scores, assuming the Sall scoring
function under a linear model [9]. We included a subset of 50 SNPs (out of the 501 generated
SNPs) evenly spaced 1 cM apart in the linkage map. The relationship between family-specific
covariate averages and family-specific NPL scores was analyzed by OSA, using the high-to-
low covariate ordering [10]. The OSA software reports the maximum nonparametric lod score
for a covariate-defined subset of families and the map position at which it occurs. To obtain
an empirical p value for a one-sided test of the OSA null hypothesis, which specifies no
correlation of the family-level covariate with the family-specific evidence for linkage, a
permutation test was employed. A minimum of 20 and maximum of 720 permutations were
performed, which allows for the accurate estimation of p values on the order of 0.025 according
to the precision criterion described previously [10]. We used the empirical p value as the
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criterion for significance, regardless of the size of the baseline lod score in the entire dataset
or the size of the maximum lod score in the covariate-defined subset of families.

As the criterion for declaring the linkage analysis ‘successful’ and proceeding to case-control
association analysis, we chose a lod score threshold of 1.0 for MERLIN, and a p value threshold
of 0.05 for OSA. In replicates that met either of these criteria, the stage 2 case-control
association analysis was performed on SNP markers located within a 10 cM region centered
on the linkage peak. Three sets of cases and 500 unrelated controls were analyzed by logistic
regression (SAS Institute, Cary, N.C., USA). Design A included probands from all ASP
families, Design B included the single sibling classified as ‘linked best’ by MERLIN [11],
which is equivalent to using probands from all families with non-negative NPL scores, and
Design C included probands from the subset of families identified by OSA. The linkage peak
was defined by the maximum lod score for all families in Designs A and B, and by the maximum
lod score in the OSA-identified subset of families in Design C. We present detailed results
from a logistic regression model that included a single SNP covariate with additive allele
coding. Consistent with previous studies [12], we confirmed that this coding was most robust
to deviation from the true model (dominant or recessive) used to generate the data (data not
shown). For selected simulation models, we also generated results from a regression model
that included two additional terms, a main effect term for the continuous covariate and a product
term for SNP-covariate interaction.

Previous studies showed that the ascertainment (or analysis) of controls on the basis of their
environmental covariates can improve the power to detect GxE interaction when main effects
of genes and environmental factors have already been well established and interactive effects
are the focus of the study [13,14]. Therefore, we also evaluated the efficiency of control
selection strategies for selected simulation models by performing separate association analyses
of the three sets of cases defined above versus (i) controls from the lower 50% of the covariate
distribution, and (ii) controls from the upper 50% of the covariate distribution.

Empirical Type I Error Rate, Power and Per-Genotype Information of Study Designs
It was previously shown that linkage and association test statistics are statistically independent
under the null hypothesis of (i) no linkage and no association; (ii) linkage and no association;
(iii) association and no linkage [15]. To verify these findings for our specific simulation models,
we calculated the type I error rates of the three study designs by analyzing the non-associated
markers in the 10 cM region around the linkage peak (all markers except SNP252) in 3,000
replicates. For these replicates, the association analysis was performed every time, not just in
replicates that met the success criterion for the stage 1 linkage analysis. The empirical type I
error rate was estimated as the proportion of replicates in which at least one non-associated
marker in the 10 cM region centered on the maximum lod score on the chromosome met a
Bonferroni-corrected p value threshold of 0.0005 (= 0.05/101) in the logistic regression
analysis. Note that the stage 1 MERLIN and OSA analyses are tests of different null hypotheses,
and that our goal was not to compare the power of these analyses for a more narrowly defined
common null hypothesis. Instead, our goal was to examine how different case selection
strategies influenced the probability of the stage 2 analysis to detect a true-positive association.
Hence, the null hypothesis of interest for the different study designs is ‘no association’.

