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Summary

The characterization of baseline microbial and functional diversity in the human microbiome has 

enabled studies of microbiome-related disease, microbial population diversity, biogeography, and 

molecular function. The NIH Human Microbiome Project (HMP) has provided one of the broadest 

such characterizations to date. Here, we introduce an expanded second phase of the study, 

abbreviated HMP1-II, comprising 1,631 new metagenomic samples (2,355 total) targeting diverse 

body sites with multiple time points in 265 individuals. We applied updated profiling and 

assembly methods to these data to provide new characterizations of microbiome personalization. 

Strain identification revealed distinct subspecies clades specific to body sites; it also quantified 

species with phylogenetic diversity under-represented in isolate genomes. Body-wide functional 

profiling classified pathways into universal, human-enriched, and body site-enriched subsets. 

Finally, temporal analysis decomposed microbial variation into rapidly variable, moderately 

variable, and stable subsets. This study furthers our knowledge of baseline human microbial 

diversity, thus enabling an understanding of personalized microbiome function and dynamics.
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Introduction

The human microbiome is an integral component in the maintenance of health1,2 and of the 

immune system3,4. Population-scale studies have aided in understanding the functional 

consequences of its remarkable inter-individual diversity, the earliest of which include 

MetaHIT5,6 and the Human Microbiome Project1 (referred to here as HMP1). Studies 

continue to focus on the gut7–9, with fewer population-scale cohorts investigating vaginal10, 

oral11, or skin12 microbial communities. HMP1 remains the largest body-wide combined 

amplicon and metagenome survey of the healthy microbiome to date.

Here, we report on an expanded dataset from the HMP (HMP1-II), consisting of whole-

metagenome sequencing (WMS) of 1,631 new samples from the HMP cohort13 (for a total 

of 2,355; Extended Data Fig. 1a, Extended Data Table 1a, Table S1). New samples greatly 

expand the number of subjects with sequenced second and third visits, and primarily target 

six body sites (from 18 total sampled): anterior nares, buccal mucosa, supragingival plaque, 

tongue dorsum, stool, and posterior fornix. After quality control (Methods), the dataset 

consists of 2,103 unique metagenomes and 252 technical replicates, which were used in all 

following analyses. Profiles, raw data, and assemblies are publicly available at http://

hmpdacc.org (Extended Data Table 1b).

Results

Body-wide strain diversity and ecology

The diversity and spatiotemporal distributions of strains were first investigated using 

StrainPhlAn14 (Fig. 1), which identifies the dominant haplotype (“strain”) of each 

sufficiently abundant species in a metagenome (Methods; Table S2). Most previous culture-

independent strain surveys have targeted only the gut15,16, and body-wide phylogenetic 

distances (quantified using the Kimura two-parameter distance17) suggest that all other 

habitats possess significantly higher strain diversity (Fig. 1a). Consistent with previous 

observations15,18, strain profiles were stable over time, with differences over time 

consistently lower than differences between people (Fig. 1a, 1b). Nevertheless, technical 

differences were even lower, indicating a baseline level of intra-individual strain variation 

over time (Extended Data Fig. 2b).

Several species exhibited differentiation into body site-specific subspecies clades (Fig. 1c; 

Extended Data Fig. 2e–u), defined here as discrete phylogenetically-related clusters of 

strains, according to a Silhouette-based score of niche-association (Methods). This is readily 

visible in extreme cases, such as Haemophilus parainfluenzae (Fig. 1d), where distinct 

subspecies clades are apparent in the supragingival plaque, buccal mucosa, and tongue 

dorsum. Other species with notable site-specific subspecies clades included Rothia 
mucilaginosa, Neisseria flavescens, and a Propionibacterium species. Other species did not 

sub-speciate within body sites, but instead specialized in clades differing among individuals 

(e.g. Eubacterium siraeum, Fig. 1e, or Actinomyces johnsonii, Extended Data Fig. 2d); 

others showed no discrete subspecies phylogenetic structure at all in this population (e.g. 

Streptococcus sanguinis, Extended Data Fig. 2u). Interestingly, no subspecies clades were 
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found to be specific to either of the two cities in the study (Extended Data Fig. 2a), although 

geographically localized subspecies population structure has been observed in cohorts with 

greater geographic range15.

Culture-independent strain profiling, in combination with the 16,903 NCBI isolate genomes 

used as references in this analysis19, provided a new quantification20 of how well-covered 

human microbial diversity is by these references (Fig. 1f). Well-sequenced species such as 

Escherichia coli (Extended Data Fig. 2c) and the lactobacilli showed little divergence from 

reference isolates. However, many prevalent and abundant species in the body-wide 

microbiome were strikingly diverged from the closest available reference genomes. Notable 

clades lacking isolate genomes representative of those in the microbiome included 

Actinomyces (Fig. 1b), Haemophilus parainfluenzae (Fig. 1d), Eubacterium rectale, several 

Streptococcus and Bacteroides species, which thus represent priority targets for isolation.

Due to improvements in methodology and reference genomes, new species-level taxonomic 

profiling included eukaryotes, viruses, archaea, and an additional 54 bacterial species in 

these metagenomes relative to HMP1 data1. The latter contained prevalent bacteria such as 

Bacteroides dorei, B. fragilis, Alistipes finegoldii, A. onderdonkii, and unclassified species 

of Subdoligranulum and Oscillibacter. The former included Methanobrevibacter, 
Malassezia, and Candida (Extended Data Fig. 1c, as well as several viruses: 

Propionibacterium phage in the anterior nares, Streptococcus phages in oral sites, and a 

Lactococcus-targeting C2-like virus in stool. Searching for co-occurrence patterns with non-

bacterial species (Fisher’s exact test, presence/absence threshold of 0.1% relative abundance; 

Table S3), we found that M. smithii tended to co-occur with several Clostridiales species in 

the gut, including members of Ruminococcus, Coprococcus, Eubacterium, and Dorea (FDR 

< 0.1), reinforcing previous observations21 and consistent with co-occurrence patterns of 

methanogens and clostridia in lean vs. obese individuals22. Prominent Streptococcus phages, 

which were the most abundant in the oral cavity, also co-occur with numerous Streptococcus 
species in oral sites, suggesting that the virus predominantly exists as a prophage, as 

observed previously23.

Core pathways of the human microbiome

Strong prevalence (“coreness”) of a molecular function across niche-related microbial 

communities can be explained by 1) broad taxonomic distribution of the function (as in the 

case of essential housekeeping functions), or by 2) specific enrichment of the function 

among taxa inhabiting that niche (possibly because the function is selectively advantageous 

there). We investigated these mechanisms among core metabolic pathways of the human 

microbiome by functionally profiling all HMP1-II samples with HUMAnN224 (Fig. 2, 

Extended Data Fig. 3, Table S4; Methods). We focused on 1,087 metagenomes representing 

the first sequenced visit from each subject at the six targeted body sites. We considered a 

pathway to be “core” to a specific body site (niche) if it was confidently detected in >75% of 

individuals with strong taxonomic attribution and a taxonomic range consistent with the 

human microbiome. From a starting set of 857 quantifiable MetaCyc25 pathways, we 

detected 950 instances of a pathway being core to a body site: 258 pathways were core to at 

least one body site, 176 were core to body sites from multiple body areas, and 28 were core 
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to all six targeted body sites (Fig. 2a and Extended Data Fig. 3a). For convenience, we refer 

to these classes as “core” pathways, “multicore” pathways, and “supercore” pathways, 

respectively.

To distinguish between coreness resulting from broad taxonomic distribution versus niche-

specific enrichment, we classified pathways according to their taxonomic range (quantified 

as the fraction of non-human-associated genera to which they were annotated in BioCyc). 

While the majority of pathways were annotated to <10% of genera, core pathways were 

annotated to 34% of genera, multicore pathways to 48%, and supercore pathways to 70% 

(median values; all enrichments over background had P≪0.001 by Wilcoxon rank-sum 

tests). Thus, coreness to a human body site is often associated with broad taxonomic 

distribution, and pathways that are core to more body sites tend to be more broadly 

distributed (Spearman’s r=0.40; P≪0.001; Extended Data Fig. 3b). Extreme examples 

included coenzyme A biosynthesis (see Fig. 2a) and adenosine nucleotides biosynthesis 

(Extended Data Fig. 3e): two “housekeeping” functions that are broadly distributed across 

not only the human microbiome, but all microbial life26,27. While we lack dispensability 

information for entire MetaCyc pathways, we found that individually essential gene families 

were considerably more prevalent than non-essential families across these samples (median 

0.94 vs. 0.24; Wilcoxon rank-sum test, P≪0.001; Methods), consistent with essential 

functions being core to many body sites.

