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Abstract

A key objective of the emerging field of personality neuroscience is to link the great variety of the 

enduring dispositions of human behaviour with reliable markers of brain function. This can be 

achieved by analyzing large sets of data with methods that model whole-brain connectivity 

patterns. To meet these expectations, we exploited a large repository of personality and 

neuroimaging measures made publicly available via the Human Connectome Project.

Using connectomic analyses based on graph theory, we computed global and local indices of 

functional connectivity (e.g., nodal strength, efficiency, clustering, betweenness centrality) and 

related these metrics to the five-factor-model (FFM) personality traits (i.e., neuroticism, 

extraversion, openness, agreeableness, and conscientiousness). The maximal information 

coefficient was used to assess for linear and non-linear statistical dependencies across the graph 

‘nodes’, which were defined as distinct brain circuits identified via independent component 

analysis. Multi-variate regression models and ‘train/test’ machine-learning approaches were also 

used to examine the associations between FFM traits and connectomic indices as well as to test for 

the generalizability of the main findings, whilst accounting for age and sex differences.

Conscientiousness was the sole FFM trait linked to measures of higher functional connectivity in 

the fronto-parietal and default mode networks. This might provide a mechanistic explanation of 

the behavioural observation that conscientious people are reliable and efficient in goal-setting or 

planning.

Our study provides new inputs to understanding the neurological basis of personality and 

contributes to the development of more realistic models of the brain dynamics that mediate 

personality differences.
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Introduction

Personality neuroscience is a rapidly growing research field that aims at understanding the 

neural underpinnings of variability in cognitive and emotional functions as well as the brain 

basis of individual differences in behaviour (Corr, 2006; Colin G. DeYoung, 2010). 

Extensive research in personality has shown that the complexity of human behaviour can be 

described by an aggregate taxonomy termed the five-factor model (FFM)(Costa & McCrae, 

1992; Digman, 1990; Robert R. McCrae & Terracciano, 2005), although other models of 

personality have also been developed to explain the high variability in a wide range of 

behaviours, including clinical disorders, occupational/educational performance, and 

economic behaviour (Ashton et al., 2004; Cloninger, 1999; Cloninger, Przybeck, & Svrakic, 

1991; Cloninger, Svrakic, & Przybeck, 1993; Corr, 2006; H. Eysenck, 1983; H. J. Eysenck, 

2012; J. A. Gray, 1970; J.A. Gray & McNaughton, 2003). The FFM posits that neuroticism, 

extraversion, openness, agreeableness, and conscientiousness are the universal descriptors of 

human enduring behavioural dispositions (R. R. McCrae, 1991; R. R. McCrae & Costa, 

1987; R. R. McCrae & John, 1992; Robert R. McCrae & Terracciano, 2005).

However, how and why individuals differ in these traits remain an important open question. 

Recently, sophisticated brain imaging techniques and new analytical methods have become 

available to help formulating novel theories and models regarding the neurological origin of 

human personality, although it must be acknowledged that neuroimaging intrinsically 

remains an indirect and correlational measure of brain anatomy and function. Past research 

has linked the FFM traits to different indices of brain structure and function, although the 

presence of mixed and often conflicting results in the literature limits the conclusions that 

can be drawn from these studies (Canli, 2004; Canli, Sivers, Whitfield, Gotlib, & Gabrieli, 

2002; H. Cremers et al., 2011; H. R. Cremers et al., 2010; C. G. DeYoung et al., 2010; 

Dima, Friston, Stephan, & Frangou, 2015; Fischer, Wik, & Fredrikson, 1997; Hu et al., 

2011; Indovina, Riccelli, Staab, Lacquaniti, & Passamonti, 2014; Kapogiannis, Sutin, 

Davatzikos, Costa, & Resnick, 2012; Krebs, Schott, & Duzel, 2009; Liu et al., 2013; Lu et 

al., 2014; Passamonti et al., 2015; Riccelli, Indovina, et al., 2017; Rodrigo et al., 2016; 

Servaas et al., 2013; Wright, Feczko, Dickerson, & Williams, 2007; Wright et al., 2006). 

