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Abstract

Background—Two decades of human neuroimaging research have associated volume reductions 

in the hippocampus with posttraumatic stress disorder. However, little is known about the 

distribution of volume loss across hippocampal subfields. Recent advances in neuroimaging 
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methods have made it possible to accurately delineate 10 gray matter hippocampal subfields. Here, 

we apply a volumetric analysis of hippocampal subfields to data from a group of combat-exposed 

Veterans.

Method—Veterans (total, n = 68, posttraumatic stress disorder, n = 36; combat control, n = 32) 

completed high-resolution structural magnetic resonance imaging. Based on previously validated 

methods, hippocampal subfield volume measurements were conducted using FreeSurfer 6.0. The 

Clinician-Administered PTSD Scale assessed posttraumatic stress disorder symptom severity; 

Beck Depression Inventory assessed depressive symptom severity. Controlling for age and 

intracranial volume, partial correlation analysis examined the relationship between hippocampal 

subfields and symptom severity. Correction for multiple comparisons was performed using false 

discovery rate. Gender, intelligence, combat severity, comorbid anxiety, alcohol/substance use 

disorder, and medication status were investigated as potential confounds.

Results—In the whole sample, total hippocampal volume negatively correlated with Clinician-

Administered PTSD Scale and Beck Depression Inventory scores. Of the 10 hippocampal 

subfields, Clinician-Administered PTSD Scale symptom severity negatively correlated with the 

hippocampus–amygdala transition area (HATA). Beck Depression Inventory scores negatively 

correlated with dentate gyrus, cornu ammonis 4 (CA4), HATA, CA2/3, molecular layer, and CA1. 

Follow-up analysis limited to the posttraumatic stress disorder group showed a negative correlation 

between Clinician-Administered PTSD Scale symptom severity and each of HATA, CA2/3, 

molecular layer, and CA4.

Conclusion—This study provides the first evidence relating posttraumatic stress disorder and 

depression symptoms to abnormalities in the HATA, an anterior hippocampal region highly 

connected to prefrontal-amygdala circuitry. Notably, dentate gyrus abnormalities were associated 

with depression severity but not posttraumatic stress disorder symptoms. Future confirmatory 

studies should determine the extent to which dentate gyrus volume can differentiate between 

posttraumatic stress disorder- and depression-related pathophysiology.
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Introduction

Reductions in hippocampal volume have been associated with posttraumatic stress disorder 

(PTSD). Although not without inconsistencies,1 an initial description of hippocampal 

reduction in combat-related PTSD2 led to many magnetic resonance imaging (MRI) 

replications in civilians and Veterans.1,3–6 However, the studies of structural hippocampus 

alterations in PTSD predominantly considered the hippocampus complex as a single 

structure (i.e., volume of the entire right or left hippocampus)7,8 with little investigation of 

the relationship between psychopathology and subfields of the hippocampus.7 A growing 

body of clinical and preclinical literature has, however, suggested a number of possible 

models for specialization across the long axis of the hippocampus. Two recent papers 

provide an in-depth discussion and synthesis.9,10 Briefly, anterior and posterior aspects of 
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the hippocampus may serve different functions in terms of pattern separation and pattern 

completion and do not share reciprocal connections with the same cortical or subcortical 

areas of the brain.9 Identification of specific subfield abnormalities in PTSD may have 

particular pathophysiological and treatment implications and add to our understanding of 

both the role of the hippocampal subfields and the way those roles may shape (or be shaped 

by) a specialization gradient along the hippocampus.

The hippocampus can be segmented into 10 gray matter subfields7,11 (described further in 

Table 1; see Video 1 for animated 3D visualization http://journals.sagepub.com/doi/suppl/

10.1177/2470547017744538), including the cornu ammonis (CA) regions 1–4, subiculum 

(SUB), presubiculum (PrSUB), parasubiculum (PaSUB), granule cell and molecular layers 

(MLs) of the dentate gyrus (DG), hippocampal–amygdala transition area (HATA), ML of the 

hippocampus, and the hippocampal tail. These hippocampal subfields can be defined by 

their unique cellular architectures and distinct developmental and functional properties.