On the other hand, 19 of the 176 multicore pathways (including 2 supercore pathways) were 

confidently not broadly distributed, defined conservatively as 1) annotated to <10% of non-

human-associated genera in BioCyc and 2) reconstructed from <10% of pangenomes in the 

HUMAnN2 database (Extended Data Fig. 3a and 4c). In these cases, coreness to multiple 

human body areas is better explained by enrichment among human-associated taxa, and may 

be indicative of functional adaptation to the human host as a broader niche. Notably, of these 

19 pathways, 13 (68%) were more than two-fold enriched in human-associated genera 

relative to non-human-associated genera in BioCyc, though this was not required by their 

definition. Human microbiome-enriched pathways included vitamin B12 biosynthesis 

(adenosylcobalamin salvage from cobinamide), a process commonly performed by the 

microbiota that must be supplemented in germ-free mice (Fig. 2b). Vitamin B12 

biosynthesis was also core in the oral cavity, where salivary haptocorrin may protect it for 

later absorption in the small intestine28. Fermentation to propionate (a short-chain fatty acid, 

SCFA), was also specifically enriched in the oral and gut environments (Extended Data Fig. 

3f). SCFAs are noteworthy for their proposed role in the maintenance of gut health29, while 

their role in the oral cavity is less well-studied.

Finally, a number of core pathways were specifically enriched in individual body sites. We 

identified a single site-enriched core pathway from the anterior nares, 7 from the oral body 

area (notably, there were few that were enriched for a single oral site), 10 from stool, and 3 

from posterior fornix (Extended Data Fig. 3d). Examples of site-enriched pathways included 

nitrate reduction in the oral cavity (a known oral microbiome process related to nitrate 

accumulation in saliva30; Fig. 2c) and mannan degradation in the gut (mannan is a plant 

polysaccharide found in human diet31; Extended Data Fig. 3g). Such site-enriched pathways 

are suggestive of functional adaptation by the microbiota to a particular niche within the 
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human body. Hence, while many core functions of the human microbiome reflect broadly 

distributed, globally essential metabolic processes, others are potentially indicative of 

microbial community adaptation to specific body sites or to the human host in general.

Characterization of temporal variability

The new availability of body-wide WMS samples at multiple time points per individual 

allowed us to further characterize the dynamics of microbial community composition at the 

species level (Fig. 3). Community-wide species retention rates were comparable to previous 

observations at all body sites but the posterior fornix32,33 (Fig. 3a). To characterize the 

dynamics of individual species, we developed a Gaussian process model (Methods) that 

decomposed variability in abundance into four components: constitutive differences between 

subjects, time-varying dynamics (change measurable at a scale of several months), 

biological noise (true variation that appears instantaneous relative to our sampling), and 

technical noise (between technical replicates).

This analysis indicated which species at which body sites varied most between individuals, 

temporally, or rapidly (Fig. 3b; Table S5; Extended Data Fig. 4d–f). In the gut, Bacteroidetes 

species, and in particular the Bacteroides genus (Extended Data Fig. 5), exhibited primarily 

inter-individual variation, while Firmicutes were more temporally dynamic within 

individuals. Species abundances in the oral and skin microbiomes, meanwhile, exhibited 

greater time-varying dynamics and biological noise overall, and were less personalized, 

consistent with previous stability assessments18. A more detailed look (Extended Data Fig. 

5) showed that some species possessed very similar dynamics when detected in multiple 

body sites (e.g. Rothia dentocariosa). Others, often those with site-specific subspecies clades 

analyzed above, possessed different dynamics between body sites (e.g. Haemophilus 
parainfluenzae). At a broad scale, these species dynamics are in agreement with a previous 

analysis of whole-community dynamics in the same cohort34.

We repeated this Gaussian process analysis to characterize the dynamics of pathway 

abundances for all core pathways identified above (Fig. 3c; Table S5). Pathway abundances 

at all body sites but the posterior fornix were less personalized than the taxa that encoded 

them (farther from the inter-individual vertex), consistent with the hypothesis that 

community assembly is primarily mediated by functional niches rather than a requirement 

for specific organisms35,36. Time-varying pathways were enriched for amino-acid 

biosynthesis (P=0.00025; Wilcoxon rank-sum test), while inter-individual pathways were 

enriched for B-vitamin biosynthesis (P=0.00062). In contrast, the vaginal microbiome 

showed a large personal component, at both the species and pathway levels (all well-fit 

pathways near the inter-individual vertex), consistent with variation among stable 

community state types in the vaginal microbiome37. Functional dynamics in the gut were 

relatively slow, possibly reflecting trends in response to long-term factors such as dietary 

patterns. Conversely, dynamics in oral cavity sites were rapid, in particular in the buccal 

mucosa, concordant with the habitat’s enrichment for fast energy harvest and much greater 

environmental exposure.
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Gene family discovery by assembly

We next sought to establish an expanded gene catalog based on assembly of the expanded 

set of metagenomes. Based on extensive benchmarking, we chose a custom assembly 

protocol using IDBA-UD38 (Methods). Compared to the 725 assemblies generated in 

HMP11,13, this protocol led to improvements in average assembly size, median contig 

length, and N50 (Table S6). Median metagenome assembly sizes ranged from 2.9 Mb for 

posterior fornix to 127.6 Mb for stool. To help detect new genes and improve overall 

assembly quality, we created additional co-assemblies from the combined set of reads from 

the same individual sampled at the same body site across multiple visits. In total, 406 and 

240 co-assemblies were created by combining two and three visits, respectively (Table S6), 

and the assembly sizes were on average 86% larger than single assemblies: the median 

assembly size increased from 84.8 Mb to 158.4 Mb, and the median of the maximum contig 

size in each assembly increased from 152 Kb to 167 Kb (Fig. 4a–c). Gene finding was 

performed on contigs using MetaGeneMark24 (Fig. 4d; Table S7). In co-assemblies, the 

average number of genes detected increased from 118,177 to 213,741 while the mean gene 

length remained similar (from 614 to 610 nucleotides). Functional assignments were made 

using Attributor (Methods) based on several sequence-based searches, and classified 

according to specificity. Approximately 35–45% of genes received specific functional 

annotations, while another ~30% received annotations at the domain, family, or motif level 

(Extended Data Fig. 6). In all cases, the number of genes in each specificity category 

increased in the co-assemblies, while the percentages remained similar. Thus, although more 

genes were predicted from the co-assemblies, their annotations are as specific as in single 

assemblies.

The number of distinct, well-covered Pfam39 domains detected by reference- versus 

assembly-based profiling tended to correlate strongly within-sample (Spearman’s r=0.92; 

Extended Data Fig. 7d), suggesting that the two methods provide similar relative rankings of 

community functional diversity. In addition, the two methods tended to co-detect most Pfam 

domains that were core to a body site (>75% prevalent; Extended Data Fig. 7e). While 

reference-based profiles called Pfam domain presence based on the annotations of 

characterized proteins, Pfam domains could be directly detected in assemblies through 

profile alignment, thus capturing novel sequence diversity. Indeed, assembly tended to detect 

(median) 19% more Pfam domains per sample than the reference-based approach, which 

conversely tended to detect established Pfam domains with greater sensitivity. This effect 

was particularly notable in the anterior nares site, where reduced microbial sequencing depth 

limited the sensitivity of assembly relative to reference-based profiling.