Several factors may explain the inconsistences across previous findings, including the use of 

different analytic approaches and the fact that most of the earlier studies, with some notable 

exceptions (Bjornebekk et al., 2013; Holmes et al., 2012; Nostro, Muller, Reid, & Eickhoff, 

2016; Riccelli, Toschi, Nigro, Terracciano, & Passamonti, 2017), have been conducted in 

small samples of participants.

Another important issue is the necessity to progress from accounts that describe personality 

differences in terms of anatomical and functional heterogeneity in isolated brain regions, to 

predictive frameworks that formally model the complexity of the connectivity patterns at the 

whole-brain level. Within this context, mathematical approaches based on graph theory have 
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been applied to measure the architecture (‘topology’) of the brain structural and functional 

connectivity patterns (i.e., ‘connectomic’ approaches) (Fornito & Bullmore, 2015). The 

graph theoretical approach provides a series of key indices to quantify different aspects of 

the brain ‘connectome’ (Fornito & Bullmore, 2015). For instance, the network’s capacity to 

‘route’ information across its distinct elements (‘nodes’) can be estimated by computing the 

efficiency of the paths (‘edges’) linking these nodes (Boccaletti, Latora, Moreno, Chavez, & 

Hwang, 2006). In other words, the network’s efficiency is a quantitative representation of 

‘how easy’ it is for an input to ‘travel’ across the graph’s nodes. Consequently, increased 

efficiency reflects heightened capacity of a network to process and route relevant 

information across its nodes. Graph analyses also enable to quantify the degree of 

segregation of a network (modularity) and its capacity to integrate the information at a 

global or local level (i.e., global or local clustering coefficient) (Rubinov & Sporns, 2010).

Studying how ‘communications’ across large-scale brain circuits relate to each of the FFM 

traits has thus the potential to significantly improve our understanding of the neurological 

roots of human personality. The rationale behind this study was to reliably associate each of 

the FFM traits with functional connectivity patterns across large-scale brain networks. 

Although the relationship between the blood-oxygen-level dependant (BOLD) activity in 

single regions and the whole-brain network measures is highly complex, there is compelling 

evidence that ‘holistic’ neuroimaging approaches are able to predict individual variability in 

multiple behavioural, demographic, and life-style measures (S. M. Smith et al., 2015). 

However, it remains to be determined whether graph-based metrics can be reliably 

associated with individual differences in the FFM personality traits. To take a step in this 

direction, we studied the brain functional connectome in relation to the FFM in a large 

sample of young and healthy individuals drawn from the Human Connectome Project (HCP) 

(n=818, age-range: 22–37 years). The HCP is an international project that has granted open 

access to an unprecedented large set of demographics, personality, and neuroimaging data 

with high spatial and temporal resolution (McNab et al., 2013).

By using robust and highly validated methods to analyze resting-state functional magnetic 

resonance imaging (rsfMRI) data, we tested how individual differences in neuroticism, 

extraversion, openness, agreeableness, and conscientiousness are associated to global and 

local indices of brain functional connectivity (e.g., nodal strength, efficiency, clustering). A 

machine-learning validation approach based on a “training” and “testing” split of the total 

dataset was also employed to assess for the replicability of our main findings. We 

hypothesized that the FFM traits linked to less favorable outcomes (e.g., risk of developing 

psychiatric disorders) like neuroticism are associated to reduced brain functional 

connectivity (e.g., low nodal strength, low clustering, and low efficiency). Conversely, FFM 

traits like openness, extraversion, agreeableness, and conscientiousness (which have been 

linked to curiosity, social skills, and life success) were expected to be associated to measures 

of heightened functional connectivity (e.g., high nodal strength, high clustering, and high 

efficiency).

