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Abstract

Globus pallidus (GP) neurons recorded in brain slices show significant variability in intrinsic 

electrophysiological properties. To investigate how this variability arises, we manipulated the 

biophysical properties of GP neurons using computer simulations. Specifically, we created a GP 

neuron model database with 100,602 models that had varying densities of nine membrane 

conductances centered on a hand-tuned model that replicated typical physiological data. To test the 

hypothesis that the experimentally observed variability can be attributed to variations in 

conductance densities, we compared our model database results to a physiology database of 146 

slice recordings. The electrophysiological properties of generated models and recordings were 

assessed with identical current injection protocols and analyzed with a uniform set of measures, 

allowing a systematic analysis of the effects of varying voltage-gated and calcium-gated 

conductance densities on the measured properties and a detailed comparison between models and 

recordings. Our results indicated that most of the experimental variability could be matched by 

varying conductance densities, which we confirmed with additional partial block experiments. 

Further analysis resulted in two key observations: (1) each voltage-gated conductance had effects 

on multiple measures such as action potential waveform and spontaneous or stimulated spike rates; 

and (2) the effect of each conductance was highly dependent on the background context of other 

conductances present. In some cases, such interactions could reverse the effect of the density of 

one conductance on important excitability measures. This context dependence of conductance 

density effects is important to understand drug and neuromodulator effects that work by affecting 

ion channels.
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Introduction

The external globus pallidus (GP) is a central nucleus in the indirect pathway of the basal 

ganglia and plays an important role in controlling basal ganglia activity through inhibitory 
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output connections to the subthalamic nucleus, internal pallidum, substantia nigra, and 

striatum. GP neurons in awake animals have high spontaneous firing rates and frequently 

exhibit short spike bursts and pauses (Delong, 1971). This bursting is irregular and 

uncorrelated between GP neurons in normal animals but switches to synchronized bursting 

with loss of dopamine in Parkinson’s disease (PD) (Bergman et al., 1994; Nini et al., 1995; 

Wichmann et al., 1999). In brain slices, rat GP neurons show spontaneous slow regular firing 

with variable intrinsic electrophysiological properties such as spike adaptation and rebound 

firing (Nambu and Llinas, 1994, 1997; Cooper and Stanford, 2000). Transitions to bursting 

can be induced with pharmacological interventions including the application of apamin, a 

blocker of small-conductance calcium-activated potassium (SK) channels (Loucif et al., 

2005). At the present time, it remains unknown to what degree intrinsic GP neuron 

properties contribute to the observed shifts in network activity in PD. It is known, however, 

that dopamine has direct effects on calcium channels in the GP (Stefani et al., 2002), and 

other modulators and mechanisms of excitability plasticity are likely to be present as well. 

Such modulation of GP excitability is, in principle, well suited to strongly affect basal 

ganglia network activity because of the high interconnectivity of this nucleus with other 

structures.

Recently, measurements have shown that different neurons of a given type typically show 

twofold to fivefold variability in the density of their voltage-gated conductances, resulting in 

considerable variations of their dynamical behavior (Golowasch et al., 1999; Prinz et al., 

2003; Bucher et al., 2005). In the present study, we addressed the question of whether such 

variability in conductance densities could explain the variability of GP neuron properties 

observed in slice recordings, and we examined how interactions between different channel 

types may have important consequences on excitability and neuromodulation. Although 

experimental studies are well suited to assess the presence and kinetics of specific 

membrane conductances and determine the action of modulators, it is not possible to 

determine the resulting interplay of multiple conductances in a spatially complex neuron. 

Conductance-based compartmental neuron models using realistic cell morphologies that 

build on the detailed knowledge of experimental studies, in contrast, provide a tool that 

allows one to fill in this gap and examine the interactions between multiple voltage-gated 

conductances of a neuron in generating complex activity patterns (Herz et al., 2006). In the 

present study, we first obtained recordings from 146 GP neurons in vitro to collect data on 

their spiking behavior and variability. We then constructed a morphologically realistic GP 

model that included nine membrane conductances found in GP neurons to replicate the most 

“typical” physiological properties of our in vitro recordings. We then used a brute-force 

parameter search and database (DB) approach (Prinz et al., 2003) to make a GP neuron 

model DB of 100,602 models with varying conductance densities centered on the original 

model. We analyzed the model DB with automated Matlab routines to determine how 

electrophysiological properties such as spike rate and spike shape depend on multiple 

conductances. We found that this model DB generally showed smoothly varying properties 

replicating physiological variability. Importantly, the effect of any specific conductance 

density change strongly depended on the combination of other conductances present.
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Materials and Methods

Electrophysiology

Coronal slices 300 μm in thickness were prepared from 16- to 21-d-old male Sprague 

Dawley rats according to procedures described previously (Hanson et al., 2004). Briefly, rats 

were anesthetized with halothane and decapitated. The brain was rapidly removed and 

immersed in ice-cold artificial CSF containing (in mM) 124 NaCl, 3 KCl, 1.9 MgSO4, 1.2 

KH2PO4, 26 NaHCO3, 2 CaCl2, and 20 D-glucose, bubbled continuously with a mixture of 

95% O2/5% CO2. After cutting, slices were incubated at 32°C until use. Whole-cell 

recordings were obtained using an Axoclamp-2B amplifier (Molecular Devices) at 32°C. 

Borosilicate pipettes (#8250; AM Systems) were pulled and filled with (in mM) 140 K-

gluconate, 6 NaCl, 2 MgCl2, 0.2 EGTA, 4 Na4ATP, 0.4 Na3GTP, 5 glutathione, 0.5 

spermine, 0.02 Alexa-568, and 10 HEPES, pH 7.3 with KOH. All animal procedures 

complied with the National Institutes of Health and other federal rules on animal use and 

were approved by the Emory University Institutional Animal Care and Use Committee.

Construction of the baseline GP neuron model

Membrane properties—The procedures used to match the passive electrical properties of 

reconstructed rat GP neurons were described in a previous publication (Hanson et al., 2004), 

and additional details are given in the supplemental material (available at 

www.jneurosci.org). The resulting passive parameter values were as follows: CM = 0.024 

F/m2, RM = 1.47 Ωm2, and RA = 1.74 Ωm, which were used throughout this study. Eight 

different types of voltage-dependent conductances and one calcium-dependent conductance 

based on experimental evidence for these channel types in GP neurons were included in the 

simulations. All voltage-dependent gates were assumed to be independent and were modeled 

using standard Hodgkin–Huxley equations. The calcium-dependent gate was modeled using 

the Hill equation. The voltage-gated conductance kinetics were modeled to match kinetics 

described in the following sources: fast transient sodium (NaF) (Raman and Bean, 2001; 

Khaliq et al., 2003; Hanson et al., 2004); persistent sodium (NaP) (Magistretti and Alonso, 

1999, 2002); fast delayed rectifier potassium of the Kv3 family (Baranauskas et al., 1999, 

2003); slow delayed rectifier potassium of the Kv2 family (Baranauskas et al., 1999); A-

type, transient potassium of the Kv4 family (Tkatch et al., 2000); M-type potassium of the 