Compared to external datasets, total non-redundant gene clusters were similar to MetaHIT in 

the stool6 (HMP1-II contained 7,780,363 gene clusters, MetaHIT 9,879,896); relative to 

existing moist skin site metagenomes12, HMP1-II represented a 780% increase (170,206 

gene clusters to 1,326,693). However, even with thousands of deeply sequenced human 

microbiomes in this study, microbial gene family space is not yet saturated for any of the 

seven examined body sites (Fig. 4e).
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Conclusions

Here, we provide and analyze the largest body-wide metagenomic profile of the human 

microbiome to date. The associated deep, longitudinal shotgun sequencing has enabled a 

broad-scale characterization of new aspects of the personalized microbiome. New strain 

profiling techniques14 distinguished temporally-stable subspecies population structures for a 

number of species, some unique to individuals and others associated with particular body 

sites. Species with human microbiome strain diversity under-represented in isolate genomes 

were identified, to be prioritized for isolation and sequencing. New taxonomic profiling 

resolved co-occurrence patterns between bacterial abundances and several archaea, 

eukaryotes, and viruses. New functional profiling methods24 identified pathways required 

for microbial colonization of the human body, differentiating those enriched for the human 

habitat from those universal to microbial life. Gaussian process models characterized 

microbial and functional variation over time, and identified gut community composition 

(Bacteroidetes species in particular) as highly personalized compared to other sites. This 

example implies that the gut Bacteroidetes/Firmicutes balance may not be a defining 

attribute of an individual’s gut microbiome; individuals instead carry a “personal 

equilibrium” among Bacteroidetes, with a group of phylogenetically diverse, temporally 

variable Firmicutes fluctuating atop this core.

A number of key properties of the human microbiome remain to be characterized even in 

healthy cohorts, in addition to microbiome contributions to disease. Further investigation 

will be required to determine the functional origins and consequences of subspecies 

structures identified here. Such structures must also be investigated comprehensively across 

populations, including variations in geography, genetic background, ethnicity, and 

environment (e.g. outside of the HMP1-II’s North American focus). Notably, the evidence in 

this study suggests that even in this relatively homogeneous population with extensive 

metagenomic sampling, the full complement of extant microbial genes has not yet been 

sequenced. Likewise, although an updated covariation analysis between metadata and 

microbial features (Supplementary Note, Extended Data Figs. 8 and 9) revealed several 

novel associations, most variance in the microbiome is not explained by measured 

covariates. The HMP1-II, for example, did not measure transit time8, immune status, or the 

participants’ detailed diet and pharmaceutical history, limiting our ability to assess these 

important factors. Finally, our understanding of the dynamics and responses of microbial 

communities must be expanded from the descriptive models here to include the rapid effects 

of acute perturbations. For this, studies with longer, more densely-sampled time courses in 

the presence of controlled perturbations will be required, beyond the three time points used 

here. In order to rationally repair a dysbiotic microbiome, it is thus necessary to deepen our 

understanding of the personalized microbiome in human health.

Methods

HMP1-II samples and metagenomic sequencing

Sample collection, storage, handling, and WMS sequencing were performed as in the 

HMP11. Details on subject exclusion criteria, the sampling protocols, and timeline can be 

found in previous publications1,13,40. WMS reads and accompanying metadata are available 
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at the SRA and dbGaP under two studies: SRP002163 (BioProject PRJNA48479), 

containing 11,245 runs and a total of 22.8 Tbp, and SRP056641 (BioProject 

PRJNA275349), with 312 runs and 1.2 Tbp. All metagenomes analyzed here were obtained 

from the SRA after human DNA removal by the SRA using BMTagger (Extended Data Fig. 

7a). All SRA native format read files were converted to FASTQ for further analysis using the 

fastq-dump utility from the SRA SDK toolkit19.

Quality control of nucleotides, reads, and samples

One or more SRA read files from each sample were concatenated per read direction to create 

a single pair of FASTQ files for each sample. These FASTQs were converted to unaligned 

BAM using Picard (http://picard.sourceforge.net) and exact duplicates were removed with a 

modified version of Picard’s EstimateLibraryComplexity module. Finally, all reads were 

trimmed and length filtered (−q2 −l60) using the trimBWAstyle.usingBam.pl script from the 

Bioinformatics Core at UC Davis Genome Center1.

After taxonomic profiling (below), ecologically abnormal WMS samples were identified for 

further per-sample quality control based on median species-level Bray-Curtis dissimilarity to 

other samples from the same body site. If a sample’s median dissimilarity exceeded the 

upper inner fence (1.5 times the interquartile range above the third quartile) for all median 

dissimilarities from its body site, the sample was labeled an outlier and discarded. This 

process removed 86 (3.6%) WMS samples that were highly atypical for their respective 

body sites. Downstream analyses utilized the remaining 2,355 samples.

Taxonomic and strain profiling

Taxonomic profiling of the metagenomic samples was performed using MetaPhlAn220, 

which utilizes a library of clade-specific markers to provide pan-microbial (bacterial, 

archaeal, viral, and eukaryotic) profiling (http://huttenhower.sph.harvard.edu/metaphlan2). 

MetaPhlAn2 profiles recapitulated observed ecological patterns from HMP1 (Extended Data 

Fig. 1b), and agreed with direct read mapping to reference genomes. Mapped reads covered 

an average of 81.7% (median 92.8%) of the reference genomic sequence of each modestly-

dominant strain (comprising at least 5% of the community) across all samples. Mean 

coverage depth (total base pairs in aligned reads divided by total base pairs in reference 

genome) for these strains over all samples was 3.9×, with depth-of-coverage means varying 

widely by body site from 0.04× (right antecubital fossa) to 11.1× (tongue dorsum) (Table 

S8). Batch effects were not visible in the first two axes of variation within each body site 

(Extended Data Fig. 1d).

Strain characterization was performed using StrainPhlAn14. StrainPhlAn characterizes SNVs 

in the MetaPhlAn2 marker genes for an organism. For a given sample, we required 

minimum of 80% of markers for a given species to have a minimum mean read depth of 

10×, to ensure sufficient data to perform haplotype calling. In total, 151 species satisfied 

these requirements in at least two WMS samples (Table S2). Distances between strains were 

1https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl
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assessed using the Kimura 2-parameter distance17 (available from Extended Data Table 1b). 

Both MetaPhlAn2 and StrainPhlAn were used with their default settings.

Reference genome coverage was scored by the complement of the asymmetric phylogenetic 

distance (1 - Unifrac G42) between HMP1-II strains and reference genomes. All coverage 

estimates are presented in Table S2.

Niche-association score

Species with niche-associated subspecies clades were detected by a measure similar to the 

silhouette score, which compares the mean phylogenetic divergence of strains within each 

body site to the divergence of strains (within the same species) spanning body sites. 

Specifically, we first define a body site dissimilarity score D(u, v) for a given species at body 

sites u and v as:

where Sx is the set of samples which pass the StrainPhlAn coverage requirements in body 

site x, and d(i, j) is the Kimura 2-parameter distance between dominant haplotypes in 

samples i and j. The niche-association score A for each species (Fig. 1b) was then defined as 

the maximum observed D(u, v) over all directed pairs of body sites u and v where the 

StrainPhlAn coverage requirements were met for at least 5 samples in both sites. That is, for 

a set of body sites B:

One concern with this score is that greater technical difficulty in SNV calling in one site 

may result in apparent niche-association where there is none. This is not a concern here, 

however, since all sites where the niche-association score was calculated were oral sites with 

similar technical variability (Fig. 1a). This is a by-product of the limitation that the species 

were required to have a significant presence (5 samples with sufficient coverage) at multiple 

sites, which was not possible outside of the ecologically more similar set of oral sites.

Functional profiling

Functional profiling was performed using HUMAnN224 (http://

huttenhower.sph.harvard.edu/humann2). Briefly, for a given sample, HUMAnN2 constructs 

a sample-specific reference database from the pangenomes of the subset of species detected 

in the sample by MetaPhlAn2 (pangenomes are precomputed representations of the open 

reading frames of a given species43). HUMAnN2 then maps sample reads against this 

database to quantify gene presence and abundance on a per-species basis. Remaining 

unmapped reads are further mapped by translated search against a UniRef-based protein 

sequence catalog44. Finally, for gene families quantified at both the nucleotide and protein 

levels, HUMAnN2 reconstructs pathways from the functionally characterized subset and 
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assesses community total, species-resolved, and unclassified pathway abundances based on 

the MetaCyc pathway database45.

Analyses of metabolic pathway coreness were focused on 1,087 HMP1-II metagenomes 

representing the first sequenced visit from each subject at the six targeted body sites. 

Follow-up samples and technical replicates for a given (subject, body site) combination were 

excluded to avoid biasing population estimates in their direction. We defined a “core” 

pathway at a particular body site as one that was detected with relative abundance >10−4 in 

at least 75% of subject-unique samples. We further filtered these highly prevalent pathways 

to ensure sensible taxonomic range and confident taxonomic attribution. Specifically, a 

potential core pathway was excluded 1) if its BioCyc45-annotated taxonomic range did not 

include any human-associated microbial genera (defined as genera detected in at least 5 

HMP subjects with relative abundance >10−3) or 2) if >50% of pathway copies had 

“unclassified” taxonomic attribution in >25% of samples. These filtering criteria yielded a 

total of 950 core (pathway, body site) associations covering 258 unique MetaCyc pathways. 