These predictions are based upon a recent study which found that functional connectomic 

metrics strongly relate to a ‘single-axis’ co-variation (ranging from ‘positive’ to ‘negative’ 

measures) in behavioural traits (S. M. Smith et al., 2015). In other words, those individuals 
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scoring high on the ‘positive’ end of the behavioural axis linking lifestyle, demographic, and 

other psychometric measures (e.g., fluid intelligence) displayed stronger functional 

connectivity patterns than low-scoring subjects (S. M. Smith et al., 2015). Interestingly, the 

brain regions that most contributed to these increased functional connectivity patterns 

included those areas that belong to the default mode network (DMN) (e.g., the medial 

prefrontal and parietal cortices, temporo-parietal junction, and anterior insula). Although the 

precise role of each region within the DMN is still matter of debate (Leech, Kamourieh, 

Beckmann, & Sharp, 2011), there is robust evidence that the DMN as a whole is involved in 

several aspects of human cognition and behaviour, including episodic and semantic memory, 

imagination, decision-making, and theory of mind (R. P. Roberts et al., 2017; Schacter, 

2012; Schacter et al., 2012; Schacter, Benoit, De Brigard, & Szpunar, 2015). It is thus 

reasonable to expect that enhanced functional connectivity patterns within and across the 

DMN is linked with FFM personality traits that predict ‘positive’ and favorable behavioural 

outcomes, although caution is always warranted when making reverse inferences in 

interpreting neuroimaging findings (Poldrack, 2006).

Participants & Methods

Participants

The demographic and personality variables of the HCP sample are summarized in Table 1.

In brief, all participants were young and healthy adults with no obesity, hypertension, 

alcohol or tobacco misuse, anxiety, depressive or other psychiatric and neurologic disorders, 

or history of behavioural problems. Most participants were right-handed white Americans 

with a non-Hispanic or Latinos background.

Personality assessment

The FFM personality traits were assessed via the NEO five-factors inventory (NEO-FFI) 

(Costa & McCrae, 1992; Terracciano, 2003). The NEO-FFI is composed by 60 items, 12 for 

each of the five factors. For each item, participants reported their level of agreement on a 5-

points Likert scale, from strongly disagree to strongly agree. The NEO instruments have 

been previously validated in USA and several other countries (Robert R. McCrae & 

Terracciano, 2005).

MRI scanning protocol and pre-processing

Resting-state fMRI (rs-fMRI) data were acquired using a 3T scanner (Siemens AG, 

Erlangen, Germany) (Van Essen et al., 2012). Four runs of 15 minutes each were acquired. 

Subjects lied within the scanner with open eyes and while fixating a bright central cross 

projected on a dark background. Oblique axial acquisitions were alternated between phase 

encoding in a right-to-left direction in one run and phase encoding in a left-to-right direction 

in the other run. Gradient-echo echo-planar imaging used the following parameters: TR=720 

ms, TE=33.1 ms, flip angle=52°, FOV=208×180 mm, Matrix 104×90, Slice thickness=2.0 

mm; 72 slices; 2.0 mm isotropic voxels, Multiband factor=8, Echo spacing=0.58 ms, 

BW=2290 Hz/Px. This resulted in 4800 rs-fMRI volumes in total per subject, subdivided in 
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4 runs of 1200 volumes each. Structural (T1-weighted) images and field maps were also 

acquired to aid data pre-processing.

Each 15-minute (1200 volume) run of each subject’s rs-fMRI data was pre-processed using 

FSL and it was minimally pre-processed according to the latest version (3.1) of the HCP 

pipeline (Glasser et al., 2013). Each dataset was then temporally de-meaned and had 

variance normalization applied according to Beckmann and colleagues (Beckmann & Smith, 

2004). Group-PCA output was generated by MIGP (MELODIC’s Incremental Group-PCA), 

a technique that approximates full temporal concatenation of all subjects' data, from all 820 

participants. This comprises the top 4500 weighted spatial eigenvectors from a group-

averaged PCA (Stephen M Smith, Hyvärinen, Varoquaux, Miller, & Beckmann, 2014). The 

MIGP output was then fed into group-ICA using FSL's MELODIC tool (Beckmann & 

Smith, 2004), applying spatial-ICA at dimensionality of 15. Successively, the ICA maps 

were dual-regressed into each subject's 4D dataset to give a set of 15 time-courses of 4800 

time points per subject. Further details regarding data acquisition and processing can be 

found in the HCP S900 Release reference manual available at https://

www.humanconnectome.org/.

