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Abstract

Research on acetaminophen (APAP) toxicity over the last several decades has focused on the 

pathophysiology of liver injury, but increasing attention is being paid to other known and possible 

adverse effects. It has been known for decades that APAP causes acute kidney injury, but 

confusion exists regarding prevalence, and the mechanisms have not been well investigated. More 

recently, a number of experimental, clinical and epidemiological studies have reported evidence 

for pulmonary, endocrine, neurological and neurodevelopmental toxicity, but the quality of 

evidence from those studies varies. It is important to consider these data due to implications for 

regulation and clinical practice. Here, we review the evidence and proposed mechanisms for 

extrahepatic adverse effects of APAP and weigh weaknesses and strengths in the data. We consider 

results from clinical, epidemiological and experimental research. Our goal is to determine the 

strength of claims regarding extrahepatic toxicity of APAP and to identify areas of need for future 

research. It is especially important to view claims of developmental effects of antenatal APAP 

exposure with a critical eye because APAP is currently the only over-the-counter medication 

recommended for pregnant women to self-treat pain and fever.
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INTRODUCTION

Acetaminophen (APAP; a.k.a. paracetamol) is one of the most commonly used drugs in the 

US [1] and throughout the West, but has a relatively low therapeutic index. The major target 

organ of APAP toxicity is the liver. In fact, APAP is the principal cause of acute liver failure 

(ALF) and related deaths in several countries [2]. The hepatotoxicity of APAP was first 

reported in the 1960s [3–5]. In the five decades since those initial reports, studies of APAP 

toxicity have focused almost exclusively on the prevalence and mechanisms of liver injury. 
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Recently, however, attention has shifted toward other adverse effects. A large number of 

studies have reported neurological [6–14], pulmonary [15–21] and developmental toxicity 

[6,7,11,14,22] in both preclinical models and humans.

It is important to critically evaluate the evidence for toxic effects of any drug or other 

xenobiotic. Claims of toxicity can lead to changes in clinical practice or regulation that can 

affect patient care. Recently, concerns regarding liver injury caused by APAP have led the 

US FDA to reduce the maximum amount of APAP allowed in prescription formulations to 

325 mg, and to recommend lower daily doses for over-the-counter use [23]. It is especially 

important to view claims of developmental and congenital effects of intrauterine APAP 

exposure with a critical eye because APAP is currently the most commonly used drug 

among pregnant women and for many years was the only analgesic considered safe for use 

during pregnancy [24,25], a perception that still exists among many clinicians and patients. 

An association between APAP use in pregnancy and disease in offspring could easily lead to 

changes in clinical practice, just as associations between NSAIDs and various adverse 

outcomes such as low birth weight, birth defects, and child mortality led the FDA to classify 

aspirin and others as category D for pregnancy, meaning that there is positive evidence for 

maternal fetal risk, and caused clinicians to recommend against their use [24].

The purpose of this review is to summarize studies of adverse extrahepatic effects of APAP 

and to evaluate the evidence for those effects. Animal studies, human studies and 

epidemiological reports are discussed. Special attention is given to the pathophysiological 

mechanisms that have been proposed to explain the phenotypic findings from those data. 

The review begins with what is known about the mechanisms of toxicity in the liver, and 

findings from other organs are discussed with reference to those well-known mechanisms. 

Overall, it is clear that APAP is toxic in other organs, but the quality of the evidence and 

mechanisms varies. In many cases, there is a paucity of mechanistic data, or the available 

mechanistic studies suffer from poor design. However, that does not necessarily invalidate 

empirical observations of adverse effects. We strongly recommend that future investigations 

use only reliable in vivo models and doses that are relevant for the human context.

OVERVIEW OF APAP METABOLISM AND HEPATOTOXICITY

Although several critical details are still missing, the metabolism and toxicity of APAP in 

the liver have been thoroughly investigated [26] (Fig. 1). After a therapeutic dose of APAP, 

approximately one-third is glucuronidated while another third is sulfated [26,27]. Any 

remaining parent compound is converted by cytochrome P450 enzymes to an electrophilic 

intermediate, believed to be N-acetyl-p-benzoquinone imine (NAPQI) [28]. Binding of the 

reactive metabolite to proteins is known to be the initiating event in liver injury [29–32]. 

Binding to mitochondrial proteins appears to be particularly important; changes in 

mitochondrial function and integrity are known to occur in the liver after APAP overdose in 

both mice and humans [15,33–36]. Interestingly, the reactive metabolite of N-acetyl-p-

aminophenol (AMAP), an isomer of APAP, binds much less to mitochondrial proteins in 

primary mouse hepatocytes (PMH) than the metabolite of APAP, and PMH are much less 

susceptible to the toxicity of AMAP toxicity than that of APAP [37]. Furthermore, unlike 

PMH, AMAP treatment does result in mitochondrial protein adducts in primary human 
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hepatocytes (PHH) [37], which are damaged by AMAP [37,38]. Finally, rats are less 

susceptible to APAP hepatotoxicity than mice and also have less mitochondrial protein 

binding after APAP overdose [39]. Together, those data strongly suggest that mitochondrial 

protein binding is a critical.