Notably, these numbers were reasonably insensitive to the exact parameter settings described 

above, provided that the overall definition of “coreness” encompassed 1) a majority 

population prevalence (i.e. >50%), 2) a non-extreme detection threshold [i.e. below (number 

of pathways)−1], and 3) some form of taxonomic filtering to limit false positives (e.g. to rare 

variants of otherwise common pathways; Table S9).

We quantified the taxonomic range of a pathway as the fraction of unique genera to which it 

was annotated in BioCyc. We subdivided this measure into ranges over “human-associated” 

and “non-human-associated” genera (as defined above), and focused on the latter measure to 

avoid circular reasoning (a function that is broadly distributed across human-associated taxa 

would be enriched in the human microbiome by definition). As a further control, we also 

directly applied HUMAnN2 to its underlying pangenome database to associate pathways 

with >4,000 microbial species. To conservatively define core pathways as “enriched to the 

human microbiome,” we required them to be annotated to <10% of non-human-associated 

genera in BioCyc, and also directly annotated to <10% of non-human-associated 

pangenomes. The second criterion further reduced cases of rare variants of common 

pathways (as defined by MetaCyc) being called as enriched in metagenomes due to cross-

detection of the common pathway.

We defined a core pathway to be strongly enriched in a particular body site if the first 

quartile of the pathway’s abundance at that site was >2× larger than the third quartile of 

abundance at sites from all other body areas (i.e. the focal and background abundance 

distributions must be very well separated, as opposed to just significantly different). Notably, 

this definition only requires core pathways at oral body sites to separate well from non-oral 

sites, and not other oral sites (very few core pathways at oral body sites were strongly 

enriched relative to other oral sites).

We investigated the relationship between coreness and essentiality of functions using a 

dataset of ~300 essential COG46 gene families determined in E. coli47 (the “Keio 

collection”). We computed COG abundance across the 1,087 metagenomes introduced above 

by summing the abundance of individual UniRef gene families (as computed by 
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HUMAnN2) according to UniProt-derived COG annotations48. We considered a COG to be 

confidently detected in a sample if its relative abundance exceeded 10−4. Among detected 

COGs, essential COGs (n=272) were both more globally prevalent than non-essential COGs 

(n=3,629; median 0.94 vs. 0.24) and core to more body sites (mean 4.7 vs. 1.2; “core” 

defined here as >75% prevalent within-site); both trends were highly statistically significant 

(P≪0.001) by Wilcoxon signed-rank tests and robust to a smaller detection threshold (10−6).

Gaussian Process dynamics modeling

Gaussian Processes (GPs) are a versatile nonparametric probabilistic model for performing 

inferences about sampled continuous functions. This section covers the justification of the 

specific GP model used to model microbial and functional abundances (referred to here as 

“features”) in the microbiome, and discusses its assumptions, advantages and drawbacks. 

Implementation details are presented in the following section.

In a GP, the joint distribution of the modeled function at any finite set of points follows a 

multivariate-normal distribution. Without loss of generality, GPs can be parameterized solely 

by their covariance function or kernel, defining the covariance of the output between any 

pair of sample points. This pairwise definition permits the use of the irregular temporal 

sampling present in the HMP1-II dataset (Extended Data Fig. 4a). The shape of the GP’s 

covariance function determines a number of properties of the modeled function, such as its 

smoothness, how quickly it changes, and which features of the input vector it is sensitive to. 

Our first goal here was thus to assess the strength of the evidence for several common 

covariance functions describing biologically meaningful behaviors, and to determine what 

components should be included in a parsimonious model that captures the observable 

dynamics for the majority of features. The candidate set of covariance functions we 

considered includes: fast variation (“biological noise”), inter-individual differences, an 

Ornstein-Uhlenbeck process (OU), a squared-exponential covariance function (SE), and 

seasonal dynamics with a period of 1 year (formulas can be found in Table S10).

All candidate covariance functions describe stationary processes, given the inherently 

limited state space of relative abundances, though they differ significantly in their temporal 

dynamics and in their implications for the biological systems that generate these behaviors. 

Fast variation, i.e. variation on a timescale faster than measurable, is represented by a 

Gaussian white noise process. Inter-individual differences are modelled by constant 

covariance between samples from the same person. The two time-varying components, OU 

and SE both describe monotonically decreasing covariance as the difference in time between 

two samples increases, i.e. time points closer to one another will be more similar than those 

farther apart. These two functions primarily differ in the smoothness of the underlying 

function. The OU process is the only stationary Markovian GP with non-trivial covariance 

over time, and produces functions which are not differentiable, and thus very jagged, 

resembling Brownian motion. For example, this covariance function is expected for a 

slowly-changing feature’s abundance under continuous stochastic perturbation from the 

environment (e.g. random day-to-day dietary choices). Meanwhile, the SE function 

describes functions which are infinitely differentiable, and are thus extremely smooth. This 

function implies a significant amount of latent state relevant to the process generating the 
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feature’s abundance. Both of these time-varying covariance functions are parameterized by 

their lengthscale, the characteristic timescale at which the function changes. Lastly, the 

seasonal component is represented by the canonical periodic covariance function from GP 

literature, with its period fixed at 1 year, but with an unknown lengthscale. Here, a model 

refers to a combination of these covariance functions.

Models were compared based on their marginal likelihoods (also termed “evidence”), 

reported in bits (i.e. log2 ratio of marginal likelihoods = log2 Bayes factors) of evidence 

against a given model when compared to the best model for a feature (Table S10). More than 

3.3 bits is considered strong evidence against a model, while >6.6 bits is considered 

decisive. Marginal likelihoods were estimated from MCMC samples of the posterior 

distribution by a truncated harmonic mean of the un-normalized posterior distribution at the 

sampled points. Truncation was performed since this estimator is known to have poor 

convergence characteristics since MCMC samples with very low likelihoods have an 

unreasonable influence on the harmonic mean. Comparisons were performed for models fit 

to the abundances of the top 10 most prevalent species (with at least 70% non-zero 

abundances) and top 5 most abundant pathways at each targeted body site (Table S10). 

Comparisons were also performed for a set of simulated features with known dynamics 

(“controls”), which were sampled from the corresponding GP with 5% of variance due to 

technical noise and remaining variance distributed evenly between components.

To determine which of these components have statistical support in the data, we employed a 

standard greedy search through the space of possible models, which starts from the simplest 

model (all variation is technical), and iteratively rejects simpler models in favor of a more 

complex one if the evidence against the simpler model exceeded 6 bits. The set of more 

complex models considered at each iteration are those with only one more parameter, and 

contain the simpler model as a special case (pseudocode presented in Table S6). This 

procedure selected models which included the two simplest components, biological noise 

and inter-individual differences, 47 and 53 times among the 72 features tested, respectively. 

Among more complex components, the OU component was selected 13 times, while neither 

the SE nor the seasonal component were selected for a single tested feature. These trends 

were robust to increases in the model rejection threshold, with the evidence for the OU 

component remaining significant to at least 10 bits, while the SE and seasonal components 

are only selected for more lenient thresholds (≤4 bits). We note, however, that this procedure 

had difficulty identifying SE and seasonal components in control samples which included 

other components (in particular, biological noise), indicating that these components are 

difficult to distinguish given the available temporal sampling pattern. Thus, while the data 

clearly currently prefers OU over SE and does not support the inclusion of a seasonal 

component, we are not sufficiently powered to eliminate these as potentially significant 

contributors to the dynamics of the microbiome. Finally, the null model with only technical 

noise was rejected for 71 of the 73 features, often with very high evidence (median 69.6 

bits).

For the remainder of the analysis, we thus converged on a model with four components: 

inter-individual differences, an Ornstein-Uhlenbeck process, biological noise, and technical 

noise. Let U, T, B, and N be the respective magnitudes of these components, and l be the 
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timescale of the OU process. Estimation of these parameters (hyperparameters in GP 

nomenclature) was performed by fitting a GP with the following covariance function to all 

features (species and pathways) with at least 75% prevalence within a site (Fig. 3, Table S5):

All 4 parameters were fit simultaneously by MCMC (next section). Since the three 

magnitude components must sum to the variability of the population, this can be seen as a 

decomposition of variance into sources of variability which differ in their temporal 

signature. Since we are interested only in the three biological components here, we therefore 

normalize out the estimated technical noise component (i.e. [U, T, B] / N) before visualizing 

the decomposition on a standard ternary plot (Fig. 3b–c). For illustration, we show three 

examples which illustrate the three types of dynamics on a plot designed to allow a direct 

comparison between the data and the fit GPs (Extended Data Fig. 4d–f).