Estimation of functional connectivity

To quantify the resting-state functional connectivity among the 15 circuits (‘nodes’), the 

maximum information coefficient (MIC) between the time-series of each pair of circuits was 

computed (Reshef et al., 2011). MIC is a powerful statistic sensitive to both linear and 

nonlinear associations of arbitrary shape between paired variables (Reshef et al., 2011). This 

method was recently applied to investigate the functional connectivity patterns in patients 

with schizophrenia (Su, Wang, Shen, Feng, & Hu, 2013; Zhang, Sun, Yi, Wu, & Ding, 

2015). The basic idea underlying MIC is that, when a relationship between two variables 

exists, it can be quantified via creating a grid on the scatterplot that creates a partition of the 

data. More formally, the MIC between two variables x and y is defined as:

I(x, y) = ∑
i = 1

nx
p(xi) log2

1
p(xi)

+ ∑
j = 1

ny
p(y j) log2

1
p(y j)

− ∑
i = 1

nx
∑

j = 1

ny
p(xiy j) log2

1
p(xiy j)

where nx and ny are the number of bins of the partition of the x- and y-axis. Therefore, the 

MIC of two variables x and y is calculated as:

MIC = max{ I(x, y)
log2 min{nx, ny})}

where the maximum is taken over all the possible nx by ny grids. The MIC between each 

pair of networks’ time-series was calculated using the MINEPY toolbox (Albanese et al., 

2013) implemented in MATLAB (https://github.com/minepy/minepy). These analytical steps 

generated a 15 × 15 full and symmetric subject-specific matrix of functional connectivity 

data. These matrices were then treated as weighted networks to calculate the graph-related 

measures.
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Local network analyses

All graph measures were computed via the Brain Connectivity Toolbox (Rubinov & Sporns, 

2010) in MATLAB (https://sites.google.com/site/bctnet/). For each independent components 

analysis (ICA) and at the subject level, we calculated the graph measures that quantify the 

centrality of a node within a network (local strength and betweennes centrality) as well as its 

integration and segregation properties (clustering coefficient and local efficiency 

respectively). Local strength and betweennes centrality are two indices of centrality that 

measure the relative importance of a node within a network (Zuo et al., 2012). Nodes with 

high levels of centrality are thought to facilitate information routing in the network with a 

key role in the overall communication efficiency of a network. The node’s strength is the 

simplest measure of centrality and is defined as the sum of all the edge weights between a 

node and all the other nodes in the network. Regions with a high nodal strength indicate high 

connectivity with other nodes. Betweennees centrality of a node is defined as the fraction of 

all shortest paths in the network that contain a given node. If a node displays a high value of 

betweenness centrality, it participates in a large number of shortest paths and have an 

important role in the information transfer within a network. Along with centrality measures, 

the nodes of a network could display different levels of segregation and integration of 

information (Sporns, 2013). Also, the clustering coefficient is a commonly used metric to 

assess the segregation properties of a network. It reflects the ability of a node to 

communicate with other nodes with which it shares direct connections; in other words, it 

represents the fraction of triangles around an individual node. It is equivalent to the fraction 

of the node’s neighbours that are also neighbours of each other (Watts & Strogatz, 1998) and 

in the case of weighted networks it is calculated as the geometric mean of all triangles 

associated with each node (Onnela, Saramäki, Kertész, & Kaski, 2005). Finally, the ability 

of an efficient information transfer across distributed nodes (i.e., nodes that are not directly 

connected) can be quantified via local path length and local efficiency. In the case of a 

binary network, the local path length is the minimum number of edge that must be traversed 

to go from one node to another, while in a weighted network high levels of correlations are 

interpreted as short distances. The local efficiency is therefore the average of the inverse 

local path length. Local efficiency is calculated as the global efficiency of the subgraph 

formed by the node’s neighbours (Boccaletti et al., 2006). It measures the ability of parallel 

information transfer at local level.

Global network analyses

Global graph metrics describe the topology of a network in a single number which 

characterizes the overall organization of a network. As global measures, we computed the 

global strength, the global clustering coefficient and global efficiency (Boccaletti et al., 

2006; Rubinov & Sporns, 2010). These measures were calculated as the average of the local 

strength, local clustering coefficient and the local efficiency of all nodes, respectively.