Methods for delineating hippocampal subfields in human subjects have evolved.7,8,48,49 

They are now included in software packages like FreeSurfer (https://

surfer.nmr.mgh.harvard.edu). The use of different software packages, probabilistic atlases, or 

even hand-drawn segmentation of the hippocampus may explain some contradictory results 

reported in the literature.7,48 Recently, a new atlas11 derived from .13 mm resolution ex vivo 
MRI and 1 mm in vivo MRI was included in the release of FreeSurfer Version 6.0, providing 

more reliable and specific segmentation11 than was available previously. While preclinical 

evidence suggests hippocampal subfields are specialized in function,7 the historical 

challenge of in vivo segmentation has limited the exploration of subfields in humans, leading 

to volumetric investigations of less refined segmentation such as head, body, tail;50–53 or 

SUB, CA1-3, DG, and entorhinal cortex.21,54–57

Studies of hippocampal subfields in major depression and stress-related psychopathology 

found significant negative correlations between depression and DG,58–60 CA,59,60 and SUB,
60 and between stress sequelae and CA1,61 CA3,61–63 and DG.61–63 However, less is known 

about hippocampal subfield abnormalities in PTSD. One previous study (17 PTSD; 19 non-

PTSD) reported lower DG/CA3 volume in PTSD, but no correlation between hippocampal 

subfields and PTSD symptom severity.21 Secondary analysis in the combined sample found 

a negative correlation between DG/CA3 volume and insomnia severity.57 Although this 

pioneering pilot study had many strengths, it was also limited by its relatively small sample, 

with some participants unexposed to trauma, and the fact that their DG/CA3 region included 

the DG, CA3, CA4, and a large part of the ML. Another, more recent study reported a 

negative correlation between combined DG/CA4 subfield volume and PTSD symptom 

severity among 97 military Veterans.22 However, this study did not investigate a more 

comprehensive segmentation of the hippocampal subfields. To advance this line of research, 

we employed a state-of-the-art segmentation of 10 gray matter hippocampal subfields in a 

large sample of all combat-exposed US Veterans. In addition, to capture the association 

between a continuum of PTSD symptom severity and biological abnormalities,64,65 our 

primary analysis investigated the correlation between clinical severity and hippocampal 

subfields regardless of PTSD diagnosis.
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Better understanding of the role that hippocampal subfields play in trauma- and stress-

related psychopathology can provide further insight into the neural mechanisms underlying 

PTSD and depression and may prove to be relevant to drug development and treatment 

strategies. To our knowledge, the present study is among the first to evaluate the 10 gray 

matter hippocampal subfield volumes and is the first study to do so within the context of 

PTSD. Yet, considering prior literature,21,58–63 we predicted that the severity of both PTSD 

and depression symptoms would be associated with reduced volumes in hippocampal 

subfields.

Methods

Participants

This study includes 68 combat-exposed US Veterans between the age of 21 and 60 years 

who provided informed consent to participate in a study approved by the Human Studies 

Subcommittee (Institutional Review Board) at the VA Connecticut Healthcare System. The 

present sample has also been investigated in previous publications reporting cortical 

thickness reductions,65 morphometric abnormalities,66 and functional dysconnectivity64 

associated with PTSD; however, the hippocampal subfields in this cohort are being 

investigated here for the first time. Participants were excluded if presenting with a psychotic 

disorder, bipolar depression, learning disorder or attention deficit disorder/attention deficit 

hyperactivity disorder, or moderate-to-severe traumatic brain injury. Epilepsy, brain tumors, 

and other gross neurological disorders with anatomical consequence were also excluded. 

Participants taking benzodiazepines or with standard MRI contraindications were not 

included in the study. Benzodiazepines were excluded because of their potential effects on 

the functional MRI scans, which were acquired as part of the parent study. In order to ensure 

generalizability of any findings, subjects with PTSD and highly co-occurring comorbidities 

such as unipolar depression, anxiety disorders, substance or alcohol use disorders, and those 

who were taking a stable dose of antidepressants were allowed to participate. These factors 

were evaluated as potential confounds in post hoc analyses but were largely not found to 

correlate with the outcomes presented below.