The identifiability of any component of a time-dependent model is limited by the temporal 

sampling pattern available. The current dataset contains only up to 3 time points per person, 

with the time between samples roughly evenly distributed between 1 month and 1 year for 

each body site (Extended Data Fig. 4a). Processes too fast to measure will contribute to the 

biological noise component, while processes much slower than the maximum time intervals 

available contribute to the inter-individual component. We tested what timescales would be 

detected by the OU component, and which would contribute to the inter-individual or 

biological noise components, by simulating data from OU processes of varying lengthscales 

and performing parameter fits (Extended Data Fig. 4b). These show that the time-varying 

component is sensitive to processes with characteristic lengthscales of ~3–24mo.

We note that the resolution of the time-varying component is only possible due to the large 

spread in the time differences between samples available in the HMP1-II dataset (Extended 

Data Fig. 4a). In another common longitudinal study design, where a small number of 

samples are gathered per person with a fixed time interval between them, this would not be 

possible, though this design may make the analysis simpler (samples can be grouped by time 

point and a method like GPs would not be necessary). Likewise, richer longitudinal data in 

the form of longer time series would allow even more to be inferred about the dynamics of 

the microbiome. Of particular interest, this would enable differences in the temporal 

component(s) to be resolved between people. Here, with only up to 3 time points per person, 

the fit model parameters describing temporal changes (B, T, and l) are only a best-fit over 

the population. Such a sampling pattern would also provide the opportunity to more 

conclusively differentiate between the Markovian OU process and other possible non-

Markovian processes (such as described by the SE covariance function, or an intermediate 

like the Matérn covariance functions), indicative of latent state or time-delayed events in the 

microbiome.

The HMP1-II dataset also includes a number of technical replicates (252 in total), which 

were instrumental in distinguishing the two fast-varying components (“biological” and 

technical noise). We encourage the addition of a non-trivial number of technical replicates in 
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future longitudinal studies, not simply for validation but also to allow a quantitative 

characterization of diversity that is not captured in the remainder of the experiment due to 

limited sampling rates. Since technical noise is also estimated with the other variance 

components, estimates of the relative magnitude of the technical noise are also reported 

(Table S5). The proportion of variance due to technical noise was generally lower for species 

abundances (median of 5.4%, 90th percentile of 19.3%) than for pathways (median of 16%, 

90th percentile of 44%), consistent with the observation that true biological variation 

between pathway abundances is lower than between species abundances1. Noise levels in 

pathways were predominantly influenced by body site, with pathways in the anterior nares 

having the greatest noise (median of 40%).

We assessed how accurate the parameter fitting process was under these noise conditions by 

simulating samples from mixtures of the three components and performing parameter fits for 

each targeted body site (Extended Data Fig. 4c). For all noise levels, pure components were 

always inferred with high confidence, with inter-individual differences being the most 

identifiable. Mixtures of inter-individual dynamics with biological noise were also 

confidently recovered, while mixtures of inter-individual and biological noise were more 

variable, and mixtures of inter-individual and time-varying dynamics were biased towards a 

greater influence of time-varying dynamics. Thus, when the time-varying component is 

present, parameter estimates should be considered biased away from the inter-individual 

corner of the ternary diagram. Mixtures of all three components had the greatest uncertainty. 

Among body sites, inferences at the anterior nares and posterior fornix sampling 

distributions were the most unreliable, due to the relatively limited number of samples at 

these sites (Extended Data Fig. 4a), reflected as a large number of highly uncertain features 

at these sites (Fig. 3). At 20% technical noise (the 90th percentile of the noise distribution for 

species), parameter estimates degrade noticeably, and tend towards the mean of the prior (an 

even mixture of all components). This thus results in the low-confidence species and 

pathways tending to locate towards the center of the ternary diagrams (Fig. 3).

We note that for a particular feature (microbe or pathway abundance), each of the non-

technical components represents the sum of all processes with that temporal signature which 

affect that feature, and these do not necessarily reflect intrinsic properties of the feature. 

Examples of extrinsic processes likely to produce biological noise include, among others, 

day-to-day dietary differences, the timing of sample collection relative to meals, tooth-

brushing and other personal hygiene, spatial variation of the microbiome within subjects 

(e.g. gradients across the stool), and weekend/workday differences. Extrinsic sources of 

inter-individual differences may arise from culture/ethnicity (ethnicity is strongly associated 

with the abundances of several microbes1), differences in habits (e.g. habitual vs. infrequent 

tooth brushers and flossers), and long-term dietary differences, among others. Finally, time-

varying processes may include properties such as weight or slowly changing preferences in 

diet.

Gaussian Process parameter optimization details

All parameter fits and model comparisons were performed by MCMC sampling with the 

GPstuff toolbox version 4.6 in MATLAB. Before fitting, relative abundances were first 
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arcsine-square root transformed, filtered for outliers using the Grubbs outlier test 

(significance threshold 0.05), and standardized to have zero mean and unit variance. A 

Gamma-distributed prior with shape 3.1 and mean 10 months was imposed on the 

lengthscale parameter of all time-varying components. These parameters for l were selected 

based on the intervals between samples, and guarantee that the model is identifiable when 

the biological noise and/or inter-individual difference components are included by ensuring 

that l is neither too short nor too long. All parameters of all models were fit simultaneously. 

All models were fit using a Gaussian likelihood. This function performs poorly for 

significantly non-Gaussian distributions, which frequently occur in microbiome data in the 

form of zero-inflated abundance distributions. For this reason, the dynamics analysis was 

performed for highly-prevalent features (species with ≥75% prevalence within a site, and 

core pathways). One exception was made for this: species with mean abundance when 

present ≥2% and non-zero in at least 50 samples were also included, so as to include 

important species such as Prevotella copri with lower prevalence but exceptional abundance 

when present. Other models specifically accounting for zero-inflation (both technical and 

real) will be needed to study the dynamics of the rarer microbiome.

Evidence presented in Table S5 was calculated from 5 MCMC chains per model, with 150 

samples after 20 sample burn-in, which were started from a random point in the prior 

distribution. Parameter estimates presented in Fig. 3 and Table S5 were fit with the 

additional constraint that U + T + B + N = 1, to eliminate an additional degree of freedom 

from the model. A Dirichlet(1, 1, 1, 1) prior was imposed on [U, T, B, N]. For each feature 

tested here, a more thorough MCMC sampling was performed than for the model selection, 

consisting of 10 chains with 200 samples each (after 30 burn-in and thinning every other 

sample), starting from a random point from the prior distribution. In all cases, all parameters 

were fit simultaneously. Convergence was assessed with the R̂ statistic49. Over all 196 

species and 950 pathways tested, 97% of R̂ statistics were <1.1 for all parameters (median 

1.01, max 1.17), indicating good convergence.

Association testing between microbiome features and phenotypic covariates

Associations between microbial and pathway abundances and metadata were determined 

using MaAsLin1,50. MaAsLin tests a sparse multivariate generalized linear model against 

each feature independently. Relative abundances were first arcsine square-root transformed 

for variance stabilization, and the Grubbs test was used (significance level 0.05) to remove 

outliers. A univariate prescreen was applied using boosting to identify potentially associated 

features, and significantly associated covariates among the remaining features were 

identified with a multivariate linear model without zero-inflation. Unless otherwise stated, a 

final false discovery rate <0.1 (Benjamini-Hochberg controlled across feature tests) was used 

as a significance threshold.

The same model was applied to all features (microbial and pathway) during this analysis and 

included the following covariates: broad dietary characterization, whether the subject was 

breastfed, temperature, introitus pH, posterior fornix pH, gender, age, ethnicity, study day 

processed, sequencing center, clinical center, number of quality bases, percent of human 

reads, systolic blood pressure, diastolic blood pressure, pulse, whether the subject had given 
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birth, HMP1/HMP1-II, and BMI. A summary of these metadata can be found in Extended 

Data Table 1a. Of note, several recently identified confounders such as transit time8 for stool 

samples were not collected during sampling.

