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Abstract

Objective—Immunosuppressant therapy plays a pivotal role in transplant success and longevity. 

Tacrolimus, a primary immunosuppressive agent, is well known to exhibit significant 

pharmacological interpatient and intrapatient variability. This variability necessitates the collection 

of serial trough concentrations to ensure that the drug remains within therapeutic range. The 

objective of this study was to build a population pharmacokinetic (PK) model and use it to 

determine the minimum number of trough samples needed to guide the prediction of an 

individual’s future concentrations.

Design, setting and patients—Retrospective data from 48 children who received tacrolimus 

as inpatients at Primary Children’s Hospital in Salt Lake City, Utah were included in the study. 

Data were collected within the first 6 weeks after heart transplant.
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Outcome measures—Data analysis used population PK modelling techniques in NONMEM. 

Predictive ability of the model was determined using median prediction error (MPE, a measure of 

bias) and median absolute prediction error (MAPE, a measure of accuracy). Of the 48 children in 

the study, 30 were used in the model building dataset, and 18 in the model validation dataset.

Results—Concentrations ranged between 1.5 and 37.7 μg/L across all collected data, with only 

40% of those concentrations falling within the targeted concentration range (12 to 16 μg/L). The 

final population PK model contained the impact of age (on volume), creatinine clearance (on 

elimination rate) and fluconazole use (on elimination rate) as covariates. Our analysis 

demonstrated that as few as three concentrations could be used to predict future concentrations, 

with negligible bias (MPE (95% CI)=0.10% (−2.9% to 3.7%)) and good accuracy (MAPE (95% 

CI)=24.1% (19.7% to 27.7%)).

Conclusions—The use of PK in dose guidance has the potential to provide significant benefits 

to clinical care, including dose optimisation during the early stages of therapy, and the potential to 

limit the need for frequent drug monitoring.

INTRODUCTION

Heart transplantation is an accepted therapeutic option for children with congenital heart 

disease and cardiomyopathy. More than 400 heart transplants are performed annually in 

children across the USA with improving outcomes in recent decades, though mortality from 

rejection, infection and coronary vasculopathy remains significant.12 Transplant survival in 

excess of 20 years following heart transplantation has been observed, with more than 70% of 

transplants expected to achieve greater than 5-year survival.23 Much of this success can be 

attributed to the use of immunosuppressive therapy to prevent the rejection of the 

transplanted cardiac tissue.

The calcineurin inhibitors tacrolimus and ciclosporin play a vital role in immunosuppressive 

therapy. Currently, tacrolimus is preferred in comparison to ciclosporin, owing to its 

improved safety profile, especially with regard to hypertension and dyslipidaemia.4 

However, tacrolimus suffers from extensive interpatient and intrapatient pharmacokinetic 

(PK) variability, which necessitates frequent drug monitoring to guide dosing strategies. PK 

of tacrolimus in children has primarily been studied in those patients receiving liver or 

kidney transplants.5–13 There are few descriptions of tacrolimus PK in heart transplant 

recipients, especially in children, and a population PK model has yet to be described for the 

paediatric population.

The current study has two objectives. First, we aimed to develop a population PK model of 

tacrolimus in paediatric heart transplant recipients. In addition to describing PK of 

tacrolimus in the paediatric heart transplant population, the population PK model can assess 

the sources and extent of variability associated with tacrolimus concentrations. Second, the 

number of tacrolimus concentrations needed for the model to accurately predict an 

individual’s future concentrations was assessed. This analysis was used to determine if the 

model could potentially reduce the drug monitoring burden in children receiving heart 

transplants.
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METHODS

Data collection

Study approval was granted by the University of Utah, Intermountain Healthcare and 

Primary Children’s Hospital Institutional Review Board. Data for this study, including event 

times, dose amount, tacrolimus concentrations and demographics, were collected 

retrospectively from the Intermountain Healthcare Enterprise Data Warehouse. The study 

included children receiving tacrolimus during an inpatient stay at the Primary Children’s 

Hospital in Salt Lake City, Utah within the first 6 weeks following heart transplant between 

the years of 2007 to 2015. Furthermore, children meeting these criteria must have had at 

least one dose of tacrolimus and one tacrolimus concentration to be incorporated into the 

study. Data collected between 2007 and 2013 were used for model building, whereas 2014 

and 2015 data were used for model validation. Clinical dosing information was verified by 

scanning a bar code on the patient’s bracelet immediately prior to tacrolimus administration. 

