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Abstract

Purpose—We propose a robust treatment planning model that simultaneously considers proton 

range and patient setup uncertainties and reduces high linear energy transfer (LET) exposure in 

organs at risk (OARs) to minimize the relative biological effectiveness (RBE) dose in OARs for 

intensity-modulated proton therapy (IMPT). Our method could potentially reduce the unwanted 

damage to OARs.

Methods—We retrospectively generated plans for 10 patients including 2 prostate, 4 head and 

neck, and 4 lung cancer patients. The “worst-case robust optimization” model was applied. One 

additional term as a “biological surrogate (BS)” of OARs due to the high LET-related biological 

effects was added in the objective function. The biological surrogate was defined as the sum of the 

physical dose and extra biological effects caused by the dose-averaged LET. We generated 9 

uncertainty scenarios that considered proton range and patient setup uncertainty. Corresponding to 

each uncertainty scenario, LET was obtained by a fast LET calculation method developed in-house 

and based on Monte Carlo simulations. In each optimization iteration, the model used the worst-

case BS among all scenarios and then penalized overly high BS to organs. The model was solved 

by an efficient algorithm (limited-memory Broyden-Fletcher-Goldfarb-Shanno) in a parallel 

computing environment. Our new model was benchmarked with the conventional robust planning 

model without considering BS. Dose-volume histograms (DVHs) of the dose assuming a fixed 

RBE of 1.1 and BS for tumor and organs under nominal and uncertainty scenarios were compared 

to assess the plan quality between the two methods.

Results—For the 10 cases, our model outperformed the conventional robust model in avoidance 

of high LET in OARs. At the same time our method could achieve dose distributions and plan 

robustness of tumors assuming a fixed RBE of 1.1 almost the same as those of the conventional 

robust model.
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Conclusions—Explicitly considering LET in IMPT robust treatment planning can reduce the 

high LET to OARs and minimize the possible toxicity of high RBE dose to OARs without 

sacrificing plan quality. We believe this will allow one to design and deliver safer proton therapy.
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Intensity-Modulated Proton Therapy (IMPT); Linear Energy Transfer (LET); robust optimization; 
biological optimization

I. Introduction

Intensity-modulated proton therapy (IMPT) has the potential to enable the generation of 

high-quality treatment plans. By flexibly setting nonuniform intensities for different 

beamlets, treatment planners can achieve highly conformal dose coverage of the target and 

superior sparing of adjacent organs.1, 2

Despite its advantages, IMPT has problems arising in the stage of treatment planning and 

delivery.3 Among them, variable relative biological effectiveness (RBE) and plan robustness 

are 2 prominent issues. Because the dose deposition processes of photons and protons are 

distinct, the biological effectiveness of IMPT may differ from that of photon therapy even 

for the same physical dose. Consequently, RBE is often applied to calculate the actual 

biological effect of IMPT, with photon therapy as a reference. Currently dosimetric 

calculations use a constant RBE of 1.1. Although the use of a constant RBE was judged to 

be acceptable in passive-scattering proton therapies, this assumption resulted from the lack 

of biological input parameters and oversimplified the real situation, especially for IMPT.4–7 

The problem of determining RBE values is complex and involves various factors including 

beam radiation quality (e.g., linear energy transfer [LET]), tissue type, physical dose, and 

biological endpoint.4, 8 According to in vitro experimental results, the RBE value varies 

markedly (from 1.0 to 1.5 for IMPT) at different regions of a proton beam. Underestimation 

of RBE resulting from hot spots of the LET distribution, along with the heterogeneous 

beamlet intensities of proton beams, could lead to unforeseen complications of organs at risk 

(OARs).8, 9

Furthermore, IMPT is more sensitive to uncertainties including proton range u and patient 

setup uncertainty than photon therapy.10–13 Considering only the nominal scenario and 

neglecting these uncertainties may result in an overshoot or undershoot and may deteriorate 

the treatment quality. Various robust planning models have been proposed to consider these 

uncertainties and hedge against their negative influence.14–22 In addition, LET (thus RBE) 

also changes under different uncertainty scenarios. This poses additional challenges to 

building an effective model able to avoid high RBE doses in OARs.