Assembly

Benchmarking and assembly protocol design—We benchmarked several assemblers 

including IDBA-UD38, MetaVelvet51, SOAPDenovo252, Newbler (Roche, Basel, 

Switzerland), Ray53, SPAdes54, and Velvet55 using eight samples (SRS017820, SRS014126, 

SRS052668, SRS017820, SRS048870, SRS020220, SRS057205, SRS017820) across five 

body sites that represented a range of metagenomic complexity. Based on the assembly size, 

median length, fragmentation level, and N50, we chose IDBA-UD to process all HMP1-II 

samples.

Digital normalization—Following quality control, sequence reads for each sample were 

run through a "digital normalization" pipeline prior to assembly. This process was designed 

to reduce, as much as possible, the volume of information from the most dominant source 

taxa (without sacrificing the ability to assemble what remains) so that lower-abundance taxa 

could be assembled more evenly, instead of having their reads discarded by the assembler 

software as not being sufficiently covered (compared to the dominant taxa).

Median k-mer coverage was first estimated for all reads using the khmer Python library56. 

These data were then used to filter input reads so as to normalize k-mer coverage within 

preselected bounds: for each k-mer of length 20 in each read, the total number of 

observations of the k-mer was used as a proxy for coverage. Reads where median k-mer 

coverage was already greater than 20 were discarded. Remaining reads were then trimmed at 

the first instance of a single-copy k-mer (representing putative error sequences). Reads 

whose post-trim length was less than the k-mer length (20) were also discarded. Surviving 

reads were trimmed again, this time at the first instance of a high-abundance (> 50×) k-mer; 

again, reads whose post-trim length was less than 20 nt were discarded. For remaining reads, 

we re-normalized (based on median k-mer coverage as in the first step) to remove all reads 

whose median k-mer coverage was >5×. This is a more aggressive filter on putatively 

redundant sequences, after elimination of initial reads with highly-overrepresented 

(redundant) k-mers or severely underrepresented (error) k-mers.

For subsequent assembly after this quality control and normalization, we increased k to 32 

(to maximize sensitivity on the remaining reads) and built an overlap graph from all 

remaining reads. This graph was then partitioned into groups of reads with a high likelihood 

of internal overlap, separating components at precomputed “stoptags”: k-mer sequences 

automatically identified by khmer in its initial profiling scan as unreliable assembly-traversal 

nodes. Reads were then extracted from each such partition into separate FASTA files. Each 

partition was tested for more coherent subgroups, beginning with the least consistent (ranked 

in order of graph separability). Re-partitioning was carried out as above, but with more 

aggressive parameters: stoptags in the initially-computed overlap graph were explicitly 

detected and removed before re-partitioning (which included the generation of new stoptags 

from the remainder of the graph after removal of the earlier ones). The least-consistent read 
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group was broken into sub-partitions exactly once in this way: further iteration risks 

overfitting and is not guaranteed to converge to a meaningful result.

IDBA-UD assembly and post-processing—Following digital normalization, each final 

partition was assembled independently of the others with IDBA-UD. For values of k in (20, 

30, 40, …, 80), IDBA-UD will attempt to assemble its partition (via de Bruijn graph 

methods) using k-mers of size k, and will then merge and extend results from all passes to 

produce a final assembly of that partition (requiring a minimum contig length of 100 nt). For 

each sample (or pool), all (independently-produced) partition assemblies were then 

concatenated. As a final step to reduce any redundancy present in the final concatenated 

assembly, we merged and extended all assembled contigs (across all partitions), based on 

overlaps of 40 nt or more, to produce a final "consolidated" sequence collection.

Quality assessment—To assess assembly quality we undertook a number of post 

assembly QC checks including an examination of the rate at which reads aligned to 

assemblies as well as identifying chimeras, which are a potential problem caused by mis-

assemblies.

To check for what portion of the reads were incorporated into the assembly, sample reads 

were aligned against their assembly using Bowtie v1, resulting in counts for reads with at 

least one alignment and for those that failed to align. Total reads include reads from the 

human host. Because human reads were masked as all Ns by SRA using BMTagger, the 

human reads would affect the portion of unaligned reads. To assess the effect, we counted 

the number of masked reads to get a count for human reads. These are summarized by body 

site in Extended Data Fig. 7c.

Assembly protocol validation—To examine the rates of chimeric contigs and mis-

assemblies, we undertook an assembly assessment of two mock data sets generated during 

the HMP, one where the community was created with all 21 organisms in equal abundance 

(“even”), and one with staggered abundances. We assembled these mock communities using 

the same protocol and aligned assembled contigs for both sets against all 21 input genomes. 

We found that 94.21% and 96.84%, respectively, of all assembled contigs aligned uniquely 

to a single reference genome for the even- and staggered-coverage mock communities 

("aligned" here means aligned with ≥ 95% sequence identity over ≥ 95% of their length). 

Contigs aligned to closely-related Staphylococcus and Streptococcus strains exhibited 

slightly more non-exclusive matching (or cross-matching) than contigs aligned to other 

strains. For the even set, an average of 97.85% of all Staphylococcus- and Streptococcus-

aligned contigs were uniquely aligned to their reference strain, with an average of 92.98% 

for the staggered set, as compared to averages across all other strains of 99.89% (even) and 

98.98% (staggered), neatly reflecting the inherent genetic ambiguity of these taxonomically 

narrow subgroups yet showing a very strong ability to distinguish between related strains.

Recovery statistics do not correlate well with input coverage in the staggered set, implying 

that our pipeline (given a minimum of 4× coverage) is robust against differences in relative 

abundance of up to 3 orders of magnitude at these scales. Phylogenetic proximity, in this 

case, seems to show a greater influence on uniqueness of assembly (albeit still a very weak 
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one) than does coverage. Fractions of contigs not aligning to any of the 21 reference strains 

(over ≥ 95% of their length at ≥ 95% identity) were 5.6% and 3.0% for the even and 

staggered sets respectively; we can thus postulate these proportions to be upper bounds on 

the combined rates of chimeras and mis-assemblies produced by our pipeline, consistent 

with other chimera assembly metrics57.

Annotation

Annotation of open reading frames (ORFs) within assembled contigs was performed using 

Metagenemark-3.2558. The resulting ORF sequences were used as input for searches against 

a) Uniref10059 using RAPSearch260, b) Pfam61 and TIGRfam62 HMM models using 

hmmer-3.063, c) TMHMM64 for the identification of transmembrane helices, and d) a 

regular expression search for membrane lipoprotein lipid attachment sites for the 

identification of putative signal peptides. The latter three searches were run as implemented 

in the Ergatis workflow monitoring system65.

Annotation was assigned by Attributor (github.com/jorvis/Attributor) using a hierarchical 

scheme developed out of the IGS Prokaryotic Annotation Pipeline66. Attributor assigns 

common names, gene symbols, EC numbers and GO terms, as applicable, based on a 

hierarchy of evidence including hits to HMM models, Uniref100 sequences, TMHMM 

predicted helical spans, and lipoprotein motifs. Assignments are exclusive, meaning that for 

each ORF, Attributor takes the strongest piece of evidence available and assigns all attributes 

possible based on that evidence. Attributes are not assigned from multiple sources to ensure 

that annotation attributes assigned to a single ORF do not conflict. Attributor annotation was 

output as gff3 and FASTA files (Extended Data Table 1b).

Rarefaction curves

Rarefaction curves were generated by extracting predicted polypeptides from the 

MetaGeneMark output for each sample, and estimating a “unique gene family” count for 

rarefied sample size n as follows, using usearch v.8.1.1861 ×6467:

1. Concatenate the MetaGeneMark predicted polypeptides from a random sampling 

of n samples that were not technical replicates, eliminating duplicates.

2. Sort sequences by decreasing length

3. Cluster sequences at 90% identity (using usearch cluster_fast)

4. Retrieve the “unique gene family” count from the results

The number of unique clusters was estimated from 50 random subsets for each n. This 

procedure was repeated for each body site for n = 1,10,20,… until the number of unique 

samples available at the body site.