Tacrolimus was typically administered two times per day, either orally or enterally through a 

nasogastric or nasojejunal tube. In addition to tacrolimus, all patients received 

mycophenolate as part of their immunosuppressive regimen, and milrinone was used to 

provide cardiac support post-transplant. Concentrations were determined from whole blood 

using a validated liquid chromatography–tandem mass spectrometry (LC–MS/ MS) method 

at ARUP Laboratories. The assay was linear between 1 and 40 ng/mL. Sample times were 

determined relative to the first dose of tacrolimus.

PK modelling

PK modelling used NONMEM software (V.7.3; ICON Development Solutions) interfaced 

with PDx-Pop (V.5.0). The first-order conditional estimation with interaction method was 

used throughout model building and evaluation. Model selection was based on parsimony, 

objective function value (OFV) and visual diagnostic plots. Models were parameterised on 

the elimination rate constant (ke) and volume (Vd), along with the oral absorption rate (ka) 

(TRANS1). One (ADVAN2) and two (ADVAN4) compartment structural models were 

evaluated, along with additive, proportional and combined (additive and proportional) error 

models, to determine the best base model for the data.

After the base model was established, covariates were tested in the model using a stepwise 

forward inclusion (p<0.05)–backward exclusion (p<0.01) regression method. Covariates 

were added to the model in a stepwise fashion and allowed to remain in the model if 

covariate inclusion decreased the OFV by at least 3.84 (p<0.05, χ2 df=1), and its exclusion 

increased the OFV by at least 6.63 (p<0.01, χ2 df=1). Categorical covariates, including sex, 

administration type (oral or via feeding tube), diet (ad libitum or prescribed diet) and use of 

comedications known to inhibit or induce tacrolimus metabolism (fluconazole being one 

example), were tested by fitting model parameters to the following equation.

Where θ*pop is the covariate adjusted parameter estimate, θpop is the population parameter 

estimate, Δ is the parameter estimate change for those with a covariate value of 1 and γ 
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refers to the value of the covariate, either 0 or 1. Postoperative day (POD) was tested in the 

model on ke using an Emax/EC50 model, with and without a Hill coefficient.

Other continuous covariates, such as weight, age, body mass index and creatinine clearance 

(calculated using the bedside Schwartz equation), were population median-normalised and 

incorporated into the model using the following equation:

In this equation, θ*pop is the covariate adjusted parameter estimate, θm is the parameter 

estimate for an individual with the median value of the covariate, COVi is the individual 

covariate value, COVmedian is the population median covariate and γ refers to the exponent. 

Missing data were carried forward or backwards for up to 48 hours, as appropriate, beyond 

which, population median values were imputed.

Model validation included a prediction corrected visual predictive check and bootstrapping 

accomplished using PsN 4.4.0 (psn. sourceforge. net) and Pirana 2.9.2 (http://pirana-

software.com), both using 1000 simulated datasets based on the data collected between 2007 

and 2013. An additional model validation step compared data observed in the validation 

dataset (data collected in 2014 and 2015) to data simulated from the population in that 

dataset. Data were compared using median prediction error (MPE, a measure of bias) and 

median absolute prediction error (MAPE, a measure of accuracy), as shown in the following 

equations:

Predicting tacrolimus concentrations

The described population PK model structure was used to investigate the number of samples 

required to predict an individual’s future tacrolimus concentrations. The first step in this 

analysis was to manipulate the dataset such that patient-specific post hoc parameter 

estimates could be determined using only the first observed concentration from each patient. 

This was accomplished by changing all but each patient’s first observed concentration to be 

a missing dependent variable (ie, DV=−1) within the dataset used for this analysis. Notably, 

the first observed concentration represents a trough concentration following the first 

tacrolimus dose for a majority of patients. Next, an event identification (EVID) column was 
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added to the dataset. For each row (corresponding to a time at which there was a study event, 

either a dose or concentration), the EVID column value was set to 0 for the concentrations 

being used to determine the patient-specific post hoc parameter estimates (ie, MDV=0), 1 for 

all dosing events and 2 when the concentration had been set to missing (ie, MDV=1). For all 

rows where EVID=2, NONMEM will generate an individual predicted concentration based 

on the patient’s post hoc parameter estimate. This manipulated dataset was then analysed in 

NONMEM, and the output was used to compare predicted individual concentrations to the 

actual observed concentrations using MPE and MAPE. For the average patient with 13 

samples collected over the course of the study, the comparison between predicted and 

observed concentrations would use the final 12 samples (as the first sample had been used to 

generate the individual parameter estimates). This analysis was then repeated by sequentially 

including each patient’s next chronological concentration in the model, up to the first five 

observed concentrations for each patient. These results were used to determine the minimum 

number of concentrations needed to accurately and precisely predict future concentrations. 