In heavy ion therapy, variable RBE and incorporation of variable RBE into treatment 

planning is the norm in heavy ion therapy for decades.23–25 However, for proton therapy, it 

is relatively new. From now on, we will only focus on the variable RBE and its application 

in treatment planning in proton therapy. Previous studies about RBE in proton therapy can 

be classified into 2 categories. The first category is the measurement of variable RBE and its 

clinical impact.4,5,26,28 These experimental studies sparked the interest in applying variable 
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RBE to the IMPT planning especially recently. The second category is about mitigating the 

influence of variable RBE in treatment planning. Tilly et al26 applied an RBE correction 

method to account for variable RBE. In their work, Wilkens and Oelfke27 integrated RBE 

into the inverse treatment planning of IMPT with multiple different scanning techniques.

Several models are available to calculate RBE-weighted dose.28–32 However, because of the 

considerable uncertainties in determining the tissue-related parameters (α and β), these 

models may lead to inaccuracies in IMPT planning.28 Yet exact LET can be calculated 

through analytical methods or Monte Carlo simulations.33–37 In proton therapy, RBE values 

increase monotonically with LET, if the same dose, the same tissue, and the same biological 

endpoint are given.28, 38 Therefore LET could be used as a good surrogate for indirect RBE 

optimization to avoid the controversy to calculate RBE from LET in proton therapy.39, 40 

Several multi-stage methods have been developed recently to perform the LET-guided 

optimization (indirect RBE optimization) in IMPT treatment planning. Giantsoudi et al41 

introduced a multi-criteria optimization IMPT treatment planning system. After the initial 

base plans were obtained, a set of LET-related parameters were used to evaluate the 

biological dose distributions and combine the base plans to maximize dose-averaged LET in 

tumor targets while simultaneously minimizing dose-averaged LET in normal tissue 

structures. Fager et al42 applied split target planning method and multiple radiation fields to 

achieve higher dose-averaged LET and smaller physcial dose in tumor without changing the 

biological effectiveness. Recently, Tseung et al43 used a GPU-based simulation method to 

demonstrate the feasibility of biological planning with variable RBE.In the work of 

Unkelbach et al8, prioritized optimization methods were used for LET-guided optimization 

in IMPT treatment planning. IMPT plans were optimized first on the basis of physical doses 

only. In the second step, variable RBE were accounted for and plans were adjusted under 

certain constraints, thereby ensuring that the physical dose distribution would be minimally 

compromised.

In the aforementioned works, plan robustness under range and patient setup uncertainties 

was either neglected or implicitly dealt with by adding margins to targets. The application of 

margin or “planning target volume” method in proton therapy is still controversial since the 

dose can be distorted inside the tumor under uncertainties.1 An ideal robust planning model 

of IMPT should explicitly consider the LET and the aforementioned uncertainties together.

Therefore, in this paper we extend the LET-guided optimization methods developed in 

different groups8, 41, 44 and propose a LET-guided robust planning model that 

simultaneously considers proton range and patient setup uncertainties and spares high RBE 

in the OARs. Our model is an extension of the model in Liu et al1, which has been shown to 

be effective in dealing with uncertainties. Unlike the multi-stage optimization models 

mentioned above8, 41, 44, our model can find an optimal plan in a single stage using the 

conventional quadratic optimization. Thus our method can be easily integrated into the 

current commercial treatment planning system for proton therapy such as Eclipse™ (Varian 

Medical Systems, Palo Alta, CA). The model can minimize the high LET in OARs while 

maintaining almost the same tumor dose coverage and robustness in targets as those of the 

conventional robust model for IMPT treatment plans.
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II. Materials and Methods

II.1 Worst-case robust planning model with linear energy transfer

During IMPT, the patient receives irradiation in multiple proton beams with different 

incident angles. Each beam can be divided into thousands of beamlets and we used j as the 

index of beamlet. With  as the physical dose deposited to voxel i by beamlet j with unit 

intensity (so-called influence matrix), the physical dose of voxel i  is calculated by 

. Of note, to guarantee the non-negativity, we used  to denote the intensity of 

beamlet j. We denoted the prescription dose of tumor and allowable dose to organ as 

and .

Proton range and patient setup uncertainties can cause  to deviate from its nominal value. 