Read mapping to assemblies and reference genomes

Mapping reads to reference genomes—In addition to taxonomic and functional 

profiling as above, all samples’ individual raw reads were aligned directly to MetaRef43 

reference genomes. Before alignment, all reads with 80% or higher percentage of Ns were 

discarded using the Biocode fastq::filter_fastq_by_N_content utility2. Bowtie268 (v2.2.4) 
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was then used to align reads to reference genomes using the default, paired-end alignment 

options and including the singleton reads. The resulting SAM files were converted to BAM, 

sorted, and then partitioned into two separate files per sample - one of only matching reads 

and the other of unaligned reads. This entire pipeline is encapsulated in the Biocode 

generate_read_to_metaref_seed_alignment.py pipeline script3.

Mapping reads to assembled contigs—The quality-trimmed reads from each sample 

were mapped back onto the assembled contigs from that same sample using Bowtie 

(v0.12.9) with a 512MB max best-first search frames value, Phred33 score quality setting, 

21bp seed length, and limit of 2 mismatches per seed. All alignments per read were reported 

(unless there were more than 20 for a given read) with hits guaranteed best stratum and ties 

broken by quality. Hits in sub-optimal strata were not reported.

Code Availability Statement

Code for the annotation pipeline and the Gaussian Process analysis are available from 

Extended Data Table 1b.

Data Availability Statement

Sequence data are available from the HMP DACC (http://hmpdacc.org) and from SRA 

BioProjects PRJNA48479 and PRJNA275349. Taxonomic and functional profiles, as well as 

assembled metagenomes, are available from the HMP DACC (Extended Data Table 1b).

2https://github.com/jorvis/biocode/blob/master/fastq/filter_fastq_by_N_content.py
3https://github.com/jorvis/biocode/blob/master/sandbox/jorvis/generate_read_to_metaref_seed_alignment.py
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Extended Data

Extended Data Figure 1. Extended body-wide metagenomic taxonomic profiles in HMP1-II
a, The combined HMP1-II datasets include a total of 2,355 metagenomes (724 previously 

published and 1,631 new, including 252 technical replicates). These span the project’s six 

targeted body sites (anterior nares, buccal mucosa, supragingival plaque, tongue dorsum, 

stool, and posterior fornix) in addition to at least 20 samples each from three additional sites, 

of the 18 total sampled sites: Retroauricular crease, Palatine tonsils, and Subgingival plaque. 

Metagenomes are now available for at least one body site for a total of 265 individuals. b, 
Principal coordinates ordination using Bray-Curtis distances among all microbes at the 

species level. c, Relative abundances of the most prevalent and abundant microbes (bacterial, 

viral, eukaryotic, and archaeal) among all body sites, as profiled by MetaPhlAn220. 

Prevalent eukaryotic microbes are shown at the genus level. d, Taxonomic profiles do not 

vary more between sequencing centers, batches, or clinical centers than they do among 

individuals within body sites. Ordinations show Bray-Curtis principal coordinates of 

species-level abundances at each body site. Within-site ecological structure is as expected1, 

with no divergence associated with technical variables along the first two ordination axes.
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Extended Data Figure 2. Geographic, temporal, and biogeographic strain variation
a, Mean distance (Kimura two-parameter) among strains from subjects either within or 

between three-digit zip codes (the finest degree of geographic information available). Data 

and samples sizes in Table S2. b, Mean strain divergences between different visits for the 

same subject and body site compared to the mean distance between the same visits for the 

same subject and body site (technical replicates) for each species. c–u, PCoA plots based on 

the Kimura two-parameter distance17 are shown for (c) Escherichia coli, (d) Actinomyces 
johnsonii, and (e–u) all species (i.e. those shown Fig. 1b), sorted in descending order of their 
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niche-association score (Methods). Distance matrices used to generate these PCoAs are 

publicly available (Extended Data Table 1b).

Extended Data Figure 3. Core and distinguishing functions of human body site microbiomes 
(additional details and examples)
This figure extends Figure 3 from the main text. a, 28 metabolic pathways were core (>75% 

prevalent) at all major body sites. We refer to these as “supercore” pathways. b, Pathways 

core to greater numbers of body sites tended to have broader taxonomic ranges, with 

supercore pathways among the most broadly distributed (Tukey boxplots). c, 19 pathways 

(including two supercore pathways, starred in A) were core in multiple body areas and 
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specifically enriched among taxa inhabiting the human microbiome (annotated to <10% of 

non-human-associated genera). Human-microbiome-enriched pathways include specific 

MetaCyc-defined variants of more broadly defined/distributed processes, e.g. peptidoglycan 

biosynthesis (PWY-6471). d, “Site-enriched” pathways are considerably more abundant at 

one body site compared with sites from all other body areas. Black dots indicate the site 

where each site-enriched pathway achieved its peak abundance. Heatmap values reflect the 

first quartile of relative abundance in a particular body site (coordinated with the percentile 

cutoff for a core pathway). e, f, and g highlight additional examples of the three pathway 

classes enumerated in panels a, c, and d. In each example, total (community) abundance is 

log-scaled, while the contributions of the top seven genera are proportionally scaled within 

the community total. “Other” encompasses pathway contributions from genera outside of the 

top seven, and “unclassified” encompasses pathway contributions from unidentified 

members of the community.
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Extended Data Figure 4. Sampling interval distribution, parameter fits for simulated samples, 
and examples of microbial species abundance dynamics and corresponding Gaussian process fits
a, Distributions of differences in time between samples at each targeted body site. Technical 

replicates are shown as Δt = 0. b, Parameter fits for simulated samples with U = 0, B = 0, T 
= 0.95, N = 0.05, and varying l. Simulated samples were drawn with the real sample 

distribution and count from each site, to show how limitations in sampling at certain sites 

alter the fidelity of the fits. c, Parameter fits for 5 simulated samples with each of the three 

pure components (colored red, green and blue), as well as all even mixtures of pairs of them 

(e.g. yellow points are even mixtures of U and T), and even mixtures of all 3 (black), for 
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differing levels of technical noise (N) and fixed l = 0.5. Uncertain inferences are more 

desaturated. d–f, Three examples of taxonomic profiles fit with the GP model are shown on 

plots designed to allow a direct comparison between the data and the fit GP, and allow the 

different dynamics to be visualized despite the limit of only up to 3 time points per person. 

Each example was chosen as an exemplar of one of the three non-technical components in 

the model. Insets: Confidence deciles of the MCMC samples. The abundance of 

Fusobacterium periodonticum in tongue dorsum shows strong time-varying behaviour (d), 

Bacteroides stercoris in stool shows mostly inter-individual differences (e), and Gemella 
haemolysans in stool is dominated by biological noise (f). The plots show the absolute 

difference in arcsin-sqrt-transformed microbial abundance (|Δx|) between pairs of samples 

from the same person against the difference in time between samples (points). A Gaussian-

smoothed estimate of the standard deviation of the points is also shown (blue line, 

bandwidth 3 months), along with the expected difference from the fit GP (red line). The 

standard deviation of differences between technical replicates (points with Δt = 0 months) is 

also shown as the line stub at the origin, directly visualizing the level of technical noise. 

Biological noise is visible here as the difference between technical noise and the variance of 

the remaining points extrapolated to the origin. The time-varying component is visible as a 

gradual increase in the variance of the differences over time (i.e. gradually increasing red/

blue lines). Finally, inter-individual differences are visible by comparing the limit of the 

variance of the data with the variance of differences between subjects (green line).

Extended Data Figure 5. Gaussian process decomposition of temporal variance for metagenomic 
species abundances
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The posterior mean of the decomposition of variance (Methods) is shown for each species 

(Table S5), colored by phylum. Uncertainty in the estimate was assessed by the square root 

of the mean squared distance on the ternary plot of MCMC samples from the posterior 

mean, and is codified with larger points indicating more certain estimates.

Extended Data Figure 6. Assembly annotation specificity for single and co-assemblies
a, Tukey boxplot of the percentage of proteins in each functional specificity category. b, An 

example Venn diagram for one set of single-sample supragingival plaque assemblies and 

their combined co-assembly (co-assembly on lower left), showing counts of shared genes 

(computed via strict alignment) between all combinations of assemblies; the co-assembly by 

itself contains 96.9% of all detected genes. c, Tukey boxplot of the number of GO terms 

(generated using a GO Slim with ~1,700 terms) shared between single and co-assemblies, 

unique to the co-assembly, or unique to one of the single assemblies, generated from a 

random selection of 250 assemblies across six body sites. Co-assemblies capture GO terms 

that are not in individual assemblies.
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Extended Data Figure 7. Sequencing statistics and assembly quality assessments
a, Tukey boxplots of total raw reads per sample among body sites upon retrieval from the 

SRA. b, Percentages of human reads marked by BMTagger per body site. c, Percentages of 

non-human (bacterial) reads aligned to assemblies showing assembly effectiveness 

(Methods, Read and contig mapping to assemblies and reference genomes). d, 
Comparison of the number of unique Pfam domains detected in each sample by HUMAnN2 

and in the assemblies, colored by body site. Pfam domains in HUMAnN2 were considered 

“detected” if UniRef50 sequences annotated with the domain were present in a sample at 

>10 RPK (~1× coverage). Pfam domains were detected in the assemblies if they were found 

on a single contig by Attributor (Methods). e, Number of Pfam domains that were detected 

in at least 75% of samples (“core” domains) by each method, for each targeted body site. 