Statistical analyses

To evaluate the replicability of our inference framework, the initial sample of n=818 

participants was randomly split into two sub-samples: a “training” sample (70% of 

participants, n=573) and a “test” sample (30% of participants, n=245). The “training” 
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sample was used to examine the association between each of the graph measures (both 

global and local metrics) and the FFM personality traits. Conversely, the “test” sample was 

employed to assess whether the multivariate model based on the “training” sample was able 

to predict outcomes in the “test” sample (i.e., in an 'unseen' group of subjects to which the 

model was completely ‘agnostic’). More specifically, to test the associations between graph 

measures and personality differences, general linear models (GLMs), including each of the 

FFM traits as well as age and gender as nuisance covariates, were fitted using the “training” 

sample. The resulting P values were corrected for multiple comparisons using a false 

discovery rate (FDR) procedure. Associations surviving a stringent threshold of P<0.01 FDR 

were considered statistically significant. The GLMs fitted in the former procedure were then 

used to estimate the graph measures resulting in the "test" sample using the demographic 

variables and personality scores of the “test” sample only as inputs (in other words, the 

rsfMRI data of the “train” sample was not employed in this procedure). The similarity 

between ‘real’ graph measures (i.e., computed using rsfMRI data from the “test” sample) 

and ‘estimated’ graph indices (i.e., predicted using the GLM fitted on “training” data only) 

was assessed using the relative root mean square error (RRMSE). This approach is typically 

referred as external validation and tests for generalizability of the findings beyond the study 

population. The image analysis workflow is summarized in Figure 1.

Results

Independent components analysis (ICA)

The fifteen brain networks identified via ICA were represented by a series of circuits that 

have been consistently reported in past rs-fMRI studies (e.g., the sensory-motor circuit, the 

visual circuits, the default-mode network, the left and right fronto-parietal circuits, the 

salience network, etc.) (Raichle, 2015; Toschi, Duggento, & Passamonti, 2017) (Figure 2 

and Supplementary Table 1 for a detailed list of the anatomical regions involved in each 

network node).

Correlations between global graph indices and FFM traits

No significant associations were found between any of the FFM personality traits and: (i) the 

global strength (R’s<0.084, P’s>0.14); (ii) global clustering coefficient (R’s<0.081, 

P’s>0.15,) and (iii) global efficiency (R’s<0.083, P’s>0.17).

Correlations between local graph indices and FFM traits

Neuroticism—No associations, either positive and negative, were found between 

neuroticism scores and: (i) the nodal strength (R’s<0.07, P’s>0.75); (ii) local clustering 

coefficient (R’s<0.06, P’s>0.88); (iii) local efficiency (R’s<0.07, P’s>0.82), and (iv) 

betweeness centrality (R’s<0.09, P’s>0.59)

Extraversion—As for neuroticism, no statistically significant association was found 

between extraversion scores and: (i) the nodal strength (R’s<0.11, P’s>0.09); (ii) local 

clustering coefficient (R’s<0.12, P’s>0.04); (iii) local efficiency (R’s<0.12, P’s>0.09), and 

(iv) betweeness centrality (R’s<0.11, P’s>0.09).
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Openness—No positive or negative association was detected between openness scores 

and: (i) the nodal strength (R’s<0.07, P’s>0.97); (ii) local clustering coefficient (R’s<0.06, 

P’s>0.96); (iii) local efficiency (R’s<0.06, P’s>0.99), and (iv) betweeness centrality 

(R’s<0.09, P’s>0.27).

Agreeableness—No positive or negative association was detected between Agreeableness 

scores and: (i) the nodal strength (R’s<0.10, P’s>0.13); (ii) local clustering coefficient 

(R’s<0.10, P’s>0.12); (iii) local efficiency (R’s<0.10, P’s>0.15), and (iv) betweeness 

centrality (R’s<0.08, P’s>0.25).

Conscientiousness—A schematic representation of the statistically significant 

associations between conscientiousness scores and the local graph measures is reported in 

Figure 3, while the statistical details are included in Table 2. In summary, significantly 

positive correlations were found between conscientiousness scores and the nodal strength, 

local clustering coefficient, and local efficiency in the left fronto-parietal network (FPN) 

(R’s>0.14, P’s<0.01, FDR). Furthermore, increased local clustering coefficient and 

betweeness centrality in the default mode network (DMN) and right FPN were associated 

with higher levels of conscientiousness (R’s>0.14, P’s<0.005, FDR). External validation 

showed good replicability, with RRMSE values of around 0.15 in the “test” sample.