KCNQ family (Gamper et al., 2003; Prole and Marrion, 2004); calcium-dependent 

potassium of the SK family (Hirschberg et al., 1998, 1999; Keen et al., 1999); high-

threshold, noninactivating calcium (CaHVA) reflecting a mixture of L, N, and P/Q-type 

calcium channel types (Surmeier et al., 1994); and HCN, which gives rise to the 

hyperpolarization-activated, cyclic nucleotide-modulated, mixed cation conductance (Wang 

et al., 2002; Chan et al., 2004). Kv4 was modeled as two separate channel populations with 

identical activation and deactivation properties but different inactivation kinetics (Tkatch et 

al., 2000). HCN was also modeled as two separate channel populations, which differed in 

both their steady-state and kinetic properties (Chan et al., 2004). The equations and 

parameters defining the simulation of each conductance type are fully listed in supplemental 

Tables 1 and 2 (available at www.jneurosci.org as supplemental material).
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Incorporation of conductances into reconstructed morphologies—Three 

morphological reconstructions of differently sized GP neurons (Fig. 1B) were used 

interchangeably to model GP neuron properties to cover the range of input resistances found 

in our slice recordings of GP neurons. Using the CVAPP software (www.compneuro.org), 

these reconstructions were divided into 585, 643, and 615 compartments, respectively, to 

obtain a near-equal passive electrotonic length of 0.02 lambda for each compartment. A 

value of 0.1 lambda is small enough to approximate the continuous cable solution for 

dendritic cylinders (Holmes et al., 1992), and our value of 0.02 allows for a fivefold 

membrane conductance increase attributable to voltage-gated conductance activation.

The compartments in the reconstructed neurons were grouped into three functional regions: 

soma, axon, and dendrites. Axonal reconstructions were not available from our dye-filled 

cells, and instead a default axon was used (Shen et al., 1999) that contained two different 

compartment types: myelinated compartments, which had no ion channel conductances but a 

100-fold reduced capacitance attributable to myelin, and unmyelinated compartments 

(including the axon initial segment and nodes of Ranvier) that were highly excitable.

The dendrites contained three subdivisions based on dendritic diameter: thick dendrites had 

diameters >1 μm, medium dendrites had diameters ranging from 0.5 to 1 μm, and thin 

dendrites had diameters <0.5 μm. These subdivisions differed in only one parameter: the 

calcium channel density was 3 times higher in the thin dendrites than the thick dendrites, 

and 1.5 times higher in the medium dendrites than the thick dendrites (Hanson and Smith, 

2002). The somatic, dendritic, and axonal regions were allowed to have different 

conductance densities from each other, whereas conductance densities were uniform within 

each region, except for the differences mentioned above.

We constrained the GP model neuron to have uniform densities of sodium and KDR channels 

(Kv2 and Kv3) throughout the soma and dendrites after our recent study demonstrating 

voltage-gated sodium channel expression in rat GP dendrites with immunolabeling, and with 

whole-cell recordings from rat brain slices indicating that excitatory synaptic inputs could 

trigger propagating sodium spikes in GP dendrites (Hanson et al., 2004). The exact densities 

and distributions of channels were obtained by a semiautomated tuning process to match 

electrophysiological characteristics such as spike shape and spike rate–current (fI) curves 

from rat brain slice recordings [a representative neuron (s34) is shown in Fig. 1A]. See 

supplemental material (available at www.jneurosci.org) for the details of this tuning process 

and the resulting parameter settings.

DB construction

Stimulation protocol—Both experiments and simulations used a current injection pulse 

(CIP) stimulation protocol. In this protocol, a current injection period would follow an initial 

period of spontaneous activity. This allowed us to track electrophysiological changes when a 

depolarizing or hyperpolarizing current was applied. Simulations consisted of a 4 s 

recording, in which the first second before reaching the steady state was discarded. The 

remaining 3 s consisted of 1 s for spontaneous activity, followed by a 1 s CIP period and a 1 

s recovery period.
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Measurements of electrophysiological characteristics—Measurements from 

recorded or simulated voltage traces were obtained automatically with our custom 

PANDORA Toolbox (available from the SimToolDB repository; http://

senselab.med.yale.edu/SimToolDB) (C. Günay and D. Jaeger, unpublished observation) 

within the Matlab environment (MathWorks). Approximately 20 primary measurements 

were collected from different periods of the CIP protocol and for different levels of injected 

current, yielding a total of ~300 measures for each real or model neuron. The firing rate for 

each period (spontaneous, CIP, recovery) was calculated as the inverse of averaged 

interspike intervals (ISIs). Action potential (AP) amplitude was measured as the voltage 

from the AP threshold (see supplemental material, available at www.jneurosci.org) to the 

peak voltage of the AP. The afterhyperpolarization (AHP) depth was measured as the 

difference between the AP threshold and the voltage minimum during the AHP. The half-

width of the AP was measured at the half-amplitude voltage. Spike frequency adaptation 

was calculated as the ratio of ISIs from the beginning and end of the 100 pA CIP period, 

indicating the change in firing rate. A sag during −100 pA CIP was measured as the voltage 

difference between the lowest voltage reached early in the CIP response and the steady-state 

voltage reached at the end. The rebound ratio was measured as the ratio between the initial 

firing rate during the recovery period after a −100 pA hyperpolarizing CIP and the 

spontaneous firing rate. For AP shape measurements, each AP was measured separately and 

averaged to give a mean and SD for that measure. For each measure, we selected a sample of 

near-average and extreme outcomes from the DB and visually checked the original raw data 

traces to test for correct performance of the respective Matlab algorithm. This testing, in 

particular, led to a fine-tuning process of the spike-threshold detection, because the standard 

method of 15 mV/ms threshold crossing of the first voltage derivative (slope) produced poor 

results for some spike waveforms (see supplemental material, available at 

www.jneurosci.org).

Conductance parameter space to create model DB—The model DB was created by 

changing conductances by factors of 2, 5, or 10, from values in the baseline model. Only 

three or four values were selected for each parameter to create a coarse-grained search grid 

that could be completed in a reasonable amount of time with available computational 

resources. The chosen conductance values bracketed the values used in the baseline model, 

and in each case added higher and lower than baseline values that were still within 

physiologically plausible ranges (Table 1). Each conductance density combination was also 

simulated with three different morphologies (Fig. 1B). However, the lowest values for NaF, 

KCNQ, and HCN were used only for the two morphologies with higher input resistances, 

resulting in some missing combinations of parameter values. The total number of models 

was 100,602, which is less than the number of all possible conductance density 

combinations, 37×43 = 139,968. To avoid a combinatorial explosion of parameter 

combinations, the relative axonal, somatic, and dendritic densities were kept constant 

throughout all simulations. See supplemental material (available at www.jneurosci.org) for 

additional details.

DB construction of 146 GP neurons recorded in brain slices—A physiology DB 

was constructed by evaluating current-clamp data from 146 GP neurons, which were 
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subjected to a CIP injection protocol as described above for simulations. The same Matlab 

analysis routines were used to determine measures of physiological properties in the pool of 

recorded neurons as in the simulations. The analysis routines had to be improved for 

processing noisy experimental data compared with noiseless simulation data, and thus we 

tested and fine tuned analysis procedures such as finding the AP threshold that can behave 

differently in the presence of recording noise. Because physiological responses to a given 

CIP stimulus can be variable, we used an average measure across several trials. The 

physiology DB was analogous to the model DB, except that additional values were inserted 

to keep track of the SD of measures across trials.