Clinical Measurement

PTSD diagnosis and symptom severity were determined using the Clinician-Administered 

PTSD Scale (CAPS) for the DSM-IV.67,68 Depressive symptoms were evaluated with the 

Beck Depression Inventory (BDI) Second Edition.69 The Structured Clinical Interview for 

the DSM-IV70 was used to evaluate psychiatric comorbidities. Combat exposure was 

measured with the Combat Exposure Scale (CES).71 Premorbid IQ was estimated using the 

Wechsler Test of Adult Reading (WTAR).72

Neuroimaging

Structural MRI (sMRI) acquisitions were conducted in a 3 Tesla magnetic field using a 

Siemens TIM Trio scanner and a 32-channel head coil. Following a three-plane localization, 

two MPRAGE scans providing T1-weighted contrast (TR = 2530 ms; TE = 2.71 ms; TI = 

1200 ms; Flip = 7°) were acquired. All sMRIs were acquired with the same 256 mm FOV 

and 1 × 1 × 1 mm isotropic voxels. Volumetric hippocampal subfield estimates were 
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conducted using the fully automated process provided by FreeSurfer73 Version 6.0 (https://

surfer.nmr.mgh.harvard.edu) as described in previous studies74–76 and in the Supplementary 

Material. After completing the FreeSurfer “recon-all” pipeline, the following command was 

used to segment bilateral hippocampi and their 10 gray matter subfields (Code 1). Due to the 

lack of distinguishing contrast and the small size of the CA2 subfield, the CA2 and CA3 

were combined, which are discussed below as the CA2/3.

# Code 1:

recon-all -s $subject hippocampal-subfields-T1

Following data processing, data quality was assessed by checking recon-all segmentation 

quality and checking subfields and fissure images visually for discorrelation between 

segmentation and full region, outliers in each subfield after correcting for total intracranial 

volume (TIV), strong bilateral asymmetries, and unexpected subfield volumes. No manual 

intervention was necessary upon completion of quality evaluation, and these steps were 

undertaken while blinded to the demographic and clinical characteristics related to each 

scan.

Statistical Analysis

Participant demographics and psychiatric variables are presented in Supplemental Table S1. 

To examine the relationship between the hippocampus and severity of either PTSD 

symptoms (primary analysis) or depressive symptoms (secondary analysis), two-tailed 

partial correlations of each hippocampal subfield and the specific dimensional outcome were 

conducted after testing for normality (and log transforming as required). Age and TIV were 

included as covariates in all analyses. We included TIV as a covariate in our analyses, 

consistent with much of the literature;51–53,55,56,58–60,63 however, other methods are also 

commonly employed to adjust each volume of interest based on TIV. The reader should be 

aware that the “residual” method21,54 may yield different results than the covariate method 

employed here. Additional discussion of TIV correction can be found in the literature.77,78 

To investigate for potential confounds, we repeated the partial correlation analyses 

controlling for each of the following variables: gender, WTAR, CES, comorbid anxiety, 

alcohol/substance use disorder, and medication status. For the full sample primary analyses, 

correction for multiple comparisons was performed using false discovery rate.79 Our 

secondary analyses in PTSD-only or medication-free subgroups were conducted with 

exploratory intent to inform future research on any significant or trending areas of interest. 

For this reason, we did not correct these follow-up analyses for multiple comparisons. For 

additional information about the effects of age and PTSD severity, see the Supplementary 

Material.

Results

Primary Analysis: PTSD Severity and Hippocampal Subfields

In the full sample, CAPS symptom severity negatively correlated with total hippocampal 

volume (r = −0.32, p = 0.008, df = 64). Among the 10 hippocampal subfields, the HATA 
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volume significantly correlated with CAPS severity (r = −0.34, pfdr = 0.05, df = 64; Figure 1, 

Table 2). This correlation remained significant after controlling for each of gender, 

intelligence, combat severity, comorbid anxiety, alcohol/substance use disorder, and 

medication status. CAPS score correlations with CA1 and CA2/3 showed statistically 

nonsignificant trend before correction for multiple comparisons. See “CAPS (full group)” 

columns in Table 2 for additional results. See Supplemental Table S4 for raw subfield 

volumes.

To further characterize the primary findings, we conducted a follow-up analysis limited to 

the PTSD subjects. In this exploratory analysis, CAPS score was correlated with total 

hippocampal volume (r = −0.42, p = 0.02, df = 32), CA2/3 volume (r = −0.40, p = 0.02, df = 

32), CA4 (r = −0.34, p = 0.05, df = 32), HATA (r = −0.41, p = 0.02, df = 32), and ML (r = 

−0.35, p = 0.04, df = 32). No significant correlations were observed between CAPS 

symptom severity and the other gray matter subfields. See “CAPS Exploratory (PTSD 

group)” columns in Table 2 for additional results.