Although it is not known exactly how it occurs, the mitochondrial protein binding seems to 

cause oxidative stress. The major reactive oxygen species (ROS) in APAP hepatotoxicity are 

superoxide (O2
−) and peroxynitrite (ONOO−) [40], which form primarily within 

mitochondria and drive the injury [40–46]. Replenishment of glutathione by treatment with 

the precursor N-acetylcysteine (NAC) protects against APAP hepatotoxicity not only by 

scavenging the reactive metabolite of APAP, but also by reducing oxidative stress [47,48].

The initial oxidative stress after APAP overdose activates mitogen-activated protein kinases 

(MAPKs), including the c-Jun N-terminal kinases (Jnk) 1/2 [49,50] (Fig. 1). The role of Jnk 

1/2 is controversial. The Jnk 1/2 inhibitor SP600125 protects against APAP toxicity in mice 

in vivo and in both PMH and PHH [50–52]. Although some groups have also shown 

protection with knockdown or knockout of Jnk isoforms, particularly Jnk2 [51], others have 

failed to reproduce those results [52–55]. The discrepancy between different studies that 

utilized Jnk2 deficient mice may be due to use of control animals from different substrains 

[56]. Interestingly, one recent study demonstrated that neither Jnk1 nor combined Jnk 1/2 

deficiency in the liver is protective against APAP hepatotoxicity [55]. In fact, Jnk 1/2 

knockout appeared to worsen injury [55]. Furthermore, SP600125 protected in the double 

knockout mice [55]. The authors concluded that Jnk 1/2 is not part of the mechanism of 

toxicity and that SP600125 protects through off-target effects [55]. However, those results 

do not explain why other Jnk 1/2 inhibitors also protect against APAP [53,57]. Overall, the 

weight of the evidence favors a role for Jnk [58]. Once activated, Jnk 1/2 translocates to 

mitochondria [44,59], and it is thought that it enhances the mitochondrial oxidative stress 

[59,60]. Other kinases that have been shown to play a role in mice include the mixed lineage 

kinase 3 (Mlkl3) [61] and the receptor interacting protein kinases (Ripk) 1 and 3 [62–64]; 

however, their exact mechanisms are unclear.

The mitochondrial permeability transition (MPT) is also a critical step in the mechanism of 

APAP-induced liver injury (Fig. 1). MPT inhibitors and genetic deletion of MPT pore 

components protect against APAP hepatotoxicity both in vitro and in vivo [34,65–67]. The 

resulting mitochondrial swelling leads to lysis of mitochondria and release of mitochondrial 

contents [35,68,69]. Mitochondrial endonucleases, in particular, are liberated and translocate 

to nuclei where they cleave genomic DNA [69]. Although nuclear DNA fragmentation is 

widely considered a hallmark of apoptosis, oncotic necrosis is actually the major mode of 

cell death in the liver after APAP overdose. Studies in both humans and mice demonstrate 

that apoptosis has, at most, a minor role [70–73].

In addition to the intracellular mechanisms of toxicity described above, results from 

numerous studies have demonstrated that inflammation may enhance APAP-induced liver 

injury [74,75]. The earliest evidence for a contribution of inflammation to APAP 

hepatotoxicity was the finding that resident macrophages in the liver (Kupffer cells) are 

activated after APAP overdose in rats [76] and that inhibition of macrophages with 
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gadolinium chloride was protective in that model [77]. The latter finding was later repeated 

in mice [78]. Similarly, it was also reported that antibodies against neutrophils can protect 

against APAP hepatotoxicity in rats and mice [79,80]. Finally, damage-associated molecular 

patterns (DAMPs) are released during APAP hepatotoxicity in both mice and humans 

[35,36], and several studies revealed that inhibition of Nalp3 inflammasome-mediated 

DAMP signaling in myeloid cells can reduce the injury [81,82,83,84]. However, the 

conclusions from those studies are controversial. Gadolinium chloride has numerous effects 

other than macrophage inactivation that could also explain protection against hepatotoxicity, 

and it was reported that targeting macrophages with liposomal clodrinate actually 

exacerbated the APAP-induced liver injury [85]. Furthermore, deficiency of Nalp3 signaling 

components does not protect against APAP toxicity, and modulation of IL-1β signaling also 

has no effect [86,87]. Overall, the role of inflammation in the injury remains unclear. For 

more detailed information about sterile inflammation in APAP hepatotoxicity, the reader is 

directed to two excellent reviews that have recently been published [74,75].

Importantly, it appears that the mechanisms of APAP hepatotoxicity are the same in both 

humans and mice. Both GSH depletion [88,89] and APAP-protein binding are known to 

occur in humans [27,90], and oxidative stress, Jnk 1/2 activation and the MPT have been 

demonstrated in human hepatocytes treated with APAP [50,73]. Finally, there is evidence 

that mitochondrial damage is important in human APAP hepatotoxicity too [35,36,91].