Neuron-matching algorithm and distance metrics—To find best matching model 

candidates to a given physiological recording, a matching algorithm was used to rank model 

neurons according to their similarity to that recording. The matching algorithm worked by 

calculating a distance metric between a set of corresponding measures for two neurons, 

which could be either simulations or recordings. The metric was defined as the sum of 

absolute differences between corresponding measures, each normalized by the inverse of the 

SD of the measure found in our physiology DB of 146 neurons. Each normalized measure 

difference gives the distance between the two neurons in number of SDs. This normalization 

allows balancing contributions from measures with different units and different scales of 

amplitude (e.g., AP width in few milliseconds versus AP amplitude in tens of millivolts). 

This normalization also had the effect that highly variable features in our recordings did not 

need to be mapped very accurately in our simulations to provide a reasonable match. For 

example, the spontaneous firing rate of neurons had a SD of 5.9 Hz, so our distance metric 

would be increased only by 1.0 if a model neuron had a spontaneous spike rate 5.9 Hz 

higher than a given recorded neuron. See supplemental material (available at 

www.jneurosci.org) for a complete list of measurements included in the calculation of the 

distance metric.

Results

Physiological heterogeneity of GP neurons

The electrophysiological heterogeneity among neurons in a brain structure is likely to have 

important consequences on signal processing. To quantitatively characterize the 

electrophysiological heterogeneity among GP neurons, we formed a DB of measured 

electrophysiological properties from 146 neurons recorded in brain slices. Properties such as 

AP threshold, AP amplitude, AP width, spike rate, spike rate adaptation, etc., were 

quantified from current-clamp data using custom Matlab (MathWorks) scripts (see Materials 

and Methods). The neurons exhibited a high degree of variability in these physiological 

properties (Fig. 2A,B). The frequency of spontaneous firing ranged between 0 and 25.51 Hz 

(mean, 5.45 Hz; SD, 5.89 Hz), and measures such as spike frequency adaptation, rebound, 

and sag attributable to HCN also showed severalfold ranges of variation (Fig. 2B). However, 

each measure showed a broad unimodal distribution that did not allow for a clear 

classification into distinct cell types. Thus, although we confirm the spread of different 

physiological properties in GP neurons reported in previous studies (Nambu and Llinas, 

1994, 1997; Cooper and Stanford, 2000), we found no clear separation of the recorded pool 
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of neurons into distinct physiological classes. In part, this difference to previous studies may 

be attributable to a selection bias in our recordings. In particular, we avoided recording from 

very large neurons indicative of cholinergic cells present in GP (Schwaber et al., 1987; Gritti 

et al., 1993); thus it is plausible that type C neurons as defined by Cooper and Stanford 

(2000) and similarly type III neurons described by Nambu and Llinas (1994) are absent from 

our DB. Because cholinergic cells in GP belong to a different functional circuit than the 

GABAergic output neurons, this absence does not limit the use of our data in examining 

heterogeneity in the indirect pathway of the basal ganglia.

GP physiological heterogeneity can be replicated with models of varying conductance 
densities

To test the hypothesis that electrophysiological heterogeneity in GP may be attributable to 

variations in channel densities, we constructed a computer model of a GP neuron with nine 

ion channel types (eight voltage gated and one calcium gated) known to be present in GP 

neurons to match typical in vitro properties (Fig. 1A) (see Materials and Methods for 

details). Three morphological reconstructions were used (Fig. 1B) that spanned the typical 

range of input resistances found in recordings. To simulate physiological heterogeneity of 

GP neurons, we varied the nine conductance densities for all possible combinations of three 

to four selected values (see Materials and Methods). This brute-force approach to scan all 

parameter combinations resulted in 100,602 distinct models, the measured properties of 

which were collected in a model DB. The range of data values for our physiological 

measures in the model DB (Fig. 2C) was similar to the distributions found in the physiology 

DB (Fig. 2B). As in the physiology DB, individual measured properties such as AP 

amplitude, AP width, AHP depth, and firing rates in spontaneous activity and in response to 

CIPs showed broad distributions in the model DB (Fig. 2C). However, the proportion of 

models without spontaneous spike activity (56%) was much higher than the proportion of 

physiological recordings without spontaneous spiking (19%). This finding is congruent with 

previous studies indicating that biological neurons use homeostatic plasticity mechanisms 

that keep neurons within specific excitability ranges (Desai et al., 1999) and thus would 

avoid random conductance density combinations found in our brute-force DB that lead to 

nonspiking behaviors. In contrast to the physiological data, our simulations also showed 

only very few models (250 of 100,602) with very low spontaneous spike rates between 0 and 

3 Hz (Fig. 2B,C). This could again be attributable to biological plasticity mechanisms that 

encourage conductance densities leading to such activity, but may also suggest that the 

complement of voltage-gated kinetics used in our model is missing a feature that would 

stabilize very slow firing. Most measures, however, showed good matches not only in the 

range of values seen but in the peak and shape of the distributions found. It may be 

surprising at first that measured properties were distributed smoothly in our simulations 

despite the coarse grid of only three to four density values used for each conductance. Two 

main factors contributed to the smoothing of measured properties. First, the same 

conductance density combinations led to different outcomes in the three morphologies used. 

This mechanism, in particular, smoothed distributions of spike amplitude and sag during 

negative CIPs, which were otherwise dominated by the discrete settings of the NaF and 

HCN densities, respectively (supplemental Fig. 1, available at www.jneurosci.org as 

supplemental material). Second, most measured properties were influenced by multiple 
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conductances (see below), thus no single discrete conductance setting dominated such 

measures. In some cases, however, a particular value of one conductance could result in non-

unimodal distributions of measured properties. The clearest case we observed was the 

control of spike width at half-amplitude. The half-width histogram showed a peak of narrow 

spike width values (Fig. 2C), which was entirely attributable to the highest density of Kv3 

used (supplemental Fig. 2, available at www.jneurosci.org as supplemental material).

Most physiological properties were controlled by multiple conductances

An influence of multiple conductances on physiological properties has been observed 

previously in single-compartment models using multiple Hodgkin–Huxley conductances 

(Foster et al., 1993). In our full morphological GP neuron model, we found a similar 

dependence of physiological properties on multiple conductances (Fig. 3). For example, the 

spike width was strongly affected by both NaF and Kv3 channels (Fig. 3A); the spike AHP 

involved CaHVA, Kv2, and NaF channels (Fig. 3B); and the spike rate during a depolarizing 

current injection was dependent on both KCNQ and SK channels (Fig. 3C).

A full analysis of the model DB with respect to average effects of channel density increases 

on each measured property revealed a complex matrix of each channel influencing multiple 

measures (Fig. 4C). In fact, the only property that we found to be almost entirely controlled 

by a single conductance was the sag of the voltage trajectory during a negative CIP, which 

was attributable to HCN. Rebound spiking after hyperpolarization was increased both by 

NaP and by HCN conductances, but not others. Thus, our analysis predicts that in GP, an 

increase in these two conductances could be important for network-bursting behavior 

because of rebound spiking. The spontaneous spike rate was positively influenced primarily 

by NaP conductance but also by Kv3, whereas it was primarily negatively influenced by 

KCNQ conductance, but also by Kv4, SK, and CaHVA. Notably, the control of the steady-

state spike rate during +100 pA current injection was different from the control of the 

spontaneous spike rate, indicating a difference in channel contributions to spike rates at 

different membrane potentials. In particular, during CIP-induced depolarization, NaF played 

an increased role in enabling higher spike rates, and the Kv2 conductance actually reversed 

its effect of slowing down spontaneous spiking to allowing faster spiking during positive 

current injection. Further analysis of this effect showed that Kv2 prevented the development 

of depolarization block during 100 pA current injection. From the total population of 

100,602 models, depolarization block developed in 25,688 (26%) during 100 pA current 

injection, therefore an impact on depolarization block became an important effect of 

conductance manipulations. Our results indicate that an increase in Kv2 conductance would 

also lead to an increase in AP amplitude, an increase in AHP depth, and a decrease in spike 

width and would affect other physiological properties as well (Fig. 4C). This multiplicity of 

effects leads to the prediction that channel modulation, even when limited to a single 

conductance type, will have complex consequences on single-neuron dynamics.