Secondary Analysis: Depression Severity and Hippocampal Subfields

In the full sample (Table 3), BDI score negatively correlated with total hippocampal volume 

(r = −0.32, p = 0.01, df = 64). Among the 10 hippocampal subfields (Figure 2, Table 3), BDI 

negatively correlated with the DG (r = −0.33, pfdr = 0.04, df = 64), HATA (r = −0.30, pfdr = 

0.04, df = 64), CA1 (r = −0.27, pfdr = 0.05, df = 64), CA2/3 (r = −0.30, pfdr = 0.04, df = 64), 

CA4 (r = −0.32, pfdr = 0.04, df = 64), and=the ML of the hippocampus (r = −0.29, pfdr = 

0.04, df = 64). These correlations remained significant after controlling for each of gender, 

intelligence, combat severity, comorbid anxiety, and alcohol/substance use disorder. 

Controlling for medication status, only the correlation between BDI and HATA remained 

significant. Thus, to further explore the putative confounding effects of medications, we 

performed a follow-up analysis in which the partial correlations between BDI and 

hippocampal subfields were repeated in a restricted sample including only those participants 

who were medication-free (n = 44). In this unmedicated subgroup, BDI showed a 

comparable pattern of negative correlation coefficient, but only the correlation with total 

hippocampal volume (r = −0.30, p = 0.05, df = 40) and HATA (r = −0.37, p = 0.02, df = 40) 

were statistically significant in this smaller sample. Nonsignificant trends were seen with 

CA1 and CA2/3. See “BDI Exploratory (med-free only)” columns in Table 3 for additional 

results.

Discussion

Although not without inconsistencies, replicated evidence supports the presence of 

volumetric alterations in the hippocampus among those with PTSD.1,3,4,6,51,53,80–83 The 

current study results provide further evidence of selective volumetric variability within the 

hippocampal subfields related to PTSD and depressive symptoms. The severity of PTSD and 

depression symptoms were associated with reduced volumes in certain hippocampal 

subfields. Our primary analysis revealed a novel finding of negative association between 

PTSD symptom severity and the volume of the HATA subfield, an area critically positioned 

between the amygdala and anterior hippocampus. In the full sample, PTSD severity did not 
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correlate with either the DG or the CA2/3, subfields previous implicated in PTSD 

pathophysiology.21 However, a follow-up exploratory analysis showed a negative correlation 

between symptom severity and CA2/3 in Veterans meeting diagnostic criteria for PTSD. The 

ML and CA4 subfields were also negatively associated with clinical severity within the 

PTSD group. Consistent with the hypothesized role of the DG in depression pathology,84 our 

findings confirmed a negative correlation between depression symptom severity and volume 

of the DG subfield. HATA and other core hippocampal subfields (CA1, CA2/3, CA4, and 

ML) were also negatively associated with depression severity. However, our data could not 

rule out the possibility that the correlations between depression severity and hippocampal 

subfields are confounded by medication status, considering the failure to maintain statistical 

significance in the medication-free subgroup—although this could be due to the lack of 

statistical power in a relatively smaller sample.

In both primary and secondary analyses, the HATA volume was significantly associated with 

symptoms severity. Specifically, HATA volume was negatively correlated (and to nearly the 

same magnitude) with severity of both PTSD and depressive symptoms, regardless of 

medication or diagnostic status. The HATA is directly connected to the amygdala and also 

communicates with the prefrontal cortex and hypothalamus. Given the structure of this 

circuitry, alterations in the HATA could potentially affect a number of factors relevant to 

emotional perception and experiences including the acquisition, processing, and recall of 

traumatic memories, as well as contextual fear learning/conditioning14 and behavioral and 

neuroendocrine responses to traumatic stress.85,86 It is also thought that hippocampal and 

amygdala communication at a cellular level may influence cellular plasticity and further 

underlie contextual emotional learning and memory processing.14 Although these circuits 

are strongly implicated in PTSD,64,87–91 these results suggest that these memory and 

endocrine processing circuits may also be implicated in depression. Rather than observing 

the outcome of independent pathologies, it is possible that HATA subfield volume is 

particularly sensitive to chronic stress, a construct that overlaps with PTSD and depression 

psychopathology.