To estimate statistical power under the alternative hypothesis for the different simulation
models of interest, 500 replicates were generated. Since the SNP with the smallest association
p value in the region of interest is typically of greatest interest in practice, we defined the power
of each study design as the proportion of replicates in which the associated SNP 252 met the
design-specific linkage threshold, had the smallest case-control association p value of the 101
analyzed markers, and met a Bonferroni correction for multiple testing. When the linkage peak
was located at a map position for which the 10 cM region centered on the peak did not exceed
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the end of the map on either side, we included in the association analysis the peak marker itself
and 50 markers on either side, for a total of 101 markers and a Bonferroni-corrected threshold
of 0.0005. When the linkage region did exceed the end of the map on either side, we still
analyzed a total of 101 markers but the region was no longer symmetric around the peak.

The comparison of study designs in terms of absolute statistical power is only one aspect of
practical interest. Another aspect is the per-genotype contribution to a case-control association
test statistic, which is a measure of the relative power. For purposes of comparison with earlier
work, we adopted a previously proposed measure for comparing case selection strategies
[11], which is based on the following test statistic:

This statistic can be calculated from the design-specific estimated allele frequencies for the
selected unrelated cases (one from each family) and controls, p̂case|design and p̂control, and the
average number of cases Ncase|design (Ncontrol = 500 across all designs). Under Hardy-Weinberg
equilibrium, as simulated here, this statistic is asymptotically equivalent to the Wald χ2 statistic
for the SNP covariate in our logistic regression model. We verified empirically that the Wald
χ2 statistic follows an asymptotic χ2 distribution on 1 d.f. at the non-disease-associated markers
on our map (corresponding to the null hypothesis of equal allele frequencies in cases and
controls) under the two case selection criteria employed in this study (data not shown). We did

not use  for formal hypothesis tests, but rather to calculate per-genotype contributions to

this statistic as  [11]. We then computed ratios of Idesign for
Design B and Design C, relative to Design A (e.g., Rdesign B = Idesign B/Idesign A).

Results
The threshold of 1.0 for the nonparametric multipoint analysis was slightly liberal for a stand-
alone linkage analysis, since it was exceeded in 8.2% of 10,000 replicates generated under the
null hypothesis of no linkage for the particular marker map simulated here. The threshold of
0.05 for the OSA p value was previously shown to guarantee a type I error probability of 5%
when only one covariate order is analyzed [10,16]. In practice, an investigator would typically
evaluate both high-to-low and low-to-high covariate orders and a 0.05 threshold, without
adjusting for multiple testing, would then be slightly liberal. For the null hypothesis of ‘no
association’ that is of greatest interest in this study, the empirical type I error rates for the three
study designs ranged from 0.044 to 0.056, regardless of the linkage thresholds. Since both the
MERLIN and OSA methods are based on linkage statistics, this was consistent with the
previous report that linkage and association test statistics are independent under the null
hypothesis of ‘linkage and no association’, and ‘no linkage and no association’ [15].

Figure 1–Figure 3 show the overall power of study designs A–C, estimated as the proportion
of replicates in which the associated SNP 252 met the stage 1 linkage criteria, generated the
smallest case-control association p value of all 101 analyzed markers, and met the Bonferroni
correction for multiple testing. The two investigated proportions of linked families, α = 0.2
and α = 0.5, are shown on the x-axis, and the three sets of bars for each α value correspond to
different levels of LD ranging from r2 = 0.05 to r2 = 0.3. The different bar types correspond to
Designs A–C, i.e., case-control analysis comparing all family probands (Design A), only
probands from families with non-negative NPL scores (Design B), and only probands from
the subset of families identified by OSA (Design C) to the 500 unrelated controls.
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Figure 1 shows the power of Designs A–C for the QTL simulation model (Model 1 in table 1),
separately for the recessive and dominant inheritance model. For all designs, a nonparametric
linkage analysis of the binary affection status had limited power to detect a QTL with the
covariate model assumed here, especially with α = 0.2. Consistent with our previous findings
[17], OSA had >70% power to detect linkage in a sample of ASP families when a trait
determined by a QTL was analyzed as the OSA covariate and α values were on the order of
0.5. In this case, figure 1 shows that a selection of probands from OSA families (Design C)
was substantially more powerful than an analysis of all probands, especially for low levels of
LD. For example, for a recessive QTL model with α = 0.5, the power of Design C was ~72%
for r2 = 0.05, compared to ~27% for Design A. The increase in power was especially remarkable
considering that the average number of cases analyzed in Design C was much lower than in
Design A, as illustrated in table 2. Across study designs and LD levels, Designs A and B had
similar power, but Design B only analyzed 30% of the cases. It should be noted that the power
of Design C depends on the chosen reference points for the continuous covariate distribution
and the standard deviation (SD) within each genotype group, in addition to the choice of OR
(E). For example, if at least 50% of the population had a one-unit increase in risk, instead of
20% as assumed here, a lower OR(E) generated equivalent power of OSA under the QTL model
(data not shown). An increased SD for the genotype-specific distribution would decrease the
calculated marginal OR(G), since the SD determines the reference points for the specified OR
(E) (see appendix for details). To illustrate with an example, increasing the genotype-specific
SD from 4 to 10 in Model 1 (α = 0.2, recessive), while holding all other parameters constant,
changes the marginal OR(G) due to the QTL from 13.16 (table 2) to 6.22, using similar
calculations as shown in the appendix.