To further explore which specific aspects of conscientiousness were linked to local graph 

measures, we conducted post-hoc analyses that included conscientiousness facets (i.e., C2-

Order, C3-Dutifulness, C4-Achievement striving; C5-Self-Discipline) as main outcome 

measures. As in the previous analyses, age, sex, and the other FFM traits were also included 

in the GLM as nuisance covariates. We found that the betweenness centrality in the DMN 

was positively associated with C3 (P=0.01, FDR, RRMSE=0.17) and C4 (P=0.01, FDR, 

RRMSE=0.16). Finally, the betweeness centrality in the right FPN was positively associated 

with C3 (P=0.01, FDR, RRMSE=0.16).

Discussion

This study provides compelling new evidence that ‘local’ graph metrics based on resting 

state functional imaging are significantly associated with conscientiousness in a sample of 

818 young and healthy adults drawn from the Human Connectome Project (HCP). More 

specifically, we found higher nodal strength, local clustering, and local efficiency in the left 

fronto-parietal network (FPN) in people scoring high in conscientiousness. Likewise, higher 

local clustering and betweenness centrality in the right FPN and default mode network 

(DMN) were positively related to conscientiousness scores. A validation approach based on 

a “training” and “test” split of the total dataset strongly supported the robustness, 

replicability, and ‘cross-validity’ of these findings.

Overall, our results demonstrate the value of applying connectomic approaches to study the 

brain functional connectivity in relation to the FFM of personality. The multi-variate 

analyses also show that the positive association between the FPN/DMN connectivity 

patterns and conscientiousness is not dependent on other FFM personality traits (i.e., 

neuroticism, extraversion, openness, and agreeableness) or potentially confounding factors 
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like gender and age variability. Similarly, the non-significant correlations with global 

connectomic measures (e.g., global clustering and efficiency) suggests that individual 

differences in conscientiousness are mediated by specific functional dynamics across distinct 

cognitive nodes. In the following sections, we discuss the implication of our findings to 

improve the understanding of the neural underpinnings of conscientiousness as well as the 

main strengths and limitations of our study.

FPN and DMN connectivity patterns mediate conscientiousness

The higher nodal strength in the left fronto-parietal network (FPN) in people scoring high in 

conscientiousness reflects the fact that this specific circuit ‘node’ has heightened 

‘communications’ with the other nodes. Highly conscientious people also show higher local 

clustering in the left FPN, which implies that the FPN is densely inter-connected to its 

neighbours and formed an elevated number of local aggregates (‘triangles’) with its most 

adjacent nodes. At the same time, the local efficiency in the left FPN and the betweeness 

centrality in the right FPN are higher in people scoring high in conscientiousness.

The FPN includes cito-architecturally complex and evolutionarily recent cortices that have 

been associated with inter-subject variance in several cognitive measures (Mueller et al., 

2013; Zilles, Armstrong, Schleicher, & Kretschmann, 1988). Furthermore, a recent study in 

n=126 people from the HCP database reported that the functional connectivity patterns 

involving the FPNs were the most distinguishing features (‘fingerprints’) to predict 

variability in cognitive functioning across different individuals (Finn et al., 2015). Although 

the FPNs are particularly engaged during tasks that require high levels of attention and 

cognitive control, their connectivity patterns at rest can also predict subject-specific 

performance with a high degree of precision (Finn et al., 2015; Miranda-Dominguez et al., 

2014). This may depend on the fact the FPN ‘nodes’ act as flexible ‘hubs’ and therefore play 

a critical role in coordinating the activity and functioning of several other brain regions (Finn 

et al., 2015; Miranda-Dominguez et al., 2014).