NEPHROTOXICITY

Evidence

Numerous studies have shown that large doses of APAP can cause kidney injury in rodent 

models [4,15,92–96] and many reports of kidney injury in humans after APAP overdose 

have been published [3,97–102]. An often-cited figure for the overall incidence of renal 

dysfunction in patients diagnosed with APAP overdose is approximately 1%. However, this 

was derived from a single early review of unselected patients diagnosed with “APAP 

poisoning” at a single center in the UK [103]. Multiple reports suggest that the prevalence of 

renal injury among APAP overdose patients who develop liver injury is much greater; values 

from 10% to 79% have been reported [98,99,102–105]. One study found that circulating 

creatinine levels were ≥2 mg/dL (177 μmol/l) (reference interval: 0.7–1.2 mg/dL or 60–115 

μmol/l) in approximately 50% of APAP-induced ALF patients, and the levels were higher in 

non-survivors compared to survivors [105]. Those data were supported by later studies that 

showed plasma creatinine level at admission and serum kidney injury molecule 1 (KIM-1) 

are predictive of poor patient outcome after APAP overdose [98,106]. Interestingly, some 

evidence suggests that chronic use of low doses of APAP can increase risk for kidney 

disease and cause analgesic nephropathy [107,108], although that has been questioned by 

findings from very large studies of “healthy” individuals who regularly use over-the-counter 

analgesics, including APAP [108].

Proposed mechanisms

Although the nephrotoxicity of APAP has been known about for decades, surprisingly few 

studies have explored the mechanisms. Early on, it was thought that endotoxemia as a result 
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of failure of the damaged liver to eliminate endotoxins from the normal GI flora was 

responsible for the renal damage [104], but results from later studies suggested a more direct 

effect involving reactive metabolites of APAP and APAP-protein binding [109]. There are 

significant species differences, and even within-species strain differences, in renal 

metabolism of APAP [110]. In Fischer F344 rats, APAP and NAPQI appear to be converted 

to p-aminophenol (PAP) by deacetylation in the kidney, and PAP can be further metabolized 

to a reactive quinone imine other than NAPQI, possibly by a prostaglandin endoperoxide 

synthase (PGES; aka cyclooxygenase, COX) [110–115]. Based on those data, it was initially 

thought that APAP nephrotoxicity was mediated by PAP. However, it was later demonstrated 

that inhibition of deacetylation had no effect on covalent protein binding in renal 

microsomes from Sprague-Dawley (SD) rats [116], and an antibody against the N-acetyl 

moiety of APAP-cysteine could bind to APAP-protein adducts in the kidneys of mice after 

APAP treatment but not after treatment with p-aminophenol [117]. Furthermore, covalent 

binding in renal microsomes from SD rats can be prevented by the P450 inhibitor 1-

aminobenzotriazole [116], and the nephrotoxicity of APAP in mice is reduced by the P450 

inhibitor piperonyl butoxide [117]. It is also apparent that sex differences in APAP 

nephrotoxicity in mice are due to differences in renal P450s. Female mice are resistant to 

renal injury even at doses of APAP that cause hepatotoxicity, and that is likely due to 

hormone-induced differences in P450 expression. Castration of male mice reduces APAP 

metabolism and protects against APAP-induced kidney injury [118], while testosterone 

injections induce Cyp2e1 and render female mice susceptible to APAP nephrotoxicity [119]. 

Together, those data strongly suggest that APAP nephrotoxicity in mice and SD rats is 

mediated at least in part by P450s and the same reactive metabolite of APAP that causes 

liver injury. Which species (mouse or rat) and which strain (F344 or SD rats) is more 

relevant for human APAP nephrotoxicity is not yet known. PAP and PAP metabolites have 

been detected in urine from humans after APAP ingestion [120,121], which may suggest that 

deacetylation of APAP to PAP occurs in humans as in F344 rats. However, PAP and APAP 

metabolism are difficult to disentangle. Furthermore, we know that the mouse is a better 

model for the liver injury caused by APAP than either F344 or SD rats [39]. Aside from 

cytochrome P450s, results from studies using isolated rabbit and human kidney microsomes 

have indicated that a PGES/COX can also convert APAP to NAPQI (via a phenoxy radical 

intermediate) [122]. Interestingly, more recent studies showed that renal injury after APAP 

overdose in mice is exacerbated by free APAP-cysteine from APAP-GSH [95,96]. APAP-

cysteine generated from the breakdown of APAP-GSH in the GI tract and kidneys can act as 

an acceptor of the γ-glutamyl moiety of GSH in the GSH cycle, and thereby exacerbate 

GSH depletion in the kidneys [96]. Overall, it appears that NAPQI formation and protein 

binding are critical, similar to the liver. There is also some evidence that APAP can inhibit 

mitochondrial respiration in kidney cells from rodents [123,124]. However, little is currently 

known about APAP nephrotoxicity beyond those results. Although it is tempting to assume 

that the mechanisms are the same as in the liver due to the apparent involvement of protein 

binding and mitochondria, there is currently no direct evidence for oxidative stress, kinase 

activation, or the MPT in APAP nephrotoxicity.
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Biological relevance of proposed mechanisms