Context dependence of channel effects in the control of spike shape and excitability

Although information on averaged conductance density effects on physiological properties 

(Fig. 4C) is highly desirable for understanding the effects of channel modulation, this 

information is inadequate for predicting the outcome of such modulation when the density 

Günay et al. Page 8

J Neurosci. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



levels of other voltage-gated conductances are different. A simple example of this sort is the 

strong effect of CaHVA on deepening the AHP (Fig. 4B), which is mediated by the 

activation of a SK. Thus, the high variability of the effect of CaHVA on AHP depth (Fig. 

4B) was mostly caused by the variable density of the SK conductance (supplemental Fig. 3, 

available at www.jneurosci.org as supplemental material). Channel interactions, however, 

were usually more complex than a pairwise dependency. When we examined the effects of 

different conductances on AP half-width (Fig. 4B, second row), we found that NaF had a 

large mean effect when its density was increased from 125 to 250 S/m2, but for many 

individual backgrounds of other conductances, this increase actually had almost no effect 

(Fig. 4A). Because a large effect on spike width was also caused by Kv3 (Fig. 4B), it was 

interesting to understand how NaF and Kv3 interacted in controlling spike width. Scatter 

plots of AP amplitude versus half-width for different levels of Kv3 and NaF (supplemental 

Fig. 2) revealed a nonlinear interaction of effects. NaF had a primary effect on AP 

amplitude, whereas Kv3 had a primary effect on AP half-width. However, AP amplitude and 

half-width were related to each other because larger spikes activated much more Kv3 

because of its depolarized activation range. Thus, high levels of NaF resulted in large spikes, 

and the voltage dependence of Kv3 led to a pronounced narrowing of large spikes, but only 

when Kv3 was also at a high density.

The control of spike rate by active properties is of particular functional relevance because it 

determines overall excitability and responsiveness to synaptic input. Thus, we more closely 

analyzed the average effects of different channel types on spike rate described above. We 

focused our analysis on the spike rate during +100 pA current injection, which had a mean 

value of 36 Hz in our model DB, closely resembling the 31–36 Hz average spike rate of GP 

neurons in awake rats (Ruskin et al., 1999; Urbain et al., 2000). The largest effect on this 

measure by a single conductance change was found for an increase in the level of KCNQ 

from medium to high. This KCNQ increase resulted, on average, in a large reduction in 

spike rate (Fig. 4B). However, for individual combinations of other conductances present, 

this effect varied smoothly from large to nonexistent (Fig. 4A, right). In a few cases, the 

effect was even in the opposite direction, and the spike rate increased slightly with added 

KCNQ. In fact, every conductance in the model could show opposite effects on spike rate 

when it was increased depending on the background of other conductances present. In the 

cases of KCNQ, NaP, Kv3, and SK, only a few outliers showed opposite effects compared 

with the mean, but for NaF, Kv2, Kv4f, and CaHVA conductances, this was the case for 

>10% of all models (see supplemental Table 6, available at www.jneurosci.orgas 

supplemental material, for percentage of models with opposite effects). This type of context 

dependence of channel modulation effects could present a basis for bidirectional effects of 

neuromodulation, such as the upregulation or downregulation of spike rate in different 

neurons by serotonin in substantia nigra pars reticulata (Invernizzi et al., 2007), which bear 

many similarities to GP neurons. It should be noted, however, that our model DB covered all 

permutations of different conductance settings in a coarse search grid. Some areas of this 

parameter space may not be visited by biological neurons because of homeostatic plasticity 

rules (see Discussion).

Another possible explanation for inconsistent drug effects is given when two successive 

increases of one conductance (low to medium, then medium to high) produce opposite 
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effects on spike rate although all other conductances remain the same. NaF presented a good 

candidate for a conductance producing such effects, because many more models showed an 

increase in spike rate when NaF was increased from 125 to 250 S/m2 than for an additional 

increase to 500 S/m2 (supplemental Table 6, available at www.jneurosci.org as supplemental 

material). We specifically queried the DB for models in which the spike rate increased for a 

conductance increase to 250 S/m2, but for an additional increase to 500 S/m2 showed a 

decrease of at least 20%. We found that these conditions were predominantly fulfilled by 

model conductance backgrounds with a high level of Kv3 (n = 663 of 10,206 backgrounds; 

6.5%) (Fig. 5A). To examine this reversal of spike rate change at a NaF density near 250 

S/m2 and its dependency on Kv3 more closely, we picked one of the models showing this 

effect and used it as a starting point to create a finer-grained model DB to fill in the coarse 

search grid of the original DB. To create this finer-grained DB, we used 20 levels of both 

NaF and Kv3 densities on a logarithmic scale covering the density range of the coarse-

grained DB. Even at the finer resolution, we found that the increase and then decrease in 

spike rate with increasing NaF were dominated by sudden boundaries in spiking behavior 

(Fig. 5B). Representative raw data traces show that the model first underwent a change from 

depolarization block to fast spiking with increasing NaF and then underwent a second 

transition to a slower spiking mode with a different spike shape.

Multiple combinations of channel density could lead to similar activity

Experimental studies have shown that homeostatic plasticity can lead to neurons showing 

similar electrophysiological properties by choosing different combinations of conductance 

densities (Golowasch et al., 1999; Bucher et al., 2005). Similarly, in computer simulations, 

different combinations of conductance densities can lead to similar electrophysiological 

properties (Bhalla and Bower, 1993; Foster et al., 1993; DeSchutter and Bower, 1994; 

Goldman et al., 2001; Prinz et al., 2003; Achard and De Schutter, 2006). Thus, constructing 

an “ideal” computer model of a given type of neuron with the “correct” set of conductances 

presents an ill-posed problem. A more general approach to understand which conductance 

densities can result in a desired behavior is to assess the space of solutions in close 

proximity to a given electrophysiological set of properties. We used a systematic approach to 

find GP models in our DB that were maximally disparate in parameters but minimally 

different in measured properties to our original model. To quantify the similarity in neuronal 

activity, we defined an overall “distance” metric between neuron representations in our DB 

by combining measured distances of a comprehensive set of electrophysiological properties. 

Each measure was weighted in inverse proportion to its SD in the physiology DB with the 

option of weighting particular properties more heavily (see supplemental material, available 

at www.jneurosci.org). We then calculated distances of all model neurons to the baseline 

model that replicated typical GP neuron properties. We plotted these data as a distance 

matrix along the dimensions of parameter distance and measured property distance (Fig. 