Figure 2 shows the power of Designs A–C for the GxE simulation model (Model 2 in table 1).
Consistent with our previous findings for a ‘pure’ GxE interaction model with more than
multiplicative joint effects in the absence of main effects [16], OSA did not substantially
improve the power of a standard nonparametric analysis that ignores covariate values,
regardless of LD levels. For α = 0.2, none of the designs had >31% power. For α = 0.5, r2 =
0.3 and a recessive model, Designs A and B achieved 66% power, the benefit of Design B
again being an average ~30% reduction in the number of analyzed cases, while the power of
Design C was 49%.

Figure 3 shows the power of Designs A–C for the heterogeneity simulation model, in which a
main effect of the DSL linked to the marker map was only present in a proportion α of families
(Model 3 in table 1). In this model, a remarkable power increase for Design C, compared to
Designs A and B, was observed for α = 0.2. The power of Design C was 59–85% for the
recessive and 43–63% for the dominant model across the three levels of LD, while the power
of Designs A and B was <1% (recessive and dominant model) for very low LD (r2 = 0.05) and
increased to only 15–20% for moderate LD (r2 = 0.3). Design C required genotyping an average
of 200 cases for α = 0.2, compared to 1,000 cases for Design A and ~330 cases for Design B
(table 2). The power increase for Design C was substantially reduced for α = 0.5, to the point
where all three designs had very similar power (~65% for the recessive, 36–40% for the
dominant model) with r2 = 0.3. The heterogeneity model clearly capitalizes on the strengths
of the OSA method, especially when there is little overlap between linked and unlinked families
and α is low [10], and it makes intuitive sense that the increased power of the OSA linkage
analysis translates directly into increased power to detect association when only cases from
the OSA-identified subset of families are compared to unrelated controls. As expected, the
power of OSA decreased from ~80 to 70% when the standard deviation for the two covariate
distributions in Model 3 (table 1) was increased from 5 to 10, holding α constant at 0.2 and
r2 constant at 0.1.
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Table 2 shows average estimated allele frequencies at the simulated QTL or DSL in the design-
specific sample of analyzed cases and the 500 controls, and also compares the simulated ‘true’
marginal OR for the QTL or DSL to the average estimated OR for additively coded genotypes
at SNP252. The biggest allele frequency difference in cases versus controls, and the highest
proportion of cases from the linked subset of families, was obtained with Design C across all
disease models. The variation in the analyzed number of cases was remarkably low for Design
B for all models (SD across replicates on the order of 15), while the number of families (cases)
identified by OSA varied substantially (SD across replicates on the order of 100–200) for all
models except for Model 3 with α = 0.2. As expected, the estimated marginal ORs were much
smaller for SNP252 than for the true QTL or DSL. The difference was especially pronounced
for the QTL model (Model 1), for which the genotypes conferred an indirectly increased disease
risk through the covariate (‘trait’) effect on the penetrance. The marginal OR in this model
depends on the specified OR(E), the QTL allele frequency, the separation of genotype-specific
means and the common SD of the respective normal distributions. The per-genotype

