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Summary

Many methods have been recently proposed for efficient analysis of case–control studies of gene-

environment interactions using a retrospective likelihood framework that exploits the natural 

assumption of gene-environment independence in the underlying population. However, for 

polygenic modeling of gene-environment interactions, a topic of increasing scientific interest, 

applications of retrospective methods have been limited due to a requirement in the literature for 

parametric modeling of the distribution of the genetic factors. We propose a general, 

computationally simple, semiparametric method for analysis of case–control studies that allows 

exploitation of the assumption of gene–environment independence without any further parametric 

modeling assumptions about the marginal distributions of any of the two sets of factors. The 

method relies on the key observation that an underlying efficient profile likelihood depends on the 

distribution of genetic factors only through certain expectation terms that can be evaluated 

empirically. We develop asymptotic inferential theory for the estimator and evaluate numerical 

performance using simulation studies. An application of the method is presented.
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1. Introduction

Recent genome-wide association studies indicate that complex diseases, such as cancers, 

diabetes and heart diseases, are in general extremely polygenic (Chatterjee et al., 2016; 

Fuchsberger et al., 2016). Genetic predisposition to a single disease may involve thousands 

of genetic variants, each of which may have a very small effect individually, but in 

combination they can explain substantial variation in risk in the underlying population. As 

discoveries from genome-wide association studies continue to enhance understanding of 

complex diseases, in the future, it will be critical to understand how these genetic factors 

interact with environmental risk factors for both understanding disease mechanisms and 

developing public health strategies for disease prevention.

Because of its sampling efficiency, the case–control design is widely popular for conducting 

studies of genetic associations and gene–environment interactions. A variety of analytic 

methods have been proposed to increase the efficiency of analysis of case–control data for 

studies of gene–environment interactions by exploiting an assumption of gene–environment 

independence in the underlying population. It has been shown that under the assumptions of 

gene–environment independence and rare disease, the interaction odds-ratio parameters of a 

logistic regression model can efficiently be estimated based on cases alone (Piegorsch et al., 

1994). A general logistic regression model can be fit to case–control data under the gene–

environment independence assumption using a log-linear modeling framework (Umbach & 

Weinberg, 1997) or a semiparametric retrospective profile likelihood framework (Chatterjee 

& Carroll, 2005). More recently, the assumption of gene–environment independence has 

been exploited to propose a variety of powerful hypothesis testing methods for conducting 

genome-wide scans of gene–environment interactions (Murcray et al., 2009; Mukherjee & 

Chatterjee, 2008; Han et al., 2015; Mukherjee et al., 2012; Gauderman et al., 2013; Hsu et 

al., 2012).

We consider developing methods for efficient analysis of case–control studies for modeling 

gene–environment interactions involving multiple genetic variants simultaneously. To 

develop parsimonious models for joint effects, many studies have recently focused on 

developing models for gene–environment interactions using underlying polygenic risk 

scores that could be defined by all known genetic variants associated with the diseases 

(Meigs et al., 2008; Wacholder et al., 2010; Dudbridge, 2013; Chatterjee et al., 2013, 2016). 

Further, for obtaining improved biological insights and for enhancing statistical power for 

detection, it may often be desired to model gene–environment interactions using multiple 

variants within genomic regions or/and biologic pathways (Chatterjee et al., 2006; Jiao et al., 

2013; Lin et al., 2013, 2015). In standard prospective logistic regression analysis, which 

conditions on both the genetic and environmental risk factor status of the individuals, 

handling multiple genetic variants is relatively straightforward. In contrast, with 
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retrospective methods, which aim to exploit the assumption of gene–environment 

independence, the task becomes complicated because all currently existing methods require 

parametric modeling of the distribution of the genetic or environmental variables.

We propose computationally simple methodology for fitting general logistic regression 

models to case–control data under the assumption of gene–environment independence, but 

without requiring any further modeling assumptions about the distributions of the genetic or 

environmental variables. We extend the Chatterjee–Carroll profile likelihood framework, 

which originally considered modeling gene–environment interactions using single genetic 

variants for which genotype status could be specified using parametric multinomial models. 

The new method relies on the observation that the profile likelihood itself can be estimated 

based on an empirical genotype distribution that is estimable from a case–control sample. 