To hedge against the negative influence of uncertainties, Liu et al studied a robust model 

using the worst-case dose (i.e., maximum and minimum doses inside the tumor and 

maximum doses for normal organs assuming a fixed RBE of 1.1) in the objective function 

and penalized excessively high and low doses of tumors and high doses of organs.1, 45, 46 In 

the present work, we extended the original robust model by adding a term that took into 

account the “biological surrogate (BS)” for each voxel in the OARs, as well as its robustness 

under uncertainties.

RO(BS)

The Heavyside function  takes the value of  if 

 and 0 otherwise. For targets, we constrained only the hot and cold 

spots based on physical dose in clinical target volume (CTV). But for OARs, we added a 

new term (underlined) that aimed to restrict the high BS. Considerable controversy exists 

about how to calculate RBE from LET.8, 9, 42 And it has been reported that the RBE values 

in proton therapy increases monotonically with LET with a given endpoint, dose, and tissue 

type.47, 48 Therefore LET could be used as a good surrogate for indirect RBE optimization 

to avoid the controversy to calculate RBE from LET in proton therapy.39, 40 Therefore here 

we followed the idea proposed by Unkelbach et al.12 to use LET as a surrogate of RBE.8 

The biological surrogate  is defined as , where  is the LET of 

beamlet j in voxel i and c is a scaling parameter.8 c is set to be 0.04μm/keV following the 

suggestion from Unkelbach et al,8 which yields an RBE of 1.1 in the center of a spread-out 

Bragg peak of 5-cm modulation and 10-cm range where the dose-averaged LET is 

approximately 2.5 keV/μm. The  can also be expressed as . Therefore, 
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the  can be seen as an extra biological effect (xBD) that resulted from the dose-

averaged LET. , , , and  are the penalty weights for different terms. 

Similar to other terms, in the optimization step, the worst (maximum)  among all 

scenarios is derived. The BS larger than  is penalized in the model.

By removing the underlined term we obtained a conventional robust model that did not 

consider biological effect of LET, as proposed in Liu et al.1 Our new model, denoted by 

RO(BS), was benchmarked with this conventional model (denoted by RO). To demonstrate 

the importance of considering different LET in different scenarios, we also compared the 

new model with a benchmark that considers only nominal LET, denoted by RO(BS0). 

RO(BS0) was obtained by replacing the underlined term with 

, where  represents the BS in the nominal scenario.

II.2 Patient data and computation settings

In this exploratory study, we tested the effectiveness of our model on 10 clinical cases: 2 

prostate cancer, 4 head-and-neck cancer, and 4 lung cancer. For each case, we generated 8 

representative scenarios in addition to the nominal scenario for the proton range and patient 

setup uncertainties. The patient setup uncertainties were simulated by shifting the isocenter 

of the patient in the anteroposterior (A-P), superior-inferior (S-I), and right-left (R-L) 

directions by 3mm yielding 6 scenarios. This distance is disease-site dependent and it was 

set as 3mm in this study for demonstration purposes. Range uncertainties were simulated by 

scaling the stopping power ratios by ±3.5% to generate 2 additional scenarios. The influence 

matrix for nominal or for each of the uncertainty scenario was calculated using a treatment 

planning system developed in-house.1, 49 The calculation of LET effect (Lij) in each scenario 

was performed with an in-house fast LET calculation method based on Monte Carlo 

simulations. Computational settings are listed in Table A1.

II.3 Solution methods and plan evaluation

The new model RO(BS), the conventional robust model RO, and RO(BS0) are classified as 

unconstrained convex programming problems. The dose volume constraints can be 

implemented following the method of Wu and Mohan.50 Computation of the cases was 

completed in a parallel computation environment based on the L-BFGS (limited-memory 

Broyden-Fletcher-Goldfarb-Shanno) algorithm.51

To evaluate the quality of tumor dose distribution, we used D95%, D5%–95%, and width of the 

dose-volume histogram (DVH) band, which displayed the envelope of all DVHs of the 9 

scenarios. These 3 parameters reflect dose coverage, dose homogeneity, and plan robustness, 

respectively. To assess the protection of OARs with biological effects due to the high LET 

considered, we applied the BS-volume histogram (BSVH) or xBD-volume histogram 

(xBDVH) (a cumulative volume histogram showing the relative volume of an organ 

receiving at least a certain value of BS or xBD). The xBDVH is adopted for the graphical 

evaluation in Figure A2. For quantitative evaluation in Table 2, we chose the same indices of 

the BSVH as those of the dose DVH assuming a fixed RBE of 1.1 (e.g., V25 of rectum and 
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D1% of brain stem) since no standard is widely accepted to evaluate RBE-weighted dose. 