The enhanced connectivity patterns in FPNs in people scoring high in conscientiousness can 

therefore be interpreted as a ‘sign’ of increased cognitive control and flexible behaviour in 

these individuals, bearing in mind the shortcomings of making reverse inference in cognitive 

neuroscience (Poldrack, 2006). This is in keeping with several observations showing that 

conscientious people are efficient in pursuing their objectives and planning, which are 

themselves critical predictors of academic or occupational success, healthy life-styles, and 

ultimately longevity (Noftle & Robins, 2007; Ozer & Benet-Martinez, 2006; B. W. Roberts, 

Lejuez, Krueger, Richards, & Hill, 2014; Sutin et al., 2016). Our data are also consistent 

with past neuroimaging studies that have implicated the dorsolateral prefrontal cortex 

(DLPFC) and other PFC areas (e.g., the anterior cingulate cortex-ACC, which is also part of 

the FPN) in conscientiousness (Bunge & Zelazo, 2016; C. G. DeYoung et al., 2010; Forbes 

et al., 2014; Jackson, Balota, & Head, 2011; Kapogiannis et al., 2012; Matsuo et al., 2009; 

Whittle et al., 2009). Nevertheless, it is important to emphasize that our results show that it 

is the FPN connectivity patterns with the other ‘nodes’ which is linked with 

conscientiousness rather than the activity in the DLPFC/ACC in isolation. This is a key 

issue, especially when considering the necessity to progress from models of personality that 
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consider the function of single brain regions, to more naturalistic frameworks that aim at 

describing individual differences in behavioural traits in terms of large-scale networks 

dynamics.

Last but not least, we found that the default mode network (DMN) showed higher local 

clustering and betweenness centrality in relation to high conscientiousness scores. This 

finding was predicted on the basis of recent data showing that connectivity patterns 

involving the DMN strongly predict variability in a single ‘positive-to-negative’ behavioural 

axis (S. M. Smith et al., 2015). There is also evidence that the DMN significantly contributes 

to working memory performances via the dynamic reconfiguration of its interactions with 

other networks, which suggests that the DMN is actively involved during the execution of 

cognitive demanding tasks (Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015). 

Overall, high-level cognitive functioning is critical in human evolution and is likely to be 

central in the life of conscientious people. Hence, we speculate that the enhanced DMN 

‘interplay’ with other nodes may help explaining, in mechanistic terms, why conscientious 

individuals are able to efficiently elaborate complex plans like imaging and planning future 

scenarios. This hypothesis is corroborated by our post-hoc analyses showing that local 

measures in the DMN (i.e., local clustering and betweeness centrality) are respectively 

linked to the C3-Dutifulness facet (i.e., reliable, dependable, careful, scrupulous and strictly 

adherent to rules) and C4-Achievement Striving facet (i.e., industrious, enterprising, 

ambitious, purposeful, and driven) of conscientiousness.

Strengths & limitations

The main strengths of our study are: (i) the large, homogeneous, and well-characterized 

sample of participants in terms of FFM personality traits, demographic variables, and 

neuroimaging data, which in itself offers greater statistical power compared to several 

previous studies, and (ii) the fact that we employed robust statistical approaches (i.e., 

machine-learning) to show specificity and replicability of our main findings. We note, 

however, that the effects sizes were relatively small (T’s~3.5), although in the typical range 

of other recent studies using similar sample sizes in healthy individuals (Mackey et al., 

2016; S. M. Smith et al., 2015). There was also a relatively high number of statistical tests, 

although we strived to attenuate this potential problem with the use of stringent statistical 

procedures to correct for multiple comparisons (P<0.01, FDR).

The fact that conscientiousness was the sole personality trait related to ‘connectomic’ 

metrics does not necessarily imply that the other FFM traits do not have such brain 

correlates. Several reasons why the other FFM traits were not related to functional 

connectomic indices may be speculated–even if not resolved by our dataset. These include: 