We develop the asymptotic theory of the resulting estimator under a semiparametric 

inferential framework. Simulations and an example illustrate the properties of the new 

methodology.

2. Model, Method and Theory

2·1. Background, model and method

In the following, we use notation similar to that of Chatterjee & Carroll (2005). We will 

denote disease status, genetic information and environmental risk factors by D, G and X, 

respectively. Here G may correspond to a complex multivariate genotype associated with 

multiple genetic variants or a continuous polygenic risk score that is defined a priori based 

on known associations of the genetic variants with the disease. We assume the risk of the 

disease given genetic and environmental factors in the underlying population can be 

specified using a model of the form

(1)

where H(x) = {1 + exp(−x)}−1 is the logistic distribution function and m(G, X, β) is a 

parametrically specified function that defines a model for the joint effect of G and X on the 

logistic-risk scale. The goal of the gene–environment interaction study is to make inference 

on the parameters β in (1), including interaction parameters.

Let F(G, X) denote the joint distribution of G and X in the underlying population. The key 

assumption that genetic, G, and environmental factors, X, are independently distributed in 

the underlying population can be mathematically stated as

where FG and FX denote the underlying marginal distributions of G and X, respectively. In 

the Supplementary Material we discuss how to weaken this assumption by suitable 
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conditioning on additional stratification factors. In contrast to the existing literature, here we 

assume that the marginal distributions FG(G) and FX(X) are both completely unspecified.

We consider a population-based case–control study, in which (G, X) are sampled 

independently from those with the disease, called cases, and those without the disease, 

called controls. Suppose there are n1 cases and n0 controls. Standard prospective logistic 

regression analysis, which is equivalent to maximum likelihood estimation when F(G, X) is 

allowed to be completely unspecified, yields consistent estimates of β (Prentice & Pyke, 

1979).

The retrospective likelihood is the probability of observing the genetic and environmental 

variables, given the subject’s disease status. Under gene–environment independence in the 

underlying population, the retrospective likelihood is

Let fG(·) and fX(·) represent the density/mass functions of G and X, respectively. The 

retrospective likelihood is

(2)

Chatterjee & Carroll (2005) profiled out fX(·) by treating it as discrete on the set of distinct 

observed values (x1, . . . , xm) of X with probabilities δi = pr(X = xi), and then maximized 

(2) over (δ1, . . . , δm), leading eventually to the semiparametric profile likelihood described 

as follows. Define κ = α0 + log(n1/n0) − log(π1/π0), where π1 = 1 − π0 = pr(D = 1) is 

defined as the probability of the disease in the underlying population. Define Ω = (κ, βT)T. 

Also define

Then, with this notation, the semiparametric profile likelihood is

(3)

While the representation in (3) does not involve the unknown density of X, it does involve 

the unknown density of G. This is a major reason that the current literature specifies a 

parametric distribution for G. Our task in this paper is to dispense with the need to give a 

parametric form for the distribution function of G, so that analysis can be performed with 
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respect to potentially complex multivariate genotype data for which parametric modeling 

can be difficult and cumbersome.

Here is our key insight, which we discuss first in the context that π1 is known or at least can 

be estimated well. For case–control studies that are conducted within well defined 

populations, relevant probabilities of the disease can be ascertained based on population-

based disease registries. When case–control studies are conducted by sampling of subjects 

within a larger cohort study, the probability of the disease in the underlying population can 

be estimated using the disease incidence rate observed in the cohort.

Our key insight in treating the distribution of G as nonparametric concerns the term in the 

denominator of (3), defined as

This is simply the expectation, in the source population, of . That is, 

, where the subscript pop emphasizes that the 

expectation is in the source population, not the case–control study. However, crucially,

(4)

Of course, R(x, Ω) is unknown, but we estimate it unbiasedly and nonparametrically by

(5)

In the Supplementary Material, we show that R̂(x, Ω) is an unbiased estimate of R(x, Ω), that 

is n1/2-consistent, and that it is asymptotically normally distributed.

Ignoring the leading term fG(G) in (3), which is not estimated, and taking logarithms, leads 

us to an estimated loglikelihood in Ω across the data as

(6)

Define SΩ(d, g, x, Ω) = ∂S(d, g, x, Ω)/∂Ω and similarly for R̂Ω(x, Ω). Then the estimated 

score function, a type of estimated estimating equation, is
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(7)

Define

which is the profile loglikelihood score function when the distribution of G is known. Since 

the profile loglikelihood score of Chatterjee & Carroll (2005) would have mean zero if the 

distribution of G were known, it follows that

(8)

where the expectation in (8) is taken in the case–control study, not in the source population. 