contribution to the  statistic for Design B and C, relative to Design A, was >1.0 for all
recessive models, but <1.0 for Design B under the dominant model. This again illustrates the
importance of the assumed allele frequencies, which were in the 0.05–0.10 range for the
dominant models. In this case, the only slightly increased frequency of the ‘causal allele’ in
the analyzed sample of cases was not sufficient to outweigh the increased variance due to the
much smaller sample size (~300–330 cases in Design B, compared to 1,000 cases in Design
A). Not surprisingly, by far the greatest ratio of the per-genotype contribution to the test statistic
(~200) was observed for Design C under a recessive heterogeneity model with α = 0.2.
However, the ratio for this OSA-based selection strategy was >1.0 even for the more
challenging QTL and GxE models, with a range of 1.53 to 37.95 (table 2).

We examined whether the power of Designs B and C could be improved by selecting the
affected sibling with the higher covariate value for the case-control association analysis. A
small power gain on the order of 1 to 3 percentage points was observed for simulation Models
1 (QTL) and 2 (GxE). We also examined whether a selection of controls on the basis of
covariate values was beneficial. To summarize our findings qualitatively, analyzing only
controls from the lower 50% of the covariate distribution (for an average of 250 controls)
provided very similar power as the analysis of all 500 controls for the QTL model. Analyzing
only controls from the upper 50% of the covariate distribution (for an average of 250 controls)
provided power very similar to the analysis of all 500 controls for the GxE model. Thus, the
selection of controls on the basis of covariate values could in theory help further reduce
genotyping costs, however, in the absence of knowledge about the true underlying model, it is
preferable to genotype all available controls.

For the GxE model, we also investigated the power of the three designs to not only identify
the disease-associated SNP (i.e., correct localization), but also to detect the presence of GxE
interaction. For this purpose, the case-control data were analyzed with a logistic regression
model that included a term for the continuous covariate and a product term for the covariate
and the additively coded SNP genotype. This model provided very poor localization and power.
The maximum proportion of replicates in which the p value at SNP252 for the estimate of
either OR(G) or OR(GxE) was the smallest of all analyzed markers, and also smaller than 0.05,
was only 14.2% across all models, heterogeneity parameters and study designs. Consistent
with this observation, the Akaike Information Criterion (AIC) was always smallest for the most
parsimonious analysis model that included only a term for the SNP genotype, compared to
models with an additional term for the covariate, or two additional terms for the covariate and
the SNP-covariate interaction.
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Discussion
It has long been known that the analysis of cases from multiplex families enriches the sample
for the presence of disease susceptibility alleles, leading to an increase in statistical power
compared to the analysis of randomly sampled cases [2,3]. We have extended this finding to
show that the efficiency of case-control association study designs can be greatly improved
when both allele sharing and covariate information are used to select cases from the same
multiplex families that identified a linkage region for follow-up analysis. For all three
investigated models by which clinical or environmental covariates may either influence the
disease risk or capture linkage heterogeneity, selecting cases only from families with non-
negative NPL scores provided very similar power as the analysis of all cases with only 33%
of genotyped individuals. This is consistent with earlier reports for simulation models that did
not include disease-associated covariates [11]. The OSA-based study design evaluated here
selects cases not only on the basis of their IBD sharing with affected siblings, but also by
evaluating the relationship between family-specific covariates and family-specific linkage
evidence. Our results show that the selection of cases from the OSA-identified subset of
families was beneficial when 40–60% of families were linked to a QTL for a continuous
covariate. This covariate may have been measured in the family sample as a known risk factor
for the disease of interest, or as an important endophenotype. In the presence of GxE interaction
between a DSL locus and a measured continuous covariate, OSA was less helpful for case
selection. This is consistent with our previous report that OSA has limited power to detect
heterogeneity due to GxE interaction in a multiplicative penetrance model [16]. The greatest
benefit of selecting cases from the OSA-identified subset of families was observed for a
heterogeneity model with a small proportion (10–30%) of families in which a DSL linked to
the marker map conferred a relatively strong main effect. In this model, linkage heterogeneity
was captured by a measured covariate with distinct distributions in linked and unlinked
families. The benefit of Design C was especially pronounced under a recessive inheritance
model, presumably because ASPs are then more likely to share two alleles IBD, which provides
more per-family information on linkage. The power of Design C is primarily driven by two
factors: the difference in λs for the linked and unlinked families, i.e., 1.75 (for α = 0.2) or 1.3
(for α = 0.5) versus 1.0 in this study, and the extent of separation between the covariate
distributions of these subsets. The number of multiplex families, and hence the number of cases
in the OSA-identified subset of cases, is another important factor, and the formula for the