Nephrotoxicity is clearly a risk after APAP overdose. Available data suggest that protein 

binding and mitochondrial dysfunction occur in the liver after APAP overdose, but much 

more work is needed to understand the relevance of those phenomena in APAP 

nephrotoxicity. This is especially important because acute kidney injury is a predictor of 

poor patient outcome after APAP overdose [99,106], possibly because it contributes to death 

after APAP overdose through multi-organ failure. The high affinity of PGES/COX for APAP 

has prompted some to speculate that it is responsible for the increased risk of kidney disease 

after chronic low-dose exposure to the drug [122,110,115], but, again, the occurrence of 

APAP nephrotoxicity among therapeutic users is controversial. Overall, we recommend that 

future research on APAP nephrotoxicity be focused on the importance of mitochondrial 

dysfunction and kinase signaling, and treatments that could address those, as well as 

mechanisms of renal cell recovery that have been demonstrated to be important in other 

models of acute kidney injury [125].

PULMONARY TOXICITY

Evidence

There is evidence for a link between chronic APAP exposure at therapeutic doses and 

respiratory disease. A survey of general practice clinic patients in the UK found a positive 

association between frequency of APAP use and signs of asthma [20]. The same group also 

found that regional sales of acetaminophen in Europe correlated with incidence of 

respiratory illnesses [126], and that prenatal exposure to APAP may be associated with 

asthma, wheezing and other respiratory problems later in life [127]. Since then, other groups 

have obtained similar findings [128–130]. APAP exposure has also been associated with 

development of chronic obstructive pulmonary disease [131]. However, the conclusions from 

these studies are controversial. Several possible confounding factors have been suggested 

[132–134]. Among these, indication bias (“reverse causation”) is probably of greatest 

concern. For example, children with respiratory infections are more likely to be exposed to 

APAP as a part of normal treatment [135], which may lead to a false association between 

APAP exposure early in life and later asthma when in fact the later respiratory problems may 

be a result of the infection or other related issues. There is some evidence of pulmonary 

toxicity in rodent models. Bronchiolar epithelium necrosis has been observed in mice treated 

with very large doses of APAP [15,16,136], but those data are clearly not relevant for the 

chronic low-dose exposures that are thought by some to cause asthma and other lung 

diseases. There is also some evidence that low doses of APAP are proinflammatory in the 

lungs [17]. Furthermore, adult mice that were exposed to APAP in utero were found to have 

a greater response to an allergic challenge later in life [18]. Overall, there is currently a 

tentative link between APAP and pulmonary disease that requires further investigation.

Proposed mechanisms

It has been suggested that chronic exposure to APAP can deplete GSH in the lungs and that 

this could explain a connection between APAP and respiratory diseases if it enhances 

susceptibility to oxidants, such as reactive-oxygen species produced by inflammatory cells 

or exposure to environmental oxidants [20]. GSH depletion and increased expression of 
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oxidative stress response genes have been detected in lungs from mice treated with large, 

acutely toxic doses of APAP and that could suggest oxidative stress [137,138]. APAP-

protein binding in the lung has also been demonstrated in mice [137,140–142]. In fact, one 

study found that a polymorphism in glutathione-s-transferase (GST) P1 that reduces its 

activity was associated with wheeze in children exposed to APAP prenatally [129], although 

a conflicting study reported that wheezing and asthma in children of mothers who used 

APAP during pregnancy is greater when the mother possesses multiple copies of GSTP1 
and/or GSTM1 compared with null genotypes [139].

A more specific mechanism of APAP-induced lung disease that has been proposed is 

neurogenic inflammation. Nassini et al. [17] suggested that inflammation develops in the 

lungs after APAP treatment due to activation of the transient receptor potential ankyrin 1 

(TRPA1) channel in peptidergic neurons by NAPQI. They demonstrated that direct treatment 

with NAPQI can enhance Ca2+ uptake in cells expressing TRPA1. Importantly, there was 

also evidence for increased TRPA1 signaling and evidence of inflammation in lungs from 

rodents treated intratracheally with NAPQI or either intragastrically or intraperitoneally with 

relatively low doses of APAP (as low as 15 mg/kg). The authors were even able to detect 

sulfhydryl adducts after the 15 mg/kg dose, though it’s not clear what effect this had on total 

GSH levels or if protein binding actually occurred.

Biological relevance and future studies

Although GSH depletion has been demonstrated in lungs from mice overdosed with APAP, 

it is not clear if that occurs after repeated exposure to APAP at therapeutic doses, which 

would be more relevant for the reported epidemiological connections between APAP and 

chronic lung disease. Moreover, the GSH depletion that has been observed in lung is 

unimpressive: only about 30% of total lung GSH is lost even after treatment with a dose as 

large as 500 mg/kg [137]. It is possible that the GSH depletion selectively occurs in certain 

cell types in the lungs (e.g. Clara cells), in which case the total GSH would not be expected 

to dramatically change; however, covalent protein binding also has not been observed except 

at very high doses [137,140–142]. The TRPA1 hypothesis may be more biologically 

plausible. Unfortunately, the authors of that study used multiple models, including cultured 