Thus, since R̂(x, Ω) and R̂Ω(x, Ω) converge in probability to R(x, Ω) and RΩ(x, Ω), 

respectively, a consistent estimate of Ω can be obtained by solving 𝒮̂
n(Ω) = 0. This estimate 

Ω̂, which maximizes the semiparametric pseudolikelihood (6), will be referred to as the 

semiparametric pseudolikelihood estimator.

2·2. Rare diseases when π1 is unknown

When the probability of disease in the source population is unknown, one can invoke a rare 

disease assumption which is often reasonable for case–control studies (Piegorsch et al., 

1994; Modan et al., 2001; Epstein & Satten, 2003; Lin & Zeng, 2006; Kwee et al., 2007; 

Zhao et al., 2003). If we assume that π1 ≈ 0, then S(d, g, x, Ω) ≈ exp[d{κ + m(g, x, β}], and 

the expectation involved in calculation of R(X, Ω) can be evaluated based on the sample of 

controls, with D = 0, only. In this case, the estimates of Ω converge not to Ω itself, but 

instead to Ω*, the solution to (8) with π1 = 0. Typically, except when the sample size is very 

large and hence standard errors are unusually small, the small possible bias of the rare 

disease approximation is of little consequence and coverage probabilities of confidence 

intervals remain near nominal, see §3 for examples. The asymptotic theory of §2·3 below is 

then unchanged.

In the Supplementary Material, we show that the score and the Hessian take on simple forms 

in this case, and that the Hessian is negative semidefinite. Computation is thus very efficient.

2·3. Asymptotic theory

To state the asymptotic results, we first make the definitions
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In addition, define cd = nd/n, Zi = (Di, Gi, Xi), P1(Xi, Ω) = 1/R(Xi, Ω) and P2(Xi, Ω) = RΩ(Xi, 

Ω)/R2(Xi, Ω).

We use the notational convention that for arbitrary functions (P, T), TE(r, d, x) = E{T(r, G, 

x) | D = d}. Also, we use the convention that

Define

Finally, define ζ*(Zi, Ω) = ζ(Zi, Ω) − E{ζ(Z, Ω) | D = Di}.

Theorem 1—Suppose nd/n → cd, where 0 < cd < ∞, and that π1 is known. Then

(9)

Thus, since the Zi are independent and E{ζ*(Z, Ω) | Di} = 0, as n → ∞, in distribution,

In §2·2, when π1 is unknown and the disease is relatively rare, the same result holds by 

setting π1 = 0.

3. Simulations

3·1. Overview

In our simulations, m(G, X, β) = GTβG + XβX + (GX)TβGX and the value of X is binary 

with population frequency 0.5. There are either three or five correlated single nucleotide 
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polymorphisms within a region: we report the latter case, but the results for the former are 

similar. Each single nucleotide polymorphism takes on the values 0, 1 or 2 following a 

trinomial distribution that follows Hardy–Weinberg equilibrium, i.e., the jth component of G 

equals 0, 1, 2 with probabilities {(1 − pj)2, 2pj(1 − pj), }. The values of the pj are described 

below.

To generate correlation among the single nucleotide polymorphisms, we first generated a 3 

or 5-variate multivariate normal variate, each with mean 0 and standard deviation 1, and a 

correlation matrix with correlation between the jth and kth component = ρ|j−k|, where ρ = 

0.7. After generating these random variables, we trichotomized them with appropriate 

thresholds so that frequency of 0, 1 and 2 matched those specified by the allele frequency pj 

and Hardy–Weinberg equilibrium.

In both simulations, the logistic intercept α0 was chosen so that the population disease rate 

π1 = 0.03. However additional simulations with π1 = 0.01 yielded very similar results with 

regards to coverage, efficiency gains, and unbiasedness. See also §3·3 for a discussion of 

additional simulations, and the Supplementary Material. In the simulation reported here, (p1, 

p2, p3, p4, p5) = (0.1, 0.3, 0.3, 0.3, 0.1), βX = log(1.5), βG = {log(1.2), log(1.2), 0.0, log(1.2), 

0.0}, and βGX = {log(1.3), 0.0, 0.0, log(1.3), 0.0}. Here the value of α0 = −4.14.