An MPE and MAPE of less than 30% was targeted to define the minimum number of 

samples that were necessary to accurately and precisely predict future tacrolimus 

concentrations.

RESULTS

Study population

Data for model building were obtained from 30 paediatric heart transplant recipients, 

whereas the model validation dataset included 18 children. Individuals in the model building 

dataset were primarily men (n=19), Caucasian (n=28), with median (range) age of 5.7 (0.1 to 

17.7) years and weight of 28.9 (7.0 to 77.2) kg. The validation dataset was evenly split by 

sex (nine men and nine women), largely Caucasian (n=15), with median (range) age of 2.0 

(0.3 to 18.4) years and weight of 11.2 (4.9 to 63.0). Median (range) doses were 0.09 (0.02 to 

0.49) and 0.17 (0.03 to 0.69) mg/kg/day for the model building and validation datasets, 

respectively. A total of 395 samples (on average 13 per patient) were collected from patients 

in the model building cohort, whereas 330 samples (on average 18 per patient) were 

collected from patients in the model validation cohort. Approximately 40% of trough 

concentrations were within the target range of 12 to 16 μg/L for both datasets. Additional 

demographic information for the studied population is summarised in table 1.

Population PK model

A one-compartment structural model with additive error was selected as the base model. A 

one compartment structural model was selected owing to the minimal improvement in model 

fit when a peripheral compartment was added to the model. The additive error model was 

chosen based on model stability. Base model parameter estimates are shown in table 2. The 

ka parameter was estimated during base model construction. However, estimation of this 

parameter resulted in some model instability, likely because limited absorption phase data 

were available for model building. Therefore, the ka estimated from the base model 

(ka=3.43/hour) was fixed to that value prior to covariate modelling.
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During the forward inclusion step of stepwise covariate modelling, creatinine clearance and 

fluconazole use were found to be significantly associated with ke, whereas age was 

associated with Vd (p<0.0001). Additionally, postoperative day was found to be significantly 

associated with ke; however, the inclusion of this covariate caused significant model 

instability and prevented proper model convergence. As a result, this covariate was removed 

from the model and not included in further analyses. Including creatinine clearance in the 

model resulted in the greatest improvement in model fit, followed by the impact of age and, 

finally, fluconazole use. Tacrolimus elimination was reduced by 34% in those patients 

coadministered fluconazole compared with those children who did not receive fluconazole. 

All of these relationships were retained during the backwards exclusion modelling step. 

Final parameter estimates were as follows, where fluconazole use was indicated with 

FLUC=1 (table 2).

Model diagnostic plots demonstrated adequate model fit (figure 1A–D). Eta-shrinkage was 

16% on ke and 14% on Vd. Visual predictive check (figure 2) and bootstrapping (table 2) 

supported the model. Additionally, the constructed model was validated using data collected 

in 2014–2015 that were not available when the model was initially constructed. The analysis 

supported the model as having minimal bias (MPE (95% CI): −3.8% (−7.6 to −0.27)) and 

good accuracy (MAPE (95% CI): 19.4% (16.9 to 22.6)) when predicting concentrations 

from the validation dataset. Combined, the model diagnostics and validation analysis support 

the fit of the described model.

Predicting tacrolimus concentrations

The model structure (including covariates) described above was used to predict subsequent 

tacrolimus concentrations when between one and five concentrations were used to determine 

individual parameter estimates. MPE ranged between −2.1% and 1.9% (table 3), suggesting 

minimal bias in predicted concentrations, regardless of the number of concentrations used to 

guide the model. MAPE decreased from 44.0% when one concentration was used to 24.1% 

when three concentrations were used (table 3). The reduction in MAPE (therefore, the 

improvement in accuracy) from three to five (MAPE=21.4%) concentrations was minimal. 

Given the minimal improvement in accuracy and the added time burden of collecting those 

additional samples, three concentrations were selected as the minimal number required to 

successfully predict subsequent tacrolimus concentrations for an individual.