cells, rat liver slices, isolated guinea pig trachea, and mice to perform different experiments 

in the same study [17], and it’s not clear how each model is related or how all of the data 

actually fit together. Furthermore, there was no assessment of pulmonary function in an in 
vivo model treated with APAP, so the physiological consequences of the inflammation are 

unknown. The authors did, however, test the effect of APAP on pulmonary insufflation 

pressure in vivo in guinea pigs and reported no change [17]. Thus, the evidence for TRPA1-

mediated lung damage in animals is preliminary and should be further explored. Overall, it 

is not yet clear if or how APAP causes lung disease. We recommend that experiments 

measuring GSH and protein binding in the lungs be repeated in mice using low, therapeutic 

doses to determine if those mechanisms are actually relevant for humans. Presently, the most 

compelling data suggest that NAPQI can activate TRPA1 on neurons and lead to neurogenic 

airway inflammation, but a more detailed study using only the well-validated mouse model, 

and that includes assessment of pulmonary function, is needed to test that.

Kennon-McGill and McGill Page 7

J Clin Transl Res. Author manuscript; available in PMC 2018 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ENDOCRINE DISRUPTION AND SEXUAL DEVELOPMENT

Evidence

It is critical to evaluate claims regarding long-term effects of intrauterine APAP exposure 

because APAP is currently the only drug recommended for pregnant women to reduce pain 

and fever. Modestly increased risk of cryptorchidism after prenatal exposure to APAP has 

been reported in humans in a few studies [143–145], which suggests some estrogenic or 

anti-androgen activity of APAP. However, the results are inconsistent and difficult to 

interpret together. For example, one study examined two patient cohorts and discovered an 

effect in only one of them [145]. Another study found that the risk of cryptorchidism was 

increased in offspring of mothers who used APAP for ≥4 weeks during pregnancy, but the 

likelihood of the child undergoing orchiopexy (surgical treatment, and therefore a surrogate 

marker of clinically significant cryptorchidism) was not [144]. Another study failed to find 

an association between APAP alone and other measures of androgen exposure, such as penis 

width and anogenital distance (AGD), commonly associated with reproductive disorders, 

despite an association with the combination of APAP and NSAIDs together [146]. Overall, 

there does not seem to be a clear relationship between APAP exposure during development 

and reproductive effects in humans. Nevertheless, several studies using rodent models have 

indicated a connection. One group has reported that intrauterine APAP exposure modestly 

affects AGD in male and female rodents [145,147,148] and may affect germ cell 

proliferation in female mice [148]. However, although they claimed to use subtoxic doses, 

the authors treated the animals with ≥50 mg/kg of APAP every morning for 7 days. While 

the maximum recommended dose of APAP in humans is approximately 50–60 mg/kg/day, 

that amount is typically divided into multiple smaller doses over a 24 h period. In fact, it is 

well known that a single treatment with ≥150 mg/kg (also used in that study) is hepatotoxic 

in mice, resulting in significantly elevated plasma ALT values and evidence of hepatocyte 

necrosis by histology [149]. It is not surprising that there may be developmental 

abnormalities in offspring of animals that suffer liver injury during pregnancy. In fact, the 

most surprising finding from these studies may be that the effects were not more 

pronounced. Adding confusion to the debate, the same group recently found that 50 

mg/kg/day has no effect on masculine behaviors, or morphology, in a region of the brain 

associated with those behaviors in male offspring [Hay-Schmidt et al., 2017, 150], though 

the 150 mg/kg/day dose did have an effect. Overall, there is currently no clear association 

between APAP and reproductive effects in offspring.

Proposed mechanisms

APAP does not seem to be directly estrogenic [151], so other mechanisms have been 

proposed. One possible mechanism for the suggested endocrine-disrupting effects of APAP 

is altered sex steroid metabolism. Interestingly, one research group obtained moderately 

elevated values for total estrogen metabolites in urine from premenopausal women who 

reported high APAP use [152]. The only rodent in vivo study to address this issue revealed 

that plasma testosterone decreased after APAP treatment in castrated mice with human testis 

xenografts, which suggests that APAP decreases testosterone production in human testes 

[153]. Finally, a few in vitro studies have demonstrated that cytochrome P450-mediated 

steroid metabolism can be altered by APAP [154,155], though other studies have provided 
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partially conflicting results [156]. Treatment of an adrenocortical carcinoma cell line 

resulted in increased pregnenolone and decreased androstenedione and testosterone in two 

studies [147,155]. Estrone and β-estradiol were also increased by APAP [147]. However, 

another study found no effect of APAP on testosterone production in human fetal testis 

[156]. Another mechanism that has been proposed for the possible endocrine-disrupting 

effects of APAP is reduced prostaglandin synthesis due to cyclooxygenase inhibition. 

Certain prostaglandin levels have been shown to decrease in cultured human fetal testis after 

APAP treatment [156].

Biological relevance and future studies

Altogether, there are limited and conflicting results regarding the endocrine effects of APAP. 