(i) type II errors; (ii) non-linear relationships between personality traits and brain 

connectomic metrics; (iii) the fact that our models were multivariate rather than univariate, 

which means that the shared variance explained by the other FFM traits was factored out 

while analyzing the effect of each FFM trait; (iv) the possibility that correlations between 

brain functional connectomic measures and other personality traits do exist but can only be 

revealed by ‘meta-trait’ measures (C. G. DeYoung, Peterson, & Higgins, 2002) or traits from 

other models of personality, not the FFM.
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Perhaps more importantly, our study suggests that different neuroimaging modalities and 

analytical techniques may be able to reveal the unique and exquisite nature of how the brain 

mediates each of the FFM traits. Consistent with this idea, we have recently found in n=509 

individuals from the same HCP dataset that measures of cortical anatomy (i.e., cortical 

thickness, folding, and surface area) were strongly and differently associated with each of 

the FFM traits (Riccelli, Toschi, et al., 2017). Hence, brain structural heterogeneity is likely 

to be an underlying substrate of variability in all FFM traits while the same may not be true 

for functional measures that assess more transient ‘communication’ patterns. Different 

functional connectivity approaches (e.g., time-variant connectivity methods) are thus 

warranted to reveal in more detail the complexity of the neural dynamics mediating 

individual differences in personality (Riccelli, Passamonti, Duggento, Guerrisi, Indovina, 

Terracciano, et al., 2017; Riccelli, Passamonti, Duggento, Guerrisi, Indovina, & Toschi, 

2017).

Summary & conclusions

To summarize, we found robust and specific associations between conscientiousness and 

graph measures of local connectivity in the FPN and DMN. These highly integrated circuits 

include different parts of the prefrontal and parietal cortices, a set of brain regions that have 

significantly evolved in human beings and have been consistently implicated in goal-setting 

and planning, two high-order cognitive functions in which conscientious people excel.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Image analysis workflow
After initial pre-processing, the resting-state functional magnetic imaging (fMRI) data were 

used to extract a set of 15 separate brain circuits via independent components analysis 

(ICA). Next, subject-specific time-series from each ICA brain circuit were obtained. The 

maximal information coefficient (MIC), an index that assesses for linear and non-linear 

relationships in big data-sets, was used to measure statistical dependency between each pair 

of time-series. This led to a 15×15 functional connectivity matrix at the single-subject level. 

The subject-specific connectivity matrices were then used to compute local and global graph 

measures (i.e., strength, clustering, efficiency, and betweennees centrality). Each of these 

graph measures, which quantify different aspects of the brain topological organization, was 

finally correlated with the five-factor-model personality traits at the group level.
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Figure 2. Results of independent component analysis (ICA)
Fifteen separate brain functional circuits were identified during the ICA step of the image 

analysis pipeline (Figure 1 and methods section in the main text for further details). Each of 

these circuits was successively used as “node” in the graph analysis. The list of the brain 

areas belonging to each individual network is reported in Supplementary Table 1.

Toschi et al. Page 18

Personal Neurosci. Author manuscript; available in PMC 2018 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Schematic representation of the main results
Depending on the graph metric (Table 2), the red circle represents either the left or right 

fronto-parietal network (FPN) or default mode network (DMN), whilst the black circles 

represents the 14 remaining network nodes. Top row. The thicker lines in individuals with 

high levels of conscientiousness indicate the existence of higher strength in the 

‘communications’ between the FPN and the other brain networks. Middle row. People 

scoring higher in conscientiousness show a higher degree of inter-connectedness between 

the FPN or DMN and the local networks consisting of direct neighbours of the FPN or 

DMN. Bottom row. The DMN has higher betweeness centrality in individuals with high 

levels of conscientiousness. This means that the DMN is a “hub” node in conscientious 

people.
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Table 1

Demographic and personality variables in the HCP sample (n=818 healthy volunteers).

Demographic variables

Gender (males / females) 367 / 451

Age (years) 28.7 ± 3.7 [22–37]

Handedness (Right / Left / Both) 743 / 73 / 2

Education (years) 14.9 ± 1.8 [11–17]

Ethnicity (%) Hispanic / Latino 8.6 %

Not Hispanic / Latino 90.5 %

Unknown / Not Reported 0.9 %

Personality scores (NEO-FFI)

Neuroticism 16.3 ± 7.2 [0–43]

Extraversion 30.7 ± 5.9 [11–47]

Openness 28.3 ± 6.1 [12–45]

Agreeableness 32.0 ± 5.0 [13–45]

Conscientiousness 34.5 ± 5.9 [12–48]

Key to table. Age, education, and personality data are expressed as mean ± standard deviation while the range in parentheses [] is expressed as 
minimum-maximum. NEO five-factors inventory questionnaire, NEO-FFI.
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