3·2. Results

The standard error estimators used in our simulation were based on the asymptotic theory 

described in Theorem 1: we also used the bootstrap, with very similar results. The 

appropriate bootstrap in a case–control study is to resample the cases and controls 

separately, thus maintaining the sample sizes for each.

The simulation results are presented in Table 1. Our semiparametric pseudolikelihood 

estimator has little bias and coverage percentages near the nominal level. Both with a rare 

disease approximation and with π1 known, our semiparametric pseudolikelihood estimator 

achieves approximately a 25% increase in mean squared error efficiency over ordinary 

logistic regression for the main effects in both G and X.

Strikingly, the mean squared error efficiency of our semiparametric pseudolikelihood 

estimators compared to ordinary logistic regression is approximately 2.00 for all the 

interaction terms, thus demonstrating that our methods, which do not model the distribution 

of either G or X, achieve numerically significant increases in efficiency.

3·3. Additional simulations

The Supplementary Material presents a series of additional simulations. These include the 

results of a simulation to evaluate the robustness of our method to misspecification of the 

population disease rate, where we found a surprising robustness to disease rate 

misspecification. Additionally, there are simulations to examine the robustness of our 

method to violations of the gene–environment independence assumption. Those simulation 

studies show that there will be bias in the estimate of gene–environment interaction 

parameters for the specific single nucleotide polymorphisms under violation of gene–
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environment independence, but average mean square error for parameter estimates across all 

the different single nucleotide polymorphisms could be still substantially lower than that 

obtained from prospective logistic regression analysis. We also show there how to remove 

this bias when G and E are independent conditional on a discrete stratification variable. 

Mukherjee & Chatterjee (2008) and Chen et al. (2009) show how to use empirical-Bayes 

methods to provide additional robustness to violations of the gene–environment 

independence assumption.

4. Data Analysis

In this section, we apply our methodology to a case–control study for breast cancer arising 

from a large prospective cohort at the National Cancer Institute: the Prostate, Lung, 

Colorectal and Ovarian cancer screening trial (Canzian et al., 2010). The design of this study 

is described in detail by Prorok et al. (2000) and Hayes et al. (2000). The cohort data 

consisted of 622, 449 women, of whom 3.56% developed breast cancer (Pfeiffer et al., 

2013). The case–control study analyzed here consists of 753 controls and 658 cases. 

Although π1 is known in this population, we analyze the data both with π1 known and with 

π1 unknown but with a rare disease approximation.

We had data available on genotypes for 21 single nucleotide polymorphisms that have been 

previously associated with breast cancer based on large genome-wide association studies. 

The polygenic risk score was defined by a weighted combination of the genotypes, with the 

weights defined by log-odds-ratio coefficients reported in prior studies. We examined the 

interaction of the polygenic risk score with age at menarche (X), a known risk factor for 

breast cancer, defined as the binary indicator of whether the age at menarche exceeds 13 or 

not. We also adjust the model for age as a continuous variable, denoted here as Z, so that the 

model fitted is

(10)

Results in which age was categorized as < 35, 35–40, 40–45,. . . ,> 75 were similar.

We also performed analyses to check the gene–environment independence assumption. 

Since X is binary, we ran a t-test of the polygenic risk score against the levels of X, of course 

among the controls only. The p-value was 0.91, indicating almost no genetic effect. We also 

ran chisquared tests for the 21 individual genes, finding no significant association after 

controlling the false discovery rate: the minimum q–value was 0.09. We also checked for 

correlation, known as linkage disequilibrium, between the 21 loci used to create the 

polygenic risk score and 32 loci that are known to influence age at menarche (Elks et al., 

2010). The data available to us do not have the necessary information to analyze linkage 

disequilibrium between the two sets of loci.

Using phased haplotypes from subjects of European descent from 1000 Genomes (The 1000 

Genomes Project Consortium, 2015) and HapMap (Gibbs et al., 2003), no evidence of 

linkage disequilibrium was found: the maximum R2 was 0.1 and the minimum q–value was 
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0.85. Finally, a 2014 study examined the relationship between age at menarche and 10 of the 

21 SNPs used to create our polygenic risk score, none of which were found to influence age 

at menarche (Andersen et al., 2014).