There is some epidemiological evidence for modestly increased risk of indirect markers of 

abnormal sexual development after intrauterine exposure to APAP in humans, but those data 

are by no means conclusive. Although one human study reported increased urine estrogen in 

humans after APAP use [152], it is unlikely that the modest effect that was observed would 

have a major impact on development. Even the evidence for developmental effects of 

prenatal use of potent, direct estrogens, like oral contraceptives, on sexual development in 

offspring is weak at best [157]. While results from some studies using cell culture models do 

support an effect of APAP on hormone metabolism, others have revealed conflicting results. 

Moreover, most of those studies involved prolonged treatment (24–72 h) with μM to mM 

concentrations of APAP, which is not consistent with the pharmacokinetics of APAP in vivo. 

Finally, the data from the human testis xenograft model are compelling, but the human 

relevance of that model is unclear. Overall, there is currently no strong evidence that 

intrauterine exposure to APAP can significantly alter sexual development or reproductive 

health later in life. Before any further research on the endocrine and reproductive effects of 

APAP or the mechanisms involved, we recommend that, at minimum, a simple study be 

performed in which pregnant mice receive a low dose of APAP (15 mg/kg) one to four times 

per day for several days and multiple developmental parameters of offspring health, 

including AGD and other measurements of reproductive health, is assessed. That will also 

require an evidence-based consensus on what are the most important or relevant 

reproductive health surrogates to measure.

OTOTOXICITY

Evidence

At least 19 reports of rapidly progressive sensorineural hearing loss caused by abuse of 

APAP/opioid combinations have been published [158–160]. In most cases, the hearing loss 

is bilateral, suggesting a systemic cause, consistent with drug exposure. In vitro studies have 

demonstrated that long-term (≥24 h) exposure to high concentrations (mM) of APAP can 

reduce the number of viable cells in isolated cochlea (particularly in the outer hair cells) and 

cause evidence of apoptotic cell death in an auditory cell line (HEI-OC1) that was derived 

from the organ of Corti in the Immortomouse™ model [161] and is generally thought to 

represent cochlear hair cells [8,13]. Interestingly, co-treatment with hydromorphone 

enhanced APAP ototoxicity in these models, though hydromorphone or hydrocodone alone 

did not cause cell death [8]. NAPQI was shown to have similar effects [13]. Those data 
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suggested that APAP is the primary cause of hearing loss due to APAP/opioid abuse. 

However, no clinical reports of hearing loss after overdose of APAP alone have been 

published. Furthermore, the same group published a more recent study indicating that APAP 

does not actually cause cell death in HEI-OC1 cells, despite evidence of reduced energy 

metabolism and even increased caspase activity [162]. Finally, a recent in vivo study in mice 

found no evidence for hearing loss based on auditory brainstem response (ABR) in a 

clinically relevant model of acute APAP overdose [163]. Thus, it seems unlikely that APAP 

by itself causes ototoxicity in humans or mice. Nevertheless, a practical clinical problem 

clearly exists in patients treated with opioid/APAP combinations and further investigation 

may be warranted.

Proposed mechanisms

Kalinec et al. [13] found that APAP can cause evidence of oxidative stress in HEI-OC1 cells 

12–48 h after initiation of treatment, but that NAPQI does not have this effect. Furthermore, 

increased endoplasmic reticulum (ER) fragmentation was observed in these cells after 

treatment with NAPQI but not APAP [13]. Despite the latter, both treatments altered levels 

of ER stress markers. Based on those findings, the authors concluded that APAP and NAPQI 

exert toxic effects through different mechanisms in cochlear cells: APAP ototoxicity 

involves oxidative stress and ER stress, while NAPQI causes ER stress only [13]. The only 

in vivo study of APAP ototoxicity to date also revealed that there is oxidative stress in 

cochleae after acute APAP overdose [163]; however, no ototoxicity was observed in that 

study based on auditory brainstem thresholds (ABR) [163].

Biological relevance and future studies

While interesting, the results from cell culture studies thus far are questionable. First, APAP 

has a very short half-life in circulation [26]. Thus, it is unlikely to persist at the cochlea for ≥ 

24 h, as in the in vitro experiments described above. Although some drugs (e.g. 

aminoglycosides) may become trapped within the cochlear fluid, that is unlikely to occur 

with APAP because it is neutral at physiological pH and readily crosses membranes [26]. 

Next, it is not known if HEI-CO1 cells, or cochlear cells in general, express P450s at 

concentrations sufficient to convert APAP to NAPQI. The only study to address that issue 

revealed that mice treated with a hepatotoxic dose of APAP had no evidence of GSH 

depletion or protein binding in cochlea [163]. Finally, it is clear that APAP toxicity in vitro 
does not necessarily translate to toxicity in vivo. Many cell lines succumb to APAP toxicity 

through mechanisms that are not physiologically relevant in whole animals or humans. For 

example, both Hepa 1–6 and SK-Hep1 liver cells will die after prolonged exposure to mM 

concentrations of APAP, despite the fact that those cells do not form the reactive metabolite 

of APAP [164,165]. Importantly, the primary mode of cell death in those cells is apoptosis, 

which is not a major contributor to APAP-induced hepatocyte death in vivo [35,50,70,166]. 