6A). This overall landscape of parameter distance versus measure distance relative to our 

reference model confirmed that measure distance generally increased with parameter 

distance. It also showed that many models existed with a relatively high parameter distance 

and a low measure distance seen from the light-colored areas on the left of the distance 

matrix. From this distance landscape of the model DB, we searched for models with a large 

parameter distance (e.g., 10) and low measure distance. Of 7121 models with parameter 
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distance 10, 54 models had <1 SD of measure distance. From the top 10 models with lowest 

measure distances, we picked an example model with highly similar spiking activity to the 

baseline model, whereas eight of nine of its conductance parameters differed (Fig. 6B,C). 

Although a general analysis of how similar activity can emerge from different parameter 

settings is beyond the scope of this study, an examination of conductance density differences 

between the example and baseline models (Fig. 6C) in reference to the average effect of each 

conductance (Fig. 4C) suggests some specific compensatory mechanisms. For example, the 

picked model differed by an increase in CaHVA conductance and a decrease in SK 

conductance from the baseline one. The increased CaHVA conductance will activate the 

remaining SK conductance more strongly and may lead to a comparable overall SK current. 

Thus, many different matched combinations of CaHVA and SK current could result in 

similar model behaviors. Similarly, the observed reduction in NaP is expected to lead to a 

decrease in spike rate, as well as affect other measures. These effects could be compensated 

for by the observed decrease in KCNQ, because these two conductances have opposite 

effects on most measures (Fig. 4C). It is important to note that disparate parameter 

combinations leading to similar electrophysiological properties are not an artifact of 

computer simulations but have been observed experimentally as well (Golowasch et al., 

1999). Nevertheless, these neurons or models are not functionally identical, because the 

different background conductances would cause them to respond differently to 

neuromodulation that upregulates or downregulates specific channels (see above). Our 

analysis here specifically predicts that conductance densities in GP could be highly variable 

while overall behavior is maintained because of compensatory changes. The presence of 

variability in GP conductances can be experimentally tested by using current-clamp and 

voltage-clamp analysis in brain slices. Our modeling results also indicate that such an 

analysis is important to understand the variability in the effect of drugs on different GP 

neurons.

The model DB approach allows finding models that best match the properties of individual 
recordings

As shown in Figure 2, our physiology DB of 146 recorded GP neurons shows a large range 

in property distances. To better understand how conductance density differences could 

explain the physiological properties of individual neurons, we used the distance metric 

defined above to compare recordings and models. In particular, we identified the best 

matches in the model DB for the two distinct GP neurons shown in Figure 2A by their 

minimal property distance to the recordings. These best matches in the model DB fit the 

distinguishing features in the two real neurons such as the sag, firing rate, the fI relationship, 

and rate adaptation quite well (Fig. 7A,B). A comparison of the conductance parameters of 

the DB models best matching each recording showed differences in eight of nine channel 

density parameters (Fig. 7C). An understanding of some of the conductance differences 

between the best matching models can be gained by comparing density changes with the 

matrix in Figure 4C that predicts the mean effect of conductances on physiological 

properties. Sag during hyperpolarization was greater in neuron s25 than neuron s61, and this 

greater sag was matched by a model with higher HCN density, as expected. Similarly, but 

less intuitively, the higher spontaneous spike rate of neuron s61 was matched by a model 

with higher NaP and Kv3 conductance and lower CaHVA conductance, because these were 
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the major conductances affecting this measure in the average effect matrix. However, KCNQ 

was not lower in this model despite its strong influence on spontaneous spike rate. This 

demonstrates that best matches between recordings and models cannot be obtained from just 

combining average channel effects on individual properties, because each channel also 

influences multiple other properties.

Despite the overall good match between recorded neurons and best-matching models, a 

detailed comparison of the measurements showed remaining quantitative differences 

between the selected neurons and matching models (Fig. 7D). These differences may be 

partly attributable to the coarse granularity of our search grid, and matches might be 

improved with gradient descent searches in the local parameter neighborhood of our 

identified best matches. Nevertheless, we expect remaining differences even after such 

searches because of inherent model limitations such as simplified intracellular Ca2+ handling 

and missing pump currents. In contrast to just creating a single “optimized” model, the DB 

approach allows the identification of mismatches that are not caused by conductance density 

settings, and it facilitates the eventual incorporation of additional processes into the model 

that best address such mismatches.

Comparison of multiple models that match specific recorded neurons

Given our above findings of multiple models with similar physiological properties, we 

expected to find multiple good candidate models in our DB that match the behavior of 

particular recorded neurons. Many candidate models were indeed similar, because the 

distance between the example target neuron s61 and matching models only increased from a 

mean of 0.93 SDs (SD determined from variance in DB of 146 recorded neurons) for the 

selected set of properties to 0.98 SD for the 50th ranked model (Fig. 8A) and to 1.15 SD for 

the 1000th ranked model (Fig. 8C). The distances of these top-ranking candidate models 

were significantly lower than the mean distance of 2.5 and its SD of 1.1 obtained from all 

matches to this neuron in the model DB. The individual measure distances showed that all 

top 50 ranking models tended to best match the same properties of the target neuron s61 

(Fig. 8A). For this neuron, the most closely matched feature was the sag at −100 pA CIP 

period throughout the ranks, whereas the worst matched feature, by far, was the AP 

threshold during the +100 pA current injection period. This threshold had only a small SD in 

the physiology DB (Fig. 8B), and models in the DB generally showed a lower AP threshold, 

which is potentially attributable to a mismatch in the NaF kinetics or voltage dependence. 

The matches to this neuron also showed an interesting interaction between the AP half-width 

and AHP depth measures because no model was able to match both of these measures well 

at the same time, and thus different models switched between solutions that satisfied one or 

the other (Fig. 8A). To determine the range of conductance densities that could account for 

model behaviors similar to neuron s61, we plotted the conductance level distribution of the 

top 50 matches (Fig. 8D). We found that some conductances were constrained primarily to 

one (NaF, Kv3, HCN) or two (NaP, Kv4, CaHVA) levels, whereas the remaining ones (Kv2, 

KCNQ, SK) took on all three possible conductance levels in a considerable number of 

models matching neuron s61. Again, these findings highlighted the point that multiple 

conductance combinations could result in similar physiological properties because each 

property is controlled by multiple conductances.
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To test the hypothesis that manipulating channel conductance densities can completely 

explain the observed variability in GP neuron recordings, we applied the best-matching 

algorithm to each of the 146 recorded GP neurons (Fig. 9). The results indicated that we 

were able to match >80 recordings within 1.0 SD averaged across properties. Thus, the 

model DB approach is generally suited to find models for individual recordings and to 

generate future network models that incorporate the natural heterogeneity of recorded 

populations of neurons.