Pfams domains are stratified by unknown function.
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Extended Data Figure 8. Metagenomic features abundances significantly associated with host 
phenotype
a,b, Significant associations of nontrivial effect size (FDR < 0.1 and |β| > 0.01) in a 

multivariate linear model (significance and coefficients in Table S5) between taxon 

abundances (a) and pathway abundances (b). All detected associations are independent of all 

other metadata, including whether the subject was breastfed, the subject’s broad dietary 

characterization, temperature, introitus pH, posterior fornix pH, gender, age, ethnicity, study 

day processed, sequencing center, clinical center, number of quality bases, percent of human 

reads, systolic blood pressure, diastolic blood pressure, pulse, whether the subject had given 

birth, HMP1/HMP1-II, and BMI (group sizes in Extended Data Table 1; see Methods). 

Non-significant associations here should not be considered evidence of no association.
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Extended Data Figure 9. Updated associations in HMP1-II
a, HMP cohort subjects reported whether they were breastfed as infants. Remarkably, overall 

phylum Firmicutes abundances were lower even during adulthood (subjects’ current ages 

were 18–40) in individuals who had been historically breastfed. b, Differences associated 

with infant breastfeeding persisted in other clades and body sites, e.g. oral Neisseria, 

although c, age-linked associations differed among taxa (e.g. overall oral Neisseria decrease 

with age). Examples of associations significant in the original HMP1 metagenome set1 that 

were retained in the larger HMP1-II dataset include: d, Bacteroides vulgatus in stool is 

significantly more abundant in Asians compared to other ethnicities. e, Lactobacillus 
crispatus in the posterior fornix is negatively associated vaginal pH. f, Bacteroides are 

significantly more abundant in individuals who have been breastfed as infants. Boxplot 

whiskers are defined by Tukey’s method.

a Metadata N, mean ± std [min, max]

Gender Female (n=128), Male (n=137)

Age (years) 26.4 ± 5.1 [18, 40]

Ethnicity Hispanic (n=29), Non-Hispanic (n=236)

Diet (meat consumption) 3+ days/week (n=224), 1–2 days/week (n=15), eggs/dairy but no meat (n=11), 
no animal products (n=1), N/A (n=14)

Breastfed Yes (n=179), No (n=40), Don't know/remember (n=32), N/A (n=14)

Given Birth Never (n=101), Once (n=16), More than once (n=7), N/A (n=4)

Recruitment center Baylor College of Medicine (n=116), Washington University (n=133)

Pulse (bpm) 71.3 ± 11.3 [42, 100]
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a Metadata N, mean ± std [min, max]

Systolic blood pressure (mmHg) 119.8 ± 12.5 [91, 151]

Diastolic blood pressure (mmHg) 71.8 ± 9.3 [50, 98]

Weight (lb) 161.6 ± 31.9 [95.4, 271.8]

Height (in) 67.8 ± 4.1 [58, 78.5]

BMI 24.3 ± 3.5 [19, 34]

Per-visit

Temperature (°F) 97.9 ± 0.7 [95.4, 99.7] (n=2271, 84 N/A)

Introitus pH 4.5 ± 0.5 [3.4, 6.5] (n=1181, 85 N/A)

Posterior fornix pH 4.1 ± 0.5 [3.2, 7] (n=1181, 85 N/A)

b Data URL

Metagenomic taxon abundances (MetaPhlAn2) hmpdacc.org/hmsmcp2

Gene family abundances (UniRef50, from HUMAnN2) hmpdacc.org/hmmrc2

Pathway abundances and coverages (HUMAnN2) hmpdacc.org/hmmrp2

Kimura 2-parameter strain distance matrices hmpdacc.org/hmsdm2

Assembled metagenomes hmpdacc.org/hmasm2

Co-assembled metagenomes hmpdacc.org/hmcasm2

Assembly annotations hmpdacc.org/hmgi2

Individual assembly clustered gene index hmpdacc.org/hmgc2

Co-assembly annotations hmpdacc.org/hmcgi2

Co-assembly clustered gene index hmpdacc.org/hmcgc2

Read alignments to reference genomes hmpdacc.org/hmrarg2

Assembly-contig alignments to reference genomes hmpdacc.org/hmcarg2

Read alignments to assembly contigs hmpdacc.org/hmrac2

Gaussian Process models Matlab source hmpdacc.org/hmgps2

Assembly pipeline https://github.com/IGS/IMA

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Personalization, niche-association, and reference genome coverage in strain-level 
metagenomic profiles
a, Mean phylogenetic divergences17 between strains of species with sufficient coverage at 

each targeted body site (minimum 2 strain pairs). b, Individuals tended to retain 

personalized strains, as visualized by a Principal Coordinates Analysis (PCoA) plot for 

Actinomyces sp oral taxon 448, where lines connect samples from the same individual. c, 
Quantification of niche-association (Methods; only species with sufficient coverage in ≥5 

samples at two or more body sites). Higher values indicate greater phylogenetic separation 

between body sites. d, PCoA showing niche-association of Haemophilus parainfluenzae, 

showing subspecies specialization to three different body sites. e, PCoA for Eubacterium 
siraeum. f, Coverage of human-associated strains by the current 16,903 reference genome set 

(Methods). Top 25 species by mean relative abundance when present (>0.1% relative 

abundance) are shown (minimum prevalence of 50 samples). Sample counts in Table S2, 

distance matrices available from Extended Data Table 1b.
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Figure 2. Core and distinguishing functions of human body site microbiomes
a, 28 metabolic pathways were core at all six major body sites (“supercore” pathways). Two 

supercore pathways and b, 17 additional pathways were core in multiple body areas and 

enriched among human-associated taxa (“human microbiome-enriched” pathways). c, 21 

pathways were considerably more abundant at one body site compared with sites from all 

other body areas (“body site-enriched” pathways). Heatmap values reflect the first quartile 

of relative abundance (heatmaps are expanded in Extended Data Fig. 3). In pathway 

barplots, total (community) abundance is log-scaled, while the contributions of the top-seven 

genera are proportionally scaled within the total. “Other” encompasses contributions from 

additional, known genera; “unclassified” encompasses contributions of unknown taxonomy.
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Figure 3. Temporal dynamics of individual species and microbial pathways at each targeted body 
site
a, Jaccard similarity is maximal between technical replicates and decreases with time, 

though within-subject similarity always exceeds between-subject similarity. b, Gaussian 

process decomposition of the variance in species abundances (each point is one species; 

filtering criteria in Methods) into three biologically-relevant components based on their 

characteristic timescales (Methods). Technical noise was estimated (Table S5) but not 

visualized. Species with high inference uncertainty (standard error on the ternary diagram > 

0.2) are gray and the inference is biased towards the center of the diagrams (Methods). 

Labeled version in Extended Data Fig. 5. c, Same as (b), but for abundances of all core 

pathways. d, Illustrative time series showing dynamics at different locations within the 

ternary plots (Extended Data Fig. 4d–f for concrete examples). Sample counts in Table S1.
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Figure 4. Assembly and annotation of body-wide human microbiomes
a–d, Tukey boxplots of total assembly size, maximum and average contig lengths, and gene 

counts for single and co-assemblies (sample sizes in Table S1). e, Rarefaction curves of gene 

families (ORF clusters at 90% sequence similarity) from predicted genes generated from 

single assemblies for the targeted body sites (points), with a power-law fit (lines). The size 

of the HMP1 WMS dataset at each body site is also shown (open circles). The rarefaction 

trajectory was robust to changes in the sequence similarity threshold (for the 188 posterior 

fornix samples, the number of gene families ranged between only 1,131,796 to 1,271,891 for 

similarities 70–95%). Coloring is as in axis labels of (a). Sample counts in Table S1.
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