DISCUSSION

Tacrolimus provides great value to transplant success as the mainstay of transplant 

immunosuppression, but extensive interpatient and intrapatient variability complicates its 
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clinical use. The population PK model identifies some of the causes of tacrolimus variability 

in paediatric heart transplant recipients, namely patient age, renal function and 

comedications that impact tacrolimus metabolism, such as fluconazole. Furthermore, we 

show that the constructed model can be used to successfully predict future tacrolimus 

concentrations when guided by as few as three concentrations in an individual, which may 

help reduce the drug monitoring burden in this patient population.

The described population PK model was used to estimate mean population parameters 

describing tacrolimus disposition. For a child of median age and creatinine clearance, who 

did not receive fluconazole, mean elimination rate and volume were 0.0408/hour and 233 L, 

respectively. Literature has reported a wide range of model structures and parameter 

estimates for tacrolimus. One-compartment and two-compartment models with and without 

lag times have been reported for paediatric kidney and liver transplant recipients.561013 The 

differences in model structure inhibit the direct comparison of previously determined 

parameter estimates; however, previous reports describe elimination rates between 0.0271 

and 0.102/hour (half lives between 6.8 and 25.6 hours), similar to the value observed in this 

study.561011 The similarity between the elimination rate parameter in our model compared 

with the rates that have previously been reported supports the appropriateness of the 

constructed model. Furthermore, the similarity in parameter estimates between our model 

and those models which have been previously published supports the potential for applying 

this model to help guide tacrolimus dosing at other institutions and across multiple 

transplant organs.

We determined that concomitant use of fluconazole and creatinine clearance significantly 

impacted the elimination of tacrolimus, whereas age was associated with volume. The 

rationale behind the impact of creatinine clearance on tacrolimus elimination is unclear, as 

tacrolimus is predominately liver metabolised.14 However, serum creatinine levels have 

previously been associated with tacrolimus clearance in other population PK studies,15–17 

underscoring the need for future research to understand the physiological relevance of this 

association. It has previously been hypothesised that high serum creatinine may be a 

surrogate indicator of a subclinical hepatic injury that causes altered renal blood flow15 or 

some other alteration in drug metabolism related to the hepatorenal syndrome.16 It is also 

possible that the impact of creatinine clearance in our model could be driven by changes in 

bioavailability caused by renal dysfunction. Notably, a study in rats found increased 

tacrolimus bioavailability in those animals with cisplatin-induced renal failure versus 

animals with normal renal function.18 More work is needed to clarify the physiological 

rationale behind the relationship between creatinine clearance and tacrolimus elimination 

and to determine the utility of including this covariate when predicting dosing requirements 

in patients.

The interaction between fluconazole and tacrolimus has previously been noted in liver and 

kidney transplant recipients. Fluconazole use was associated with a 34% decrease in 

tacrolimus elimination in our population, which is similar to a previous report of a 35% 

reduction in clearance in an adult liver transplant population.19 Another report suggests the 

need for a 40% decrease in tacrolimus dosing to maintain the attainment of target tacrolimus 

concentrations in adult renal transplant patients who were coadministered fluconazole.20 
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Interestingly, a study in paediatric liver transplant recipients proposed that fluconazole 

reduces tacrolimus elimination and that the magnitude of the reduction was dependent on the 

donor’s CYP3A5 genotype.12 Specifically, the authors of this study found that fluconazole 

reduced the hepatic clearance of tacrolimus by 30% when the donor liver expressed 

CYP3A5 (ie, *1/*1 or *1/*3), and 60% when the donor liver did not express this genotype 

(ie, *3/*3). Unfortunately, our data did not allow the analysis of the impact of CYP3A5 
expression on the interaction between fluconazole and tacrolimus; therefore, future work 

considering the impact of this genotype when the donated organ is not the organ responsible 

for drug metabolism (ie, in heart transplantation) is required.

When guided by as few as three concentrations, the constructed population PK model 

successfully predicted an individual’s future tacrolimus concentrations with negligible bias 

and acceptable accuracy. The data used in our study represents drug monitoring every 12 

hours (ie, trough concentrations) as is customary at our institution immediately after 

transplant surgery. While guiding the predictions with more than three concentrations 

improved the accuracy of the predictions, the improvements were small. As an example, to 

improve prediction accuracy by 2.4% (from an MAPE of 24.1% (3 concentrations) to 21.7% 

(4 concentrations)) would require an additional 12 hours of unoptimised care given the 

current standard practice. The minimal increase in accuracy was deemed to be insufficient 

compared with risk of providing unoptimised care. While the use of three concentrations to 

guide tacrolimus dosing must be validated clinically, these results exemplify the potential for 

and great benefits of providing care that is optimised and directed for an individual patient.