Experimental testing of a key modeling prediction: variability of channel block outcomes

A key finding of our modeling results was that the effect of changing the density of an 

individual conductance on a given measure, such as spike width or spike rate, should be 

quite variable because of the interaction with the combination of other conductances present 

(Figs. 3, 4A,B, 5). Even conductances that are generally expected to have a consistent effect 

on spiking behavior, such as NaF and delayed rectifiers (e.g., Kv3), showed highly variable 

effects on these behaviors in the presence of different conductance backgrounds. The 

prediction of variable effects of reduced channel densities is testable by applying partial 

block concentrations of toxins in a set of biological neurons, which presumably would also 

display some variability in conductance density backgrounds. Because Na+ current is a 

major contributor to spiking behavior and showed conductance background-dependent 

effects in our model, we undertook partial block experiments of Na+ current by adding low 

concentrations of tetrodotoxin (TTX; 7–15 nM; n = 7) to the slice perfusate during a GP 

recording after having established baseline spiking behavior. TTX blocks both fast and 

persistent Na+ current (Crill, 1996), therefore the matching model comparison to partial 

TTX block consists of a joint reduction in NaF and NaP conductances. At the concentrations 

used, the Na+ conductance should be reduced by 50–80% (Osorio et al., 2005; Mercer et al., 

2007). In the model, a joint reduction in NaF and NaP conductance led to a variable 

reduction in spike rate during 100 pA current injection (Fig. 10A,C), but only in very rare 

cases to an increase. Our experiments revealed a similar distribution of effects (Fig. 10C) 

ranging from no effect to a dramatic reduction (see supplemental Fig. 4, available at 

www.jneurosci.org as supplemental material, for effects on individual cells). The most 

extreme reductions in spike rate occurred both in experiments and in the model because of 

developing depolarization block for low effective Na+ conductance densities (Fig. 10A). A 

similar match between experiments and simulations was also observed for variable 

reductions in spike amplitude and increases in spike width (Fig. 10B,C). Thus, overall a 

good match between NaF/NaP reductions in the model and partial TTX block in slice 

recordings was found. This supports the notion that neuromodulators that upregulate or 

downregulate Na+ channels will have different effects on different neurons and affect many 

aspects of spiking dynamics simultaneously. Nevertheless, cases of reversing effects that 

were present in a very small population of models were generally not found in our 

experiments, possibly because one might need hundreds of recordings to find such cases. It 

is also possible that the conductance backgrounds associated with reversing effects of Na+ 

channel density on spike rate are not found in biological GP neurons. The only reversing 

effect seen in a TTX block experiment was the increase in spike amplitude in one neuron 

during 100 pA current injection after TTX application (Fig. 10C). On closer inspection, this 

was likely attributable to absence of spontaneous spiking preceding the 100 pA current 
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injection, which can lead to increased sodium channel availability at the onset of the CIP 

because of the removal of slow inactivation in the preceding period.

Whereas TTX blocks two conductances present in the model, a low concentration of 100 μM 

4-aminopyridine (4-AP) results in selective and approximately half-maximal block of Kv3 

channels in GP neurons (Baranauskas et al., 1999). Thus, as a second test of our model 

predictions, we used 100 μM 4-AP block in some GP neurons (n = 8). The model DB 

predicted that reduced Kv3 conductance should result in a pronounced but variable spike 

width increase, a small but highly variable spike amplitude increase, and a highly variable 

spike rate increase during +100 pA current injection (Fig. 4B). The experimental findings 

confirmed these major predictions (Fig. 10D,E), although the median effects and the amount 

of variability were not identical. In particular, the spike width increase was generally larger 

in the experimental data than in the model, even when Kv3 was reduced 25-fold (Fig. 10C). 

In fact, the effects after application of 100 μM 4-AP were generally better matched by a 

much larger than twofold reduction in Kv3 in the model, suggesting that Kv3 is somewhat 

underrepresented in the default model (see Discussion). Some unexpected findings emerged 

as well. Two of the eight recordings showed doublet spike firing during +100 pA CIP 

injection after application of 4-AP (Fig. 10E). This led to a post hoc search in the model DB, 

which also revealed a transition to doublet firing during 100 pA current injection for some 

models after reduction of Kv3 (Fig. 10E). This similarity between model and experiments as 

to the induction of doublet firing by partial Kv3 block for some conductance backgrounds 

gives additional confidence in the mapping of the dynamical behaviors between the two 

domains and illustrates the back and forth between experiment and simulation to gain new 

insights in the range of GP neuron behaviors.

Discussion

We used a brute-force DB search approach (Prinz et al., 2003) to examine the dependence of 

the physiological properties of a morphologically realistic GP neuron model on the density 

of nine different membrane conductances that are known to be expressed in GP neurons. By 

building a Matlab DB of 100,602 models with different parameter combinations, we could 

use graphical methods and search algorithms to determine the interactions between 

membrane conductances and measured electrophysiological properties. The construction of 

a physiology DB of 146 GP neuron recordings containing measures of the same properties 

allowed us to make a detailed comparison between the variability found in real neurons and 

the variability found in a model by changing conductance densities. Finally, we were able to 

confirm the variability of physiological effects of conductance density changes by partial 

block experiments of NaF/NaP and Kv3 currents.

Model DB indicates that conductance density variations can account for most 
physiological variability within the GP

Our finding that distributions of characteristic properties (e.g., spike rate, spike width, spike 

frequency adaptation, sag) were similar in the model and physiology DBs indicates that 

conductance density and morphological variability can account, to a large degree, for the 

experimentally observed spread of electrophysiological behaviors in GP neurons. This 
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assessment is supported by experimental studies that find a severalfold conductance density 

variability in different types of neurons (Turrigiano et al., 1995; Desai et al., 1999; MacLean 

et al., 2005; Marder and Bucher, 2007). Nevertheless, conductance parameters such as 

activation curves and time constants are also variable because of modulation. For example, 

NaP half-activation can be modulated by dopamine (Gorelova and Yang, 2000), and glial 

cell line-derived neurotrophic factor decreases the activation time constant of CaHVA 

channels in dopamine neurons (Wang et al., 2003). Varying these parameters will introduce 

additional effects on neural dynamics, which could be similar to or distinct from the 

variability found with conductance density modulation.

The model DB allowed us to match individual GP recordings with models showing a high 

degree of similarity in properties. However, the matches were nonunique in that multiple 

models with quite different conductance density combinations could result in equally close 

matches to a given recording. Multiple channel combinations that result in a similar target 

behavior have also been found in Purkinje cell models (Achard and De Schutter, 2006). Such 

nonuniqueness is expected from theoretical and modeling studies of homeostatic plasticity, 

which have shown that homeostatic mechanisms do not lead to a single fixed combination of 

channel densities, but rather to a range of different channel combinations that can all achieve 

the appropriate target behavior (Liu et al., 1998; Abbott, 2003; MacLean et al., 2005). The 

model DB approach is well suited to explore the consequence of nonuniqueness in 

biological neurons for effects of neuromodulation and synaptic integration in networks. 

Specifically, the dynamic variability in individual GP neurons will be important to consider 

in network simulations that explore the causes of network bursting observed in PD 

(Bergman et al., 1994; Wichmann et al., 1999).

The GP model DB generates novel insights into the control of physiological properties by 
multiple voltage-gated conductances

The model DB approach enabled us to perform an analysis of the interdependence between 

multiple conductances in controlling seemingly distinct physiological properties of GP 

neurons such as spike width, spontaneous spike rate, and fI curves. Previous work in single-

compartment models of invertebrate burst pattern generation (Prinz et al., 2003) has shown 

that many electrophysiological properties are affected by multiple conductances. Similarly, 

we found that most GP properties are affected by multiple, if not all, conductances present 

(Fig. 4C). In turn, a change in the density of any given conductance had a pleiotropic effect 

on multiple physiological properties. Given the set of conductances found in GP, the context 

dependence of the effect of changing any given conductance on physiological properties was 

surprisingly large, because severalfold differences and even reversals of effects were found 

for different conductance backgrounds. Although such context dependence would seem to 

make the results of neuromodulation and plasticity random, it also generates a rich repertoire 

of outcomes, the most useful of which could be stabilized through selection, a mechanism 

that has been hypothesized to be the cornerstone of biological learning rules (Edelman and 

Gally, 2001; Seth and Edelman, 2007). A selection of conductance backgrounds through 

homeostatic plasticity resulting in particular behaviors also makes it unlikely that biological 

neurons exhibit all possible combinations of conductance densities that are present in our 

complete grid of parameter combinations in the model DB. Constraints on channel density 
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combinations in biological neurons have been found and were present on homeostatic 

plasticity mechanisms (MacLean et al., 2005; Schulz et al., 2007) as well as 

neuromodulators (Khorkova and Golowasch, 2007). Thus, the dynamical behaviors of some 

of our random conductance combinations are likely nonbiological and should be interpreted 

with this perspective.