Depression and chronic stress are believed to increase glutamate excitotoxicity92,93 and 

glucocorticoid (GC) levels94 in the hippocampus, triggering inflammatory response, 

inhibiting neurogenesis,95 and lowering synaptic density.96–98 The present findings of 

reduced DG volumes are of interest, given that the DG is one of the only adult brain 

structures wherein neurogenesis occurs.99 The DG is particularly sensitive to diminished 

neuronal plasticity, insufficient levels of brain-derived neurotrophic factor, reduction of 

dendritic branching, and suppression of neurogenesis in the presence of neurotoxic GC 

levels.21,96–98 New granule cells in the DG are produced during active neurogenesis, and 

these cells are believed to play a key role in memory formation, pattern separation, and 

resolving interference between ambiguous and uncertain threat situations.100 In addition, the 

ratio of DG and CA varies as you traverse the long axis of the hippocampus, with a greater 

distribution of DG compared to CA subfields in the posterior aspect, which indicates that 

neurogenesis may be particularly relevant when discussing more posteriorly focused 

alterations.101 Given the implication of these fields in specialization across the 

hippocampus, it is notable that in our data set, the DG did not correlate with PTSD symptom 
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severity, but uncorrected post hoc analyses revealed a negative association between CA2/3 

and PTSD symptom severity, consistent with previous findings.21

Multimodal analysis of the hippocampus including, possibly, the use of histological and 

“brain bank” data, higher field strength MRI, and other methods may be of use in identifying 

what these volumetric reductions in the hippocampal subfields mean neurobiologically (i.e., 

reduction in cell count, projections, myelination, synaptic density, etc). More work is also 

necessary to understand the neurotoxic effects of stress and familial risk of PTSD102 and 

their relationship to these structural alterations; such work will be critical to properly 

interpret the clinical and etiological relevance of subfield volume reductions in PTSD and 

will help to shed additional light on the relationship between the specialization gradient 

across the long axis of the hippocampus9,10 and psychopathology.

Among the study limitations, we were unable to control for precombat childhood adversity 

history.103 Our sample, being mostly comprising male participants, cannot fully investigate 

potential sex differences related to PTSD or anatomy of the hippocampus, and thus may not 

be generalizable to female Veterans with PTSD. Given the heterogeneous nature of PTSD- 

and stress-related psychopathology generally, it is possible that individuals may have a 

slightly different mapping of structural subfield alterations. In addition, hippocampal 

subfields, and the HATA in particular, are relatively small regions according to the 

segmentation method discussed above. We have reported significant results between the 

HATA and symptom severity of both PTSD and depression, but it is well known that these 

symptoms can be highly correlated, and so multicollinearity is a concern. The reader should 

keep in mind that these measures are not totally independent—CAPS score explains 38% of 

the variance in BDI scores (r2 = 0.384); however, the variance inflation factor for these 

measures does not suggest a strong degree of multicollinearity (VIF = 1.647). Finally, as a 

cross-sectional study, we did not have information about premorbid hippocampal subfield 

volumes. Future research should strive to elucidate whether these alterations may be a risk 

factor for the development of PTSD, or if they are a consequence of exposure to trauma-

related pathology.

Conclusion

In summary, this study benefits from a reasonable sample size and a dimensional approach, 

evaluating severity of PTSD and related symptoms, which may allow stronger inference to 

be made in translating volumetric findings to clinical phenotypes, including subthreshold 

presentations. The use of validated hippocampal subfield processing algorithms and atlases 

also lends strength to this study by providing a robust investigation of the hippocampal 

subfields based on a segmentation routine that is more reliable across subjects and 

equipment than previously available.11,104 This study makes a unique contribution to the 

literature by demonstrating various volumetric alterations associated with PTSD and 

depressive symptoms. Moreover, the results highlight the relevance of the HATA, a subfield 

intricately linking two regions of the brain (hippocampus and amygdala) long shown to be 

relevant to the study of PTSD and depression. Identification of focused relationships 

between symptomology and hippocampal subfields could advance our understanding of the 

psychopathology of trauma and chronic stress.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PTSD severity (CAPS score) is associated with HATA volume. (a) Primary analysis in full 

group. (b) Exploratory analysis in PTSD subgroup. CAPS score and HATA volume are 

residuals after controlling for age and total intracranial volume.