Previous literature has described the use of population PK models for Bayesian forecasting 

of tacrolimus concentrations, similar to our analysis. While most of these studies were 

conducted in adult kidney transplant recipients,21–29 a few studied paediatric transplant 

recipients.930–32 Across all populations, MPE (bias) ranged between −15% and 10%, 

whereas MAPE (accuracy) ranged from 0.8% to 40%.921–32 The MPE and MAPE 

determined in our current study compare well with these previously published studies. 

Notably, while other studies achieved high accuracy and low bias with frequent sampling 

immediately after dosing, our prediction demonstrated negligible bias and acceptable 

accuracy despite primarily using trough concentration data. We therefore anticipate that 

refining our model with more robust concentration data collected from a prospective clinical 

study may improve the prediction accuracy generated by our model.

Our data demonstrated that ~60% of observed concentrations in our study were outside of 

the target therapeutic range (12–16 μg/L). A majority of these concentrations were below the 

therapeutic target, suggesting the potential for increased risk of graft rejection, with the 

immediate post-transplant period known to be one of the highest risk periods.2 This finding 

underscores the need for individualised tacrolimus dosing guidance to get each patient into 

therapeutic range as quickly as possible. Though it is anticipated that clinicians would 

suggest a dose increase when a trough concentration <12 μg/L is observed, this was found to 

be the case only 55% of the time at our institution.33 Furthermore, the uncertainty in 

prescribing the correct dose modification could be avoided by using individualised dosing 

guidance based on a population PK model.
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While our analysis offers many strengths, there are some limitations. First, our study used 

retrospective clinical data largely consisting of trough concentrations. As a result, we did not 

have sufficient data to stably estimate the rate of absorption. Additionally, the lack of non-

trough data likely explains the overpredictions in the population predicted versus observed 

concentration diagnostic plots. However, our parameter estimates agreed well with previous 

literature reports, and the subsequent analyses successfully demonstrated the model’s ability 

to predict future concentrations. Therefore, while additional data allowing the estimation of 

the absorption rate might improve the predictive ability of the model, the absence of that 

data has not significantly impacted the current clinically driven analysis. Additionally, owing 

to the retrospective nature of the data collected, we were unable to assess if more frequent 

sampling could be used to improve prediction accuracy while decreasing the time prior to 

optimising an individual’s dose. At the same time, the tolerability of frequent sampling in 

paediatric heart transplant recipients is unknown. As a result, we feel that our analysis 

describes a more realistic clinical scenario and is therefore applicable to clinical practice. 

Owing to the clinical, retrospective nature of the collected data, we do not have CYP3A5 
genotype data for the studied patients. CYP3A5 genotype has been previously described to 

impact dosing in children receiving heart transplants.3435 A future prospective study is 

needed to assess the potential for improving the model’s predictive ability when CYP3A5 
genotype is incorporated. Finally, the collected data was limited to inpatients within the first 

6 weeks following transplant in order to reduce variability due to non-adherence or 

misreported dose times that may occur in the outpatient setting. More work is needed to 

evaluate the utility of this approach in the outpatient setting where adherence to prescribed 

dose and timing of immunosuppression may be more variable, as well as validating this 

current model in a more heterogeneous population.

In conclusion, we constructed a population PK model that describes tacrolimus 

concentrations in paediatric patients receiving heart transplant. The model demonstrated 

success in predicting future concentrations in this population based on patient-specific 

characteristics (including age, renal function and fluconazole, a comedication known to 

affect tacrolimus metabolism), though that success needs to be replicated with a prospective 

trial to demonstrate its clinical utility. If successful, this approach could greatly benefit the 

clinical use of tacrolimus by enabling patients to achieve their target therapeutic range 

quickly and accurately. Maintaining a patient within target therapeutic range is expected to 

positively influence the rates of rejection and infection that directly impact graft and patient 

survival. This approach also has the potential to minimise the frequency of drug monitoring 

in this patient population. Delivering optimal, PK-guided, individualised directed care can 

provide significant and meaningful positive effects on the post-transplant lives of children 

receiving heart transplant.
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What is already known on this topic?