 statistic provides insight into the balance between increased susceptibility allele
frequency in the subset versus increased variance due to a smaller sample size of cases. For
both Design B and C, we found that case selection on the basis of their individual covariate
values made little additional difference. This finding emphasizes the value of family-level
information for enriching a sample of patients for inherited alleles.

A selection of controls on the basis of their individual covariate values allowed for a further
increase in design efficiency, above and beyond that attributable to the case selection strategies.
For the QTL model considered here, selecting the 50% of controls with the lowest covariate
values increased the frequency of homozygous normal genotypes, and thus increased the MAF
difference between cases and controls at the disease-associated SNP. For relatively common
alleles, the increase in the MAF difference offset the increase in statistical variance due to a
smaller sample size of controls, leading to virtually identical power estimates for analyzing all
500 controls versus only half of them. Conversely, for the GxE model, a selection of the 50%
of controls with the highest covariate values increased the frequency of homozygous normal
genotypes, with the same effect of an increased MAF difference between cases and controls.
However, relative to the QTL model, the absolute MAF difference was smaller for the GxE
model. These results suggest that control selection on the basis of covariate values may in
principle allow for additional savings in genotyping costs, but in the absence of knowledge
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about the true covariate model (e.g., QTL vs. GxE), it is preferable to genotype all available
controls. At the statistical analysis stage, an analysis of all controls compared to an analysis of
controls from the lower or upper 50% of the covariate distribution may provide insight into
the possible nature of the underlying covariate model. It may also be helpful to visually compare
the relationship between marker genotypes and covariate values in affected and unaffected
individuals with our recently developed software tool SIMLAPLOT [18].

The main limitation of our simulation study was the assumption of a very simple marker spacing
and LD structure for the genomic region of interest. Only a single SNP was in LD with the
minor allele at the QTL or DSL, while all other SNPs were in linkage equilibrium with each
other and with the causal allele. This made it possible to detect association by analyzing one
SNP at a time, and we did not consider the additional challenges posed by situations in which
only a haplotype of several SNPs may be in LD with an unknown susceptibility variant. In this
simple situation, the Bonferroni correction is not overly conservative. However, for the
complex LD structure of the human genome, more sophisticated multiple testing corrections
are desirable in order to balance statistical power and false-positive rate, and this continues to
be an active area of methodological research motivated by the current interest in whole-genome
association studies.

Our findings have several implications for applied studies of complex human diseases. First,
they emphasize the value of low-density whole-genome linkage screens with much lower per-
sample cost, even at a time when whole-genome association screens have become technically
feasible. The analysis of cases selected on the basis of linkage evidence can provide substantial
power increases for localizing a QTL or DSL with high resolution, even at low levels of LD
and in the presence of substantial genetic heterogeneity. Our findings should extend from ASP
datasets typical of late-onset disorders (i.e., without genotyped parents, as simulated here) to
those typical of early-onset disorders, since the availability of parental genotypes improves the
power of linkage analysis.

Second, our results suggest that investigators may want to either consider the construction of
region-specific sample lists for follow-up genotyping, or, when that is impractical in terms of
sample or project management, to use linkage results as a guide for the inclusion or exclusion
of cases at the statistical analysis stage.