Table 2 presents the results for the cases that π1 is unknown and known, respectively: as 

remarked upon previously, the results are very similar. To provide a basis for comparison 

because of the very different scales of the variables, the variable age at baseline was 

standardized to have mean zero and standard deviation one. In addition, we standardized 

some of the coefficient estimates so that βG was multiplied by the standard deviation of the 

polygenic risk score, and βGX was multiplied by the standard deviation of X times the 

polygenic risk score.

As expected from the known association of the single nucleotide polymorphisms with risk of 

breast cancer, the polygenic risk score was strongly associated with breast cancer status of 

the women in the study. Standard logistic regression analysis reveals some evidence for 

interaction of the polygenic risk score with age-at-menarche, but the result was not 

statistically significant at the 0.05 level. When the analysis was done under the gene–

environment independence assumption, the evidence of interaction appeared to be stronger.

The coefficient estimate for the interaction term is slightly larger for our semipara-metric 

methods than that for logistic regression. Also, the asymptotic standard error estimate of 

logistic regression is approximately 23% larger than our methods, indicating a variance 

increase of ≈ 50%. Although not listed here, the bootstrap mentioned in §3·2 has very 

similar standard error estimates. In that bootstrap, 33% of the time, the logistic interaction 

estimate was actually greater than that of the disease rate known estimate.

5. Discussion and Extensions

We have proposed a general method for using retrospective likelihoods for studying gene–

environment interactions involving multiple markers, a method that does not require any 

distributional assumption of the multivariate genotype distribution. Sometimes, one may 

consider modeling multi–marker gene–environment interactions using an underlying 

polygenic risk score, which is a weighted combination of numerous genetic markers where 

the weights are pre-determined from previous association studies. In such situations, the 

polygenic risk score might be assumed to follow approximately a normal distribution in the 

underlying population and the profile likelihood method of Chatterjee & Carroll (2005) can 

be used with appropriate modification by replacing the parametric multinomial distribution 

for a single nucleotide polymorphism genotype by a parametric normal distribution for the 

polygenic risk score, see also Chen et al. (2008) and Lin & Zeng (2009). In general, 

however, when an investigator desires to explore complex models for multivariate gene–

environment interactions retaining separate parameters for distinct single nucleotide 

polymorphisms or for distinct genetic profiles defined by combinations of correlated single 

nucleotide polymorphisms, then one cannot avoid dealing with complex multivariate 

genotype distributions, something that is not easy to specify through parametric models.
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Our methods are types of semiparametric plug-in estimators, and thus have certain features 

in common with the work of Newey (1994), namely that the profile likelihood has the 

nonparametric component R(x, Ω) in (4) that is estimated by (5). Generally, however, such 

plug-in estimators are not semiparametric efficient. We believe it will be possible to create 

an efficient semiparametric estimator by modifying the work of Ma (2010): we are exploring 

this and its computational aspects, which may be daunting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2

Results of the analysis of the Prostate, Lung, Colorectal and Ovarian cancer screening trial data

βZ βG βX βGX

Logistic

 Estimate 0.018 0.297 0.165 0.124

 std err 0.054 0.064 0.132 0.068

 p–value 7.45 × 10−1 3.19 × 10−6 2.10 × 10−1 6.87 × 10−2

SPMLE, Rare

 Estimate 0.024 0.321 0.175 0.138

 std err (asymptotic) 0.054 0.067 0.134 0.055

 p–value (asymptotic) 6.60 × 10−1 1.62 × 10−6 1.91 × 10−1 1.16 × 10−2

SPMLE, π1 known

 Estimate 0.022 0.313 0.174 0.141

 std err (asymptotic) 0.054 0.065 0.133 0.055

 p–value (asymptotic) 6.78 ×10−1 1.64 × 10−6 1.93 × 10−1 1.13 × 10−2

Logistic is ordinary logistic regression; SPMLE, Rare is our method using the rare disease approximation with unknown π1; SPMLE, π1 known is 

our method when the disease rate is known in the source population (π1 = 3.56%); std err is the asymptotic standard error estimate; βZ is the main 

effect for age; βG and βX are the main effects for the polygenic risk score (G) and the environmental variable X (age at menarche > 13), 

respectively; βGX is the gene–environment interaction.
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