Please note that the absolute value of xBD and BS is not important, but rather the relative 

comparison of xBD and BS matters, which shows the better protection of OARs due to the 

smaller biological effects caused by high LET between different treatment planning 

methods.

III. Results

III.1 Tumor dose distribution assuming a fixed RBE of 1.1

Table 1 lists the results of the 10 cases. Because multiple scenarios were considered, the 

table shows the nominal value and the maximum and minimum values for D95% and 

D5%–95% among all scenarios. Band widths, which indicate plan robustness, were calculated 

as the difference between the maximum and the minimum value among all scenarios at 

D95%, D50%, and D5%. These parameter values of the new model RO(BD) and the 

conventional robust model RO are similar, and the difference is less than 1.0 Gy[RBE]. 

Figure A1 further illustrates the DVH curves on the basis of per-voxel maximum and 

minimum doses of tumor in case 2. Only a minor difference was found between the 2 plans, 

which indicates similar plan robustness of targets between the two methods.

III.2 Comparison of Biological Surrogate in OARs Using xBDVHs and BDVHs

We defined a biological surrogate as BS and extra biological effects xBD in Section II to 

represent the biological effects because of the high LET. Figure A2 shows the xBDVHs of 

OARs for the first five cases. Please note again that the absolute value of xBD and BS is not 

important, but rather the relative comparison of xBD and BS matters, which shows the better 

protection of OARs due to the smaller biological effects caused by high LET between 

different treatment planning methods. Clearly, our new model can reduce the xBD in most 

OARs for all cases although the degree of reduction varies. Table 2 summarizes the BS of 

critical organs using the same indices as those of doses assuming a fixed RBE of 1.1 under 

the uncertainty scenarios and compares results of RO, RO(BD), and RO(BD0) models. Both 

tables clearly show that the biological effects due to high LET is considerably reduced from 

our LET-guided robust optimization method.

Figure 1 further illustrates the difference of LET distributions of the RO(BS) and the RO for 

case 2 (one typical head and neck cancer patient). Figure 1(a) and 1(b) show the dose 

distribution assuming a fixed RBE of 1.1; Figure (c) and (d) show the distribution of LET. 

From Figure 1 (comparing (c) to (d)) we can see that the hot spot area of the LET 

distribution in spinal cord (with cyan contour line) is considerably reduced (highlighted by 

red circles in Figure 1(a) and (b)), while the dose distribution assuming a fixed RBE of 1.1 

in tumors is very similar (comparing (a) to (b)) (highlighted by red circles in Figure 1(a) and 

(b)).

Figure 2 shows the difference of doses assuming a fixed RBE of 1.1 between the RO(BS) 

model and the RO model, reporting the results of the plan derived from RO(BS) minus the 

results of the plan from RO. To avoid high BS in the brainstem (yellow contour), the lower 

beam confines its high-intensity beamlets within its distal half and reduces the intensity of 
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the beamlets deposited at the proximal edge of the target (red contour) when the brainstem 

(yellow contour) is proximal to the target. However, beamlet intensities in the upper beam 

parallel to the organ will increase to compensate the physical dose in the target, which leads 

to an increased physical dose in the red area.

III.3 Effect of considering varying LETs in different uncertainty scenarios

To demonstrate the importance of considering LET under different uncertainty scenarios, we 

include results from the RO(BS0) model in Table 2. By comparing the results of the 3 

models, we find that both RO(BS) and RO(BS0) can drastically reduce the BS. Generally, 

after including varying LETs in different uncertainty scenarios, the BS can be decreased 

further. Several exceptions exist - nominal V25 of rectum and worst-case V25 of bladder in 

case 1 and 6 and nominal and worst-case D33% of esophagus in case 5. The decrease is not 

obvious when the dose value is already small in the conventional RO models.

IV. Discussion

As we have emphasized in the Introduction, LET could be used as a good surrogate for 

indirect RBE optimization to avoid the controversy to calculate RBE from LET in proton 

therapy.39, 40 One may argue that the formula proposed by Unkelbach et al.40 and used in 

this work can also be considered as a RBE model, which only includes LET information. 