► Tacrolimus is a primary immunosuppressant agent in preventing graft 

rejection in children receiving heart transplant.

► Tacrolimus suffers from substantial interpatient and intrapatient 

pharmacological variability.

What this study hopes to add?

► This study identifies age, creatinine clearance and fluconazole use as patient-

specific factors which impact tacrolimus pharmacokinetics.

► The pharmacokinetic model demonstrates that as few as three concentrations 

can successfully guide the model to predict an individual’s future 

concentrations.
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Figure 1. 
Diagnostic plots for the final model, including (A) observed versus population predicted 

concentrations, (B) observed versus individual predicted concentrations, (C) conditional 

weighted residuals versus time after dose and (D) conditional weighted residuals versus 

population predicted concentration. CWRES, conditional weighted residual; TAD, time after 

dose.
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Figure 2. 
Prediction corrected visual predictive check showing observed data concentrations (blue 

circles) and percentiles (red dashed lines: fifth and 95th percentile, red solid line: 50th 

percentile) versus time. Shaded area reflects the simulated concentrations and the respective 

95% CI at the fifth and 95th percentile (black dashed line, blue shading) and 50th percentile 

(black solid line, pink shading).
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Table 1

Demographic characteristics of the study

Model building dataset Model validation dataset

Study period January 2007–December 2013 January 2014–December 2015

Subjects 30 18

Sex

 Male 19 9

 Female 11 9

Race

 Caucasian 28 15

 African-American 1 1

 Other 1 2

Fluconazole use

 Yes 15 16

 No 15 2

Age (year)

Median (range) 5.7 (0.1 to 17.7) 2.0 (0.3 to 18.4)

Weight (kg)

 Median (range) 28.9 (7.0 to 77.2) 11.2 (4.9 to 63.0)

Creatinine clearance
(mL/min/1.73 m2)

 Median (range) 122.4 (15.6 to 442.2) 104.7 (8.5 to 224.9)

Transplant indications

 Congenital heart disease 14 8

 Cardiomyopathy 16 9

 Arrhythmia 0 1

Dose (mg/kg/day)

 Median (range) 0.09 (0.02 to 0.49) 0.17 (0.03 to 0.69)

Concentration (μg/L)

 Median (range) 12.7 (1.5 to 32.7) 13.4 (2.5 to 37.7)

 <12 μg/L 41% 36%

 12 to 16 μg/L 39% 40%

 >16μg/L 20% 24%
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Table 2

Population pharmacokinetic parameter estimates

Base model Final model
Bootstrap
(977/1000 successful)

Parameters Population mean (%RSE) Median (2.5 to 97.5 percentile)

 Elimination rate (1/hour) 0.0317 (13%) 0.0408 (15%) 0.0411 (0.0318 to 0.0558)

 Volume (L) 216 (22%) 233 (17%) 228 (167 to 312)

 Absorption rate (1/hour) 3.43 (fixed) 3.43 (fixed) 3.43 (fixed)

 Volume: age exponent – 0.775 (13%) 0.780 (0.601 to 1.01)

 Elimination rate: creatinine clearance exponent – 0.850 (24%) 0.842 (0.470 to 1.25)

 Fluconazole elimination rate (1/ hour) – 0.0268 (5%) 0.0267 (0.0234 to 0.0321)

Between-subject variability

 ωke
2 0.219 (51%) 0.262 (40%) 0.256 (0.0858 to 0.590)

 ωV
2 0.991 (27%) 0.329 (35%) 0.291 (0.0637 to 0.518)

Residual error SD (%RSE)

 Additive (μg/L) 4.24 (14%) 3.69 (13%) 3.65 (3.16 to 4.14)
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Table 3

Median prediction error (MPE, measure of bias) and median absolute prediction error (MAPE, measure of 

accuracy) when between one and five concentrations were used to guide predicted concentrations

Concentrations MPE (95% CI) MAPE (95% CI)

1 −0.40 (−8.3 to 0.00) 44.0 (39.6 to 50.0)

2   −2.1 (−6.7 to 0.80) 31.3 (27.4 to 36.5)

3  0.10 (−2.9 to 3.7) 24.1 (19.7 to 27.7)

4    1.9 (−2.7 to 5.7) 21.7 (19.2 to 24.2)

5    1.8 (−1.4 to 6.3) 21.4 (17.5 to 23.7)
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