Specific predictions resulting from the GP model DB about possible roles of 
neuromodulators in changing intrinsic GP properties

Many insights into possible mechanisms of PD were made possible by a model of 

differential effects of dopamine on the spike rate in the direct and indirect pathway of the 

basal ganglia (Albin et al., 1989; Delong, 1990), but the exact mechanisms of rate changes 

in GP remain elusive. Our model DB suggests that the persistent sodium (NaP) and M-type 

(KCNQ) channels have a predominant but opposite effect on spike rate. Both of these 

channels are known to be affected by neuromodulation through protein kinase A and PKC 

pathways (Brown and Yu, 2000; Shen et al., 2005; Scheuer and Catterall, 2006). Because 

many neuromodulators affect these pathways, the change in the neuromodulatory milieu in 

PD and/or the treatment with levodopa could lead to a change in KCNQ and/or NaP 

conductances. Interestingly, our analysis also showed an effect of NaP conductance on the 

strength of rebound after hyperpolarization. Because rebound behavior can support bursting, 

this effect may be interesting with respect to the emergence of synchronized GP bursting in 

PD (Raz et al., 2000). A second conductance we found to affect rebound behavior was HCN, 

which has previously been implicated in the synchronization behavior of GP in PD (Chan et 

al., 2004). This finding is notable in light of recent reports that HCN channels in GP neurons 

are modulated by serotonin (Chen et al., 2008; Hashimoto and Kita, 2008). Serotonin is of 

significant clinical interest in drug-induced dyskinesias (Brotchie, 2005).

Validation of GP neuron model construction from model DB approach

The match between specific models in our DB and different recordings suggests that the 

kinetics of GP conductances we derived from the literature provided a good starting point to 

simulate GP neuron behavior. We found the model DB approach very useful in identifying 

remaining mismatches between model behavior and recordings that could not be 

compensated for by channel density variations. The most obvious mismatch was given by a 

lower spike threshold in the model, which could be caused by a difference in sodium 

channel properties. Sodium channel activation is notoriously hard to determine 

experimentally and to model accurately (Naundorf et al., 2006), and clearly our model will 

benefit from future revisions of NaF kinetics. In fact, the model DB approach is well suited 

to address this problem by building a DB that parameterizes NaF and Kdr (Kv2 and Kv3) 

kinetics to find improved spike-threshold matches with recordings. The use of 

morphologically complete neurons is important in this regard as well, because the spatial 

distribution of sodium channels in axonal and dendritic structures in addition to the soma has 

a large impact on AP shape and threshold (McCormick et al., 2007; Shu et al., 2007).

High-dimensional conductance-based neuron models have sometimes been criticized for 

providing arbitrary solutions to matching experimental data. The model DB approach 

addresses this criticism by revealing the space of possible matches to a given experimental 
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set of data. Although the potential search space is very large, this effort is helped by the 

observation that physiological properties generally vary smoothly over large areas of a 

parameter space made of multiple Hodgkin–Huxley conductances (Foster et al., 1993; 

Olypher and Calabrese, 2007). Our results make the specific prediction that partial block of 

specific conductances in slice recordings will lead to variable effects in different neurons, 

even if they show similar baseline activity. Such partial block experiments cannot only be 

used to validate model predictions, but also have important implications for the effect of 

neuromodulation and drugs used in the treatment of disease. We used two types of partial 

block experiments with the application of 7–15 nM TTX or 100 μM 4-AP in brain slice 

recordings to selectively reduce NaF/NaP or Kv3 conductance in GP by 50–80%. We could 

indeed verify that biological GP neurons show variable responses to drug application in the 

direction predicted by the model. The match of a combined NaF/NaP reduction between 

model and experiment was generally quite good, whereas reduction of Kv3 currents in the 

model had smaller effects than in the experiments. This could be attributable to the relatively 

low density of Kv3 conductance in the original hand-tuned model (10 S/m2 compared with 

500 S/m2 of NaF), so that only the largest values of Kv3 in the DB (50 S/m2) could show 

significant impact after reduction. In addition, it is possible that the fast inactivation of NaF 

in the biological neurons was somewhat slower than in the simulated NaF kinetics, so that 

broader spike-waveforms were possible after the elimination of Kv3 current. Such remaining 

small differences between experimental outcomes and modeling predictions are expected 

because of the many simplifications and parameter choices inherent to the process of 

creating detailed compartmental models and lead to a fruitful process of model improvement 

that parallels our improved understanding of the underlying neural dynamics. It is important 

to note that an ongoing feedback cycle between modeling and experimentation provides the 

basis for this process.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The baseline GP neuron model reflects typical features of GP neurons. A, A representative 

GP neuron (s34) and the baseline model (t9842) that matches its electrophysiological 

characteristics such as firing rate, AP shape, and envelope of AP amplitude decay during a 

depolarizing current injection. B, Anatomical heterogeneity in the GP is represented in our 

DB study by three reconstructed GP neuron morphologies. The length of the axons is 

truncated in this depiction.
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Figure 2. 
Electrophysiological and anatomical heterogeneity in the GP is replicated in the model DB. 

A, Electrophysiological heterogeneity in the GP is shown by two example neurons (s25 and 

s61) that exhibit distinct characteristics such as the occurrence of a voltage “sag” with 

hyperpolarizing current stimulus and different spontaneous firing rates. B, C, Histograms of 

electrophysiological measurements from the physiology neuron DB (B) compared with the 

histograms of measurements from the model DB (C). The bins representing models with no 

spontaneous spiking were omitted for clarity in the rate and rebound histograms. spont. rate, 

Spontaneous rate; AP amp., AP amplitude; SFA, spike frequency accommodation.
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Figure 3. 
Examples of how a change in the density of a particular conductance affects multiple 

individual measurements of model neuron properties and how each property is affected by 

multiple conductances. A, Effects of NaF and Kv3 on the AP half-width. B, Effects of 

CaHVA, Kv2, and NaF on AHP magnitude. C, Effects of KCNQ and SK on firing rate (see 

supplemental Table 3, available at www.jneurosci.org as supplemental material, for the 

conductance density parameters of these example models).
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Figure 4. 
Context dependence of channel effects on measures in the entire model DB. A, As an 

example of context-dependent effect, this model had a smaller effect of NaF on AP half-

width (left) than the model shown in Figure 3A. The histogram of change in AP half-width 

with NaF conductance increases (middle) shows that the effect of NaF on the AP half-width 

varied between −1.5 and 0 ms based on the background context. As another example, the 

histogram of changes in firing rate during +100 pA CIP with KCNQ over all combinations 

of background conductances also showed broadly distributed values. The S/m2 ranges above 
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the plots indicate the change in the conductance value. B, Error-bar plot representing mean 

and SD of the distribution of the effect caused on some important measures by change in 

conductance (including the examples from A). Each bar indicates the effect caused by a 

conductance increase of the magnitude indicated on the x-axis (i.e., the bar labeled with 125 