Third, our study illustrates the difficulty of detecting GxE interaction with the same dataset
used for gene discovery. A logistic regression of cases and controls that included only a single
SNP genotype term in the model was much more powerful in terms of gene localization than
a model that included additional covariate and interaction (product) terms. This suggests that
gene discovery and a more detailed modeling of identified candidate genes, including
estimation of penetrance, attributable risk, and interaction with environmental factors, are best
performed in independent large datasets. This, in turn, emphasizes the importance of
ascertaining unrelated cases, with or without sampled relatives, and appropriately matched
unrelated controls in parallel with multiplex families for linkage analysis [19]. From a practical
perspective, we note that multiplex families for a genome-wide linkage analysis are typically
more difficult to collect than unrelated cases. A smaller sample size of multiplex families limits
the power of the study design we have evaluated since it is well known that the detection of
GxE interaction requires substantially larger sample sizes than the detection of main effects,
particularly when measured SNPs are not in perfect LD with the true DSL. It would be
beneficial to evaluate in future studies under which conditions the OSA-identified covariate
cutoff point is useful to select a subset of all available cases, including those without affected
sampled relatives, in order to decrease the genetic heterogeneity of the case sample. Extensions
of the OSA method to family-based or case-control association mapping are also desirable.
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Finally, our findings emphasize the importance of collecting environmental and clinical
covariate data in gene discovery studies, in addition to the primary diagnostic criteria for
determining affection status. The incorporation of family-level covariate information appears
to contribute more strongly than individual covariate levels to the enrichment of a sample of
patients for inherited alleles. The importance of obtaining detailed phenotypic data for studies
of complex human diseases with substantial genetic heterogeneity cannot be overestimated.
Covariate information can also be extremely useful in terms of illuminating biological
mechanisms or pathways that may be important contributors to the disease risk in a subset of
patients and families. For example, a spectrum of sequence variations in the proprotein
convertase subtilisin/kexin type 9 serine protease gene (PCSK9) with a wide range of allele
frequencies and effect sizes was shown to contribute to inter-individual differences in low-
density lipoprotein cholesterol (LDL-C) levels [20]. Variants associated with a reduction in
mean LDL-C were indirectly associated with a reduction in the risk of coronary heart disease
ranging from 47% for white subjects to 88% in black subjects [21]. Studying the variation in
a continuous disease risk factor in unselected samples allows for a more comprehensive
assessment of genotype-phenotype relationships. However, consistent with the findings
reported here, a judicious selection of cases and controls typically provides a much more
efficient study design for gene identification since most of the information and statistical power
is provided by individuals in the tails of the distribution [22].

Of relevance to this study, novel statistical methodology has recently been developed to
simultaneously test for linkage and LD in datasets that include variable pedigree structures
(affected sibling pair families, singleton families with case-parent triads and/or discordant
sibling pairs) as well as unrelated cases and controls [1]. If it is financially feasible to genotype
such datasets with SNP panels of sufficiently high density to detect association signals due to
LD with untyped susceptibility loci, this methodology is very promising and appears to be
statistically powerful [23]. In the presence of financial constraints, however, we believe that
the two-stage linkage and association analysis approach evaluated here continues to be of great
practical importance.
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Appendix

Appendix
Let Z1, Z2 denote the affection status for sibling one and two in a pedigree, with values 1 for
affected and 0 for unaffected siblings. Let ζ1, ζ2 denote the sibling covariate vectors, whose
components may include X1, X2 as genotypes at the disease susceptibility locus (with alleles
A and a and covariate coding according to an assumed inheritance model), Y1, Y2 as continuous
covariates, and product terms X1Y1, X2Y2 for GxE interaction. The vectors may include all of
these terms or some subset of them, depending on the simulation model.

The sibling recurrence risk ratio λs is defined as follows:
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where P(ζ1, ζ2) is the joint probability function of the sibling covariates and the disease
probabilities are functions of the β parameters in the logistic regression model equation (1),
the disease prevalence K and the frequency p of the susceptibility allele A:

β0 is determined as the solution to the equation

Table A1 shows the joint genotype probabilities for a bi-allelic susceptibility locus for the two
siblings.