However, the aim of this work is to implement a robust optimization method for IMPT to 

reduce high LET in OARs at no or littile cost of plan quality and plan robustness of targets. 

It is certainly not our intention in this work to propose a new RBE model and demonstrate 

its validity.

The LET is usually ignored in IMPT planning and high LET may lead to high risk of 

complications in OARs. Our new model simultaneously considers LET and the proton range 

and patient setup uncertainties so that toxic doses to organs can be minimized and tumors 

are still adequately covered in the face of uncertainties. On the basis of the dose-averaged 

LET, we defined a biological surrogate due to high LET following Unkelbach et al8 and 

added a term penalizing high BS of each OAR into the IMPT robust planning model of Liu 

et al.1 The new model was easy to implement and solve. All cases can be solved efficiently 

in a parallel computing environment.

The major concern is that introduction of new terms will compromise the tumor physical 

dose distribution in the original model. We investigated the influence of new terms 

introduced to control the distribution of LET in OARs on the quality of tumor dose 

distribution (Table 1 and Figure A1). We found that the tumor physical dose distribution 

from our new model was almost the same as from the conventional robust model. The 

robustness of tumor dose distribution was not compromised. Reduction in the BD does little 

in sacrificing the quality of tumor physical dose distribution. As demonstrated by Table 1, 

the nominal D95% change (nominal D95% of the RO model minus that of the RO(BD) model 

as shown as (mean [min, max])) were (0.08 [−0.1, 0.3]) Gy[RBE] and the nominal D5%–

D95% change as shown as (mean [min, max]) were (−0.16[−0.5, 0]) Gy[RBE]. For 

robustness, the band width changes at D95% as shown as (mean [min, max]) were −0.21 

[−0.6, 0.1]) Gy[RBE].
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Our new model drastically reduces the xBD because of the high LET and hence provides 

better overall protection to normal organs than the conventional model (Figure A2). This 

result is achieved primarily by reducing the mean value of xBD rather than the maximum 

xBD. For all cases, the middle part of the curve dropped notably while the maximums of 

curves varied little. This might be important for the sparing of some important parallel 

organs such as parotids, oral cavity, total lung etc. The RO(BS) model and RO(BS0) models 

can both greatly reduce the BS (Table 2). This reduction is more obvious in organs receiving 

a large BS (>1.0Gy[RBE]) under the RO planning, such as the brain stem of case 3, the cord 

of case 2, and the brain of case 8. The improved distribution of BS can decrease a patient’s 

potential risk of organ complication.

Our RO(BS) model better protects organs against high BS (Figure 2). Previous studies found 

that the LET increased exponentially at the end of range (at and beyond the Bragg peak).6 

Therefore, among various degenerate robust solutions, our RO(BS) model is able to find the 

one that reduces the intensities of beamlets deposited at the proximal edge of tumors and 

confines the high-intensity beamlets within its distal half. This decreases the high LET 

exposure in organs proximal to tumors. This observation is consistent with Grasssberger et 

al.6 At the same time, to compensate the physical dose in the tumor, a beam parallel to 

critical structures will increase intensities of its beamlets in the target. This will further 

reduce high LET in critical organs since the lateral falloff of a beamlet has much lower LET 

compared to the distal falloff.

In this study, we explored the effect of different LETs under different uncertainty scenarios. 

Compared with RO(BS0) which includes only the LET in nominal scenario, the new model 

RO(BS) can further reduce the BS in critical organs since it proactively hedges against the 

influence of varying LET for different uncertainty scenarios at the planning stage. Some 

exceptions are observed, such as the nominal V25 of rectum in case 1 and 6 and nominal and 

worst-case D33% of esophagus in case 5. These exceptions can be explained by the fact that 

in particular challenging cases, achievement of a good protection level of one organ is 

contradictory with that of the other organ; hence, some organs have to be compromised.

The RO(BS) model is less effective in controlling maximum xBD. This problem could be 

solved by explicitly adding constraints, which can be implemented by following the 

techniques of Wu and Mohan.50 Another alternative method is to modify the beam direction. 

However, incorporating new constraints or beam angle selection into treatment planning 

model increases the computational complexity.