S/m2 NaF shows the effects of increasing the conductance from 125 to 250 S/m2). C, Table 

representing context-independent total effect on measure value with change of conductance 

value from its lowest to highest level. The color of each box represents the sum of mean 

effect in B for each measure–conductance pair. Each row of the table is normalized to a 

maximal value of +1.0 or −1.0 for the largest absolute change seen for the respective 

measure.
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Figure 5. 
Analysis of the effect of NaF and Kv3 channels on the firing rate. A, Change of spike rate 

with four NaF and three Kv3 levels, averaged over the 663 models with strongly reversing 

effects in the DB. Rate is measured during the 100 pA current injection period. avg., 

Average. B, Left, Same landscape from A, in a DB created with finer-grade values of 20 

steps each for NaF and Kv3 for one of the 663 models (see supplemental Table 4 for the 

selected model parameters). Right, Line plot of spiking frequency for increasing values of 

NaF when Kv3 is held at 50 S/m2. C, Example voltage traces from the three distinct regions 

of spike frequencies shown in B.
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Figure 6. 
Models with different channel densities could lead to similar behavior. A, The landscape of 

relationship between distances in model parameters and in electrophysiological properties of 

all models compared with the starting model showed regions where models were similar in 

activity but disparate in parameters. The grayscale color in this two-dimensional histogram 

indicated the percentage of models out of all models with a parameter distance that fall 

within the range of property distance denoted on the x-axis. Each row in the histogram was 

normalized by the bin with maximal number of models indicated with the brightest white 

(see supplemental Table 5, available at www.jneurosci.org as supplemental material, for the 

normalization coefficients). For example, there are only very few models with a very small 

parameter distance to the original model, and all of these show a small distance in properties 

(bottom left corner of plot). There are also only a small number of models with a maximal 

distance in parameter space, and most of these show an intermediate property distance (top 

row). There are many models with intermediate parameter distances, and these show a large 

range of property distances, among them the largest observed total property distances 

(middle rows). STD, Standard deviation. B, C, The baseline model is compared with the 

model found from the landscape in A (white arrow) with the largest discrepancy between 

parameter distance (10) while showing a small property distance (0.7) to the baseline model. 

Raw traces show the overall similarity between these two models (B). Nevertheless, eight of 

the nine conductance parameters are substantially different between the two models, 

whereas only the level of NaF and the morphology of the neuron remained the same (C).
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Figure 7. 
Models that best match the distinguishing features of the two GP neurons s25 and s61 from 

Figure 2A. A, B, Comparison of the two recorded neurons and models selected for best 

matching their pronounced differences in physiological properties. The raw data traces for 

±100 pA CIP are aligned with instantaneous firing rate plots shown below. Additional plots 

show the shapes of the second AP during the +100 pA CIP period and a graph of the firing 

rate versus injected current (fI curve). C, Comparison of conductance values between the 

two models matching the two different recordings highlight their distinctions. D, 

Comparison of measures between the neurons and matching models. The mean and standard 

deviation (STD) of the physiology DB is shown in the first column to allow a comparison of 

the selected neurons with the sample mean and variance. The STD of the physiology DB 

also indicates the relative weight of the measure used in our matching algorithm (see 

Materials and Methods).
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Figure 8. 
Multiple similar models matching neuron s61 were found. A, Color plot of measure 

distances of top 50 ranking models to the recorded neuron shows the similarities between 

models. The colors are scaled by the standard deviation (STD) of the respective measure in 

the DB of 146 recorded neurons. The measures on the y-axis were sorted to have better 

matching measures at the top. The superimposed white-line plot shows the cumulative 

distance measure of each of the models, the scale bar of which appears to the right. B, 

Quantitative comparison of actual measure values between the physiology DB, neuron s61, 

best-matching model t1768, and the mean and SD of the top 50 models. avg., Average. C, 

Plot of sorted cumulative measure distance for the 1000 best-matching models shows that 

distance to the target neuron increases more steeply in the lower ranks. D, Differences in 

conductance densities found in the top 50 models are shown with distribution plots of 

conductance parameters.
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Figure 9. 
Model DB of varying conductance densities can provide matches to all 146 GP neurons. 

Best-matching models to each of the 146 recorded GP neurons were shown in the same way 

as in Figure 8A, except that the measures were sorted differently according to overall match 

to all recorded neurons. Also, the neurons are sorted from most easily matched to most 

difficult match on the x-axis. The superimposed white-line plot indicates the cumulative 

distance value of the best matches to each neuron. STD, Standard deviation.
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Figure 10. 
Comparison between variable effects of NaF/NaP or Kv3 density reductions in the model 

and matching partial block experiments using TTX or 4-AP in brain slices. A, Examples of 

firing rate changes in whole-cell recordings after application of 10 and 15 nM TTX (left) 

and in the model when the two sodium conductances (NaF and NaP) were reduced twofold 

or fourfold with the same remaining conductance background (right). B, D, Examples of 

spike shape changes after TTX or 4-AP application (left panels) or reduction of NaF/NaP or 

KV3 conductances in the model (right panels). For the 4-AP and Kv3 manipulation, 

increases in spike amplitude (amp.) were seen in some recordings and in some models with 

specific combinations of other conductances present. Note that the spike width increased in 
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all cases, but to a different degree. TTX application matched Na+ conductance manipulation 

in the model as smaller spike amplitudes resulted only in some recordings and for some 

model conductance backgrounds. C, Statistics of measure changes obtained after applying 

TTX in slice recordings (left column; n = 7 neurons; 7–10 nM TTX). The effects of multiple 

measures for all seven neurons recorded with one or two concentrations of TTX are given in 

supplemental Figure 4 (available at www.jneurosci.org as supplemental material). The range 

of observed effects of TTX on key measures generally matched the effect of a joint lowering 

of NaF and NaP conductance in model backgrounds (n = 10,206 models). In these box plots, 

red lines denote the population median, and the blue box denotes upper and lower quartiles. 

TTX, Experiment TTX. E, Two of eight recorded neurons exhibited doublets during 100 pA 

current injection after application of 4-AP, as did 4 of 11 model backgrounds randomly 

picked out of 1155 conductance backgrounds when their Kv3 conductance was lowered 

from 50 S/m2. This feature was searched for manually because a measure of doublets was 

not present in our DB. In the example shown, the second spike in each doublet was more 

attenuated in amplitude in the experiment than the model. An additional reduction from 250 

to 125 S/m2 of the NaF conductance in the model also led to pronounced amplitude 

attenuation of second spikes in doublets (data not shown). Parameter backgrounds of the 

example models are listed in supplemental Table 7 (available at www.jneurosci.org as 

supplemental material).
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Table 1

Conductance density parameter values used to generate the model DB

Parameters Name Values (S/m2)

NaF Fast, transient Na 125, 250, 500, 1000

NaP Persistent Na 0.5, 1, 2

Kv2 Slow delayed rectifier 0.1, 1, 10

Kv3 Fast delayed rectifier 2, 10, 50

Kv4f A-current 10, 20, 40

KCNQ M-current 0.08, 0.4, 2, 10

SK Ca-activated AHP K 2, 4, 8

HVA High-threshold Ca 0.03, 0.3, 3

HCN H-current 0.04, 0.2, 1, 5

Morph Morphology 1, 2, 3
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