Furthermore, APAP is also toxic to human lymphocytes in culture [165], but there is little or 

no evidence that that is true in vivo. Clearly, it is important to realize that cell culture studies 

do not necessarily mimic the in vivo situation. Overall, it is clear that APAP/opioid 

combinations are ototoxic in humans, but there is no strong evidence that APAP is ototoxic 

by itself. Future research in this area is encouraged, and should focus on hearing loss caused 

by the combination drugs, and should use only in vivo models with clear human relevance.
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NEURODEVELOPMENTAL AND NEUROBEHAVIORAL DISORDERS

Evidence

Several groups have claimed that APAP may be a cause of autism spectrum disorder (ASD) 

[7,11,14). Two major pieces of evidence led to that hypothesis. First, it was observed that at 

least some patients with ASD exhibit defective xenobiotic sulfation [167]. In fact, when 

APAP was used as a probe drug to assess sulfation capacity, the ratio of APAP-sulfate to 

APAP-glucuronide was lower in severely autistic subjects compared to healthy controls 

[167]. Initially, it was suggested that this could lead to poor clearance of, and therefore 

increased exposure to, certain chemicals present in food or in the environment that may have 

neurological effects, but it was later proposed that APAP itself might be a problem. Schultz 

et al. [7] suggested that reduced sulfation may lead to increased NAPQI formation with 

neurotoxic effects. Second, it was found that diagnoses of ASD began to increase in the 

1980s, after the CDC issued a warning regarding the risk of Reye’s syndrome and birth 

defects when treating children or pregnant women with aspirin, and sales of children’s 

APAP rose [168]. However, it is unlikely that reduced sulfation would lead to a significant 

increase in NAPQI formation at therapeutic doses of APAP. Sulfation is a low capacity route 

of elimination and is already saturated in healthy subjects at pharmacologic doses of APAP 

[169]. Glucuronidation, on the other hand, is a high capacity process and does not appear to 

be saturable [27]. In fact, the hepatotoxicity of APAP is probably not due to saturation of 

Phase II metabolism resulting in greater NAPQI formation; the percentage of APAP 

converted to the reactive metabolite is likely the same regardless of dose. Rather, it is 

probably the greater absolute amount of NAPQI that is produced that initiates liver injury 

after overdose [27]. Furthermore, the observed correlation between children’s APAP sales 

and ASD diagnoses does not prove causation.

Nevertheless, several groups have reported results from epidemiological studies that seem to 

show an association between APAP exposure early in life and development of ASD 

[7,11,170]. One of the earliest such studies revealed that parents of children with autism 

were more likely to report use of APAP after receiving the measles-mumps-rubella vaccine 

[7]. However, it has been pointed out by others that the parents were solicited from autism 

websites and thus were likely to be biased [171]. In addition, there is the possibility of recall 

bias in parents of children with autism who are in search of a cause [171]. More recent 

studies have employed more rigorous methods [170]. Unfortunately, even those that have 

marginalized the risk of indication bias may still be affected by genetic factors or other 

residual bias [172]. Overall, the only human data available to support the idea that APAP 

causes ASD are from epidemiological studies that may be subject to significant bias.

In addition to ASD, it has recently been suggested that antenatal exposure to APAP may 

cause hyperactivity or ADD/ADHD-like behavior in offspring. Liew et al. [7] found an 

association between APAP and these disorders in a large prospective cohort study, and their 

results are supported by data from a few other groups [173–176]. However, significant 

sources of bias have been pointed out in three of those studies as well [177], and earlier 

work by Streissguth et al. [178] provided conflicting results. Interestingly, one group has 

even tested the association between prenatal APAP exposure and ADD/ADHD-like behavior 
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in mice and found no evidence to support it [179], although it should be noted that there 

were clear experimental deficiencies such as a lack of well-validated endpoints for ADD/

ADHD in mice and the fact that a positive control is not available for comparison. 

Altogether, there is currently no strong evidence that APAP causes ADD/ADHD.

Although the evidence for neurobehavioral effects of APAP in humans is poor, multiple 

studies have demonstrated that exposure to relatively low doses of APAP during early 

development can affect behavioral measures in adult mice [12,180]. While it is not possible 

to make a direct connection between non-specific behavioral studies in mice and ASD or 

ADD/ADHD in humans, these observations are intriguing and may warrant further 

investigation. Typically, pregnant women are advised not to use NSAIDs due to the 

increased risk of birth defects and miscarriage that has been reported in a few studies. As a 

result, most pregnant women rely on APAP to control fever and pain. If it can be shown that 

APAP also poses a significant risk of congenital abnormalities, then that may result in 

removal of the only remaining treatment option for those patients.

Proposed mechanisms

The proposed mechanisms by which APAP could cause ASD and ADD/ADHD are similar. 

Endocrine disruption, activation of endocannabinoid receptors during development [181], 

and oxidative stress and inflammation [182] have all been suggested. However, no studies 

have been done to directly test those possibilities. A more straight-forward hypothesis is that 

APAP is directly toxic to neurons. Posadas et al. [9] tested that by treating rat cortical 

neurons with APAP in vitro and by injecting rats with APAP in vivo and measuring neuron 

death. They demonstrated that APAP overdose was moderately toxic to cortical neurons. 