V. Conclusion

In this work, we simultaneously included variable LET and the proton range and patient 

setup uncertainties into the robust IMPT planning. The plans obtained from the model were 

able to hedge against high LET and maintain adequate tumor coverage in the face of 

uncertainties. Effectively, our new model could minimize adverse consequences of the high 

LET exposure in OARs.
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Appendix

Figure A1. 
Comparison of DVH curves generated by the per-voxel maximum (red) and minimum (blue) 

l doses of tumor assuming a fixed RBE of 1.1 derived from the models with and without BS 
terms for the head-and-neck cancer case. The new model RO(BS) is represented by solid 

curves and the conventional model RO by dashed curves. The difference between the DVH 

curves generated by the per-voxel maximum and minimum doses of tumor indicates plan 

robustness. The difference of plan quality and plan robustness is only minor between the 2 

models.
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Figure A2. 
The xBD-volume histograms of the cases 1–5 (in the nominal scenario) for RO (dashed 

Line) and RO(BS) (solid Line), respectively. The curves from our new robust model RO(BS) 

were drawn as solid lines and ones from the conventional model RO as dashed lines. The RO 

model can reduce xBD, although the degree of reduction varies from patient to patient and 

organ to organ.

Table A1

Parameter Values for the 10 Cases.

Case Tumor Type Beam Voxels Case Tumor Type Beam Voxels

1 Prostate

1: 2,796 CTV: 303

6 Prostate

1: 4,608 CTV: 967

2: 2,788 Bladder: 651 2: 4,048 Bladder: 2,776

Rectum: 1,545 Rectum: 1,373

2 Head and neck

1: 5,988 CTV: 991

7 Head and neck

1: 2,378 CTV: 415

2: 6,168 Brain stem: 216 2: 3,664 Brain stem: 222

3: 6,582 Cord: 157 3: 3,748 Brain: 10,751

Oral cavity: 1,608 Cord: 50

3 Head and neck

1: 18,478 CTV: 1,087

8 Head and neck

1: 11,374 CTV: 3,786

2: 14,060 Oral cavity: 1,077 2: 11,868 Cord: 228

Cord: 188 3: 2,478 Brain stem: 231

Brain stem: 195 4: 4,616 Brain: 13,066

Brain: 12,364
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Case Tumor Type Beam Voxels Case Tumor Type Beam Voxels

4 Lung

1: 5,394 GTV: 827

9 Lung

1: 8,662 ITV: 1,123

2: 7,490 Cord: 309 2: 4,952 Esophagus: 379

Esophagus: 388 3: 5,498 Heart: 7,085

Heart: 4,761 Lung: 24,394

Lung: 20,546

5 Lung

1: 6,780 ITV: 1,155

10 Lung

1: 31,756 CTV: 661

2: 6,810 Lung: 26,173 2: 37,216 Lung: 5,489

3: 7,026 Heart: 5,291 Heart: 695

Esophagus: 387 Esophagus: 50

Abbreviations: CTV, clinical target volume; GTV, gross tumor volume; ITV, internal target volume.
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Figure 1. 
Comparison of dose distribution assuming a fixed RBE of 1.1 (top row) and LET 

distribution (bottom row) for case 2 in the nominal scenario. (a) and (b):distribution of dose 

assuming a fixed RBE of 1.1. (c) and (d):distribution of the LET (unit: kev/μm). (a) and (c) 

are the results from the conventional model RO; (b) and (d) are the results from our new 

model RO(BS). Clinical target volume (CTV) and spinal cord are contoured by orange and 

cyan lines, respectively. In RO(BS), the high LET distribution in spinal cord (comparing (c) 
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and (d)) is considerably reduced, while the physical dose distribution of the tumor is very 

similar.
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Figure 2. 
Difference of Doses from the Results of the Plan Derived from the RO(BS) Model Minus the 

results of the plan Derived from the RO Model assuming a fixed RBE of 1.1. A 

representative transverse slice of case 2 under nominal scenario is shown. For 2 beams with 

their directions indicated by white arrows, the RO(BS) model clearly will reduce the 

intensity of beamlets of the lower beam deposited at the proximal edge of the target (red 

contour) when brainstem (yellow contour) is proximal to the target. This effect will lead to 

an decrease of physical dose (blue area) from the RO(BS) model compared with the RO 

model. Correspondingly, the beamlet intensities in the upper beam parallel to the brain stem 

will increase to compensate the physical dose in the target. This causes an increase of the 

physical dose in the red area.
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