1. For Model 1 (QTL), let Y1, Y2 denote the continuous covariates for the two siblings. To put
boundaries on the simulated covariate values and associated risk increases, we need a
mechanism to define the one-unit increase in covariate values to which OR(E) = exp(β2) from
equation (1) applies. Let ρ1 denote the proportion proportion of the population at the reference
level (baseline risk), with a SIMLA default of 0.0228 [7] that can be modified by the user. Let
θ1 denote the corresponding percentile of the mixture normal distribution defined by the three
genotype-specific normal distributions and the QTL allele frequency, i.e., P(T ≤ θ1) = ρ1 with
T being a random variable following the mixture normal distribution. The SIMLA default is
to assume that the same proportion of the population experiences the maximum possible risk
increase, i.e. P(T ≥ π) = ρ1. Individuals with originally simulated covariate values y1 ≤ θ1 are
assigned the value 0, and individuals with originally simulated covariate values y1 ≥ π are
assigned the value ymax, which is determined by the algorithm as P(T ≥ ymax) = ρ1/2. Finally,
ρ2 is the proportion of the population with at least a one-unit increase in covariate values, with
θ2 denoting the corresponding percentile of the mixture normal distribution, i.e., P(T ≥ θ2) =
ρ2. For example, if θ2 is specified as the 80th percentile, 20% of the population have a risk
increase of at least exp(β2), compared to the baseline risk. In summary, we have

and analogously for Y2. We assume that sibling phenotypes are conditionally independent,
given QTL genotypes and corresponding realized covariate (trait) values. If X1, X2 denote the
QTL genotypes for sibling one and two and f denotes the normal distribution density function,
the formula for λs is:
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2. For Model 2 (GxE interaction), the derivation is similar to Model 1, except that there is only
a single normal covariate distribution and the percentiles of interest can be calculated from the
standard normal distribution. Thus, the formula for λs is:

In this model, it is possible to incorporate sibling correlations of environmental covariates, in
addition to the genotype correlations due to Mendelian inheritance.

3. For Model 3 (heterogeneity), the calculations are simpler since only a main genetic effect
is assumed to exist and no integration over the continuous covariate (trait) distribution is
necessary. Thus, the formula for λs is:

Table A1
Joint genotype probabilities for two siblings

X1 X2 P(X1, X2)

AA AA 0.25 p2 (1 + p)2

AA Aa 0.5 p2 (1 − p2)

AA aa 0.25 p2 (1 − p)2

Aa AA 0.5 p2 (1 − p2)

Aa Aa p(1 − p)(1 + p(1 − p))

Aa aa p(1 − p)2(1 − 0.5 p)

aa AA 0.25 p2 (1 − p)2

aa Aa p(1 − p)2(1 − 0.5 p)

aa aa (1 − p)2(1 − 0.5 p)2

p is the population frequency of disease susceptibility allele A.
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Fig. 1.
Power of Design A (all probands), B (probands from families with NPL ≥0) and C (probands
from OSA-identified family subset) for Model 1 from table 1 (QTL). Power was defined as
the proportion of replicates in which the associated SNP252 met the design-specific linkage
threshold, had the smallest case-control association p value of the 101 markers analyzed by
logistic regression, and met a Bonferroni correction for multiple testing. α: Proportion of linked
families; r2: linkage disequilibrium between SNP252 and the QTL.
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Fig. 2.
Power of Design A (all probands), B (probands from families with NPL ≥0) and C (probands
from OSA-identified family subset) for Model 2 from table 1 (GxE). Power was defined as the
proportion of replicates in which the associated SNP252 met the design-specific linkage
threshold, had the smallest case-control association p value of the 101 markers analyzed by
logistic regression, and met a Bonferroni correction for multiple testing. α: Proportion of linked
families; r2: linkage disequilibrium between SNP252 and the DSL.
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Fig. 3.
Power of Design A (all probands), B (probands from families with NPL ≥0) and C (probands
from OSA-identified family subset) for Model 3 from table 1 (heterogeneity). Power was
defined as the proportion of replicates in which the associated SNP252 met the design-specific
linkage threshold, had the smallest case-control association p value of the 101 markers analyzed
by logistic regression, and met a Bonferroni correction for multiple testing. α: Proportion of
linked families; r2: linkage disequilibrium between SNP252 and the DSL.
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