However, the purpose of their study was to determine if large doses of APAP (250–500 

mg/kg) are neurotoxic, and it is not known if typical human doses for therapeutic use 

(approximately 10–20 mg/kg) have similar effects. Cell death in APAP-treated cultured 

neurons has also been reported [9], but again most cell culture models do not accurately 

reflect APAP toxicity in vivo. Finally, it is not clear exactly how neuron death would lead to 

ASD and ADD/ADHD.

Biological relevance and future studies

Currently, the association between APAP and ASD or ADD/ADHD is based on conflicting 

results from epidemiological studies. No mechanistic studies have been performed, and the 

few mechanisms that have been proposed have not been directly tested. In fact, there is 

strong evidence that ASD, in particular, is driven by genetics [183], so exposure to APAP or 

other xenobiotics may not be important. Males are far more likely to develop ASD, and 

siblings of children with ASD are at greater risk [183]. There is also striking evidence for a 

genetic component of social behaviors associated with ASD, such as viewing of social 

scenes [184]. Nevertheless, the importance of APAP as a treatment option during pregnancy, 

together with the seriousness of ASD and ADD/ADHD, warrants future research in this area 

to enable more definitive conclusions. Even a simple study could be performed in which 

pregnant mice receive 15 mg/kg APAP one to four times per day for several days and 

behaviors associated with ASD and ADD/ADHD are measured in offspring over time.
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APAP TOXICITY IN OTHER TISSUES OR SYSTEMS

APAP toxicity has been reported in other tissues, but the evidence is limited. For example, 

APAP is also known to cause ocular opacity or cataracts in mice, but only after direct 

induction of P450 enzymes in ocular tissue [185,186]. It has also been suggested that APAP 

can be cardiotoxic, but this is based on case reports with no direct evidence [187]. Currently, 

there is no compelling evidence for clinically-relevant APAP toxicity in tissues other than 

those discussed above.

CONCLUSIONS

It has been 50 years since the first reports of APAP-induced liver injury, and we are only 

beginning to investigate the extrahepatic toxicity of the drug in earnest. Renal toxicity after 

APAP overdose is known to occur, but the mechanisms have not been fully elucidated. It is 

also not known if common co-morbidities like alcoholism or obesity affect that outcome. 

The pulmonary and neuro-toxicity of APAP are more controversial. Most data regarding the 

non-hepatic and non-renal effects of APAP are from epidemiological studies that do not 

prove causation and frequently suffer from bias and/or conflicting results. Published 

experimental data provide support for many of these adverse effects, but too often the data 

come from flawed models. However, we believe that some additional research may be 

appropriate in at least two areas. The sheer volume of epidemiological studies that have 

revealed increased risk of lung disease after exposure to APAP early in life and the fact that 

at least one group has reported a plausible mechanism based on data from animal models 

using low doses of APAP may warrant further investigation of the pulmonary toxicity of 

chronic APAP use. Also, the fact that APAP is a very important drug for pregnant women 

combined with the several rodent studies suggesting adverse neurodevelopmental effects in 

offspring may warrant further investigation of neurodevelopmental toxicity to fully evaluate 

that possibility. Overall, however, the data for extrahepatic toxicity of APAP are weak and 

significant changes in clinical or consumer use would be not advisable at this time.
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Figure 1. Pathophysiology of APAP-induced liver and kidney injury
Most of a dose of acetaminophen (APAP) is glucuronidated or sulfated in the liver and then 

excreted. A small percentage in both the liver and kidney is converted to the electrophilic 

intermediate N-acetyl-p-benzoquinone imine (NAPQI). NAPQI can be detoxified by 

reaction with glutathione (GSH), which depletes GSH stores. NAPQI can also bind to 

proteins, which leads to cell death. The mechanisms of cell death in the liver include 

mitochondrial oxidative stress, c-Jun N-terminal kinase (JNK) activation and nuclear DNA 

fragmentation (inset). In the kidney, GSH depletion is exacerbated by the GGT cycle, which 

enhances the nephrotoxicity.
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Table I

Proposed extra-hepatic adverse effects of APAP

Toxicity Evidence Proposed mechanisms Comments

Renal Clinical and rodent studies Protein binding, ɤ-glutamyl cycling Strong human and rodent data

Pulmonary Epidemiology, limited preclinical 
studies

GSH depletion, oxidative stress, neurogenic 
inflammation Better study designs needed

Endocrine Epidemiology, limited preclinical 
studies

Altered sex steroid metabolism, inhibition of 
prostaglandin synthesis

Conflicting human and 
experimental data

Ototoxicity Case reports, limited preclinical 
studies Oxidative stress, ER stress Strong human data, conflicting 

experimental data

Neurobehavioral Epidemiology, limited preclinical 
studies

Endocrine disruption, endocannabinoid 
signaling, direct neurotoxicity Better study designs needed
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