CAPS: Clinician-Administered PTSD Scale.
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Figure 2. 
Depression severity (BDI score) is associated with multiple hippocampal subfield volumes. 

BDI score and subfield volumes in the full group analysis are residuals after controlling for 

age and total intracranial volume.

BDI: Beck Depression Inventory; CA: cornu ammonis; ML: molecular layer.
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Table 1

Anatomy and putative function of the gray matter hippocampal subfields.

Subfield Clinical and preclinical notes

HATA Part of the anterior HPC, bounded by the HPC folds, lateral ventricle, and alveus.11 Carries afferent and efferent signals between the 
rest of the HPC and the caudal amygdala and may send axonal collaterals to the PFC and hypothalamus.12 Plausible role in 
acquiring traumatic memories, behavioral and neuroendocrine response to threat, fear conditioning,13 and consolidation of 
contextual fear learning and memory.14 Projections to the HTH and PFC may relate to aggressive or defensive sexual behavior.12

ML Sits above the SUB directly beneath the HPC fissure; traces the HPC folds along the CA fields and SUB.11 Interneuronal synaptic 
connections, serving probable role of transmission and integration of information across the HPC.15 Volume reduction has been 
observed in BP.16

DG Tri-layered structure beginning near the middle of the HPC head.11 Supports neurogenesis, memory formation, and neuroplasticity; 
rapid acquisition in spatial memory involving pattern separation (young granule cells) or pattern completion (mature granule cells).
17,18 Volumetric atrophy may be associated with chronic stress,19 BD,16 depression,20 PTSD,21,22 and schizophrenia.23,24

CA4 Hilus of the DG.11 Receives excitatory inputs from the cerebral cortex and interneurons of the DG; contains mRNA related to 
neurogenesis, complexins which are important for neurotransmission,25 and BDNF which is important for survival and maturation 
of neurons.26 Various reductions in mRNA concentrations are associated with BD, possibly dysregulating neuronal transmission.25

CA2/3 Superior to DG from posterior half of HPC head to the HT.11 Extensive interconnections among principal cells forming an 
autoassociative network, supports formation of arbitrary spatial association, temporary maintenance of spatial working memory, and 
spatial pattern completion.27–30 Supports mnemonic processes in the formation of accurate spatial memory.31 Implicated in spatial 
pattern separation via interaction of mossy fibers/DG29 and acquisition of context-dependent fear extinction but not context-
dependent fear memories.32 Influences discrete gene expression.10 Volume alterations found in PTSD.21

CA1 Extends from SUB, ending near first HPC fold.11 Trisynaptic loop created by CA1 projections through SUB to entorhinal cortex 
relates to acquisition of memory and spatial learning.33 Context-dependent fear extinction and retrieval of contextual memory.24,32 

Insult to CA1 impairs spatial navigation and working memory, but not reference memory.33,34 Reduction in volume seen with 
untreated schizophrenia.35

SUB Three-layered allocortex, lateral to PrSUB and CA1.11 Part of limbic memory system, responsible for mnemonic processing,36 

short-term memory retrieval, and spatial encoding.15 Stress response and inhibitory control over the HPA37 and implications in fear 
conditioning.38 Modulates epileptic discharges from the HPC.15 Atrophy implicated in early and advanced AD.39

PrSUB BA27; periallocortex; heavily myelinated ML; sits along HPC fissure, anterior to retrosplenial region.11 Connection with excitatory 
synapses supports bursting behaviors.40 Short-term memory and processing of spatial location information.41 Implicated in and 
possible marker for AD.39

PaSUB BA49; periallocortex; smaller than PrSUB and SUB; sits along HPC fissure.11 Continuous recognition memory for spatial 
navigation41,42 and integration of head direction.42 Inputs from GABAergic medial septal neurons and expression of cholinergic 
activity markers.43 Projecting neurons in thalamus, SUB, and PrSUB.44 Aids in determining spike timing relative to theta 
oscillations.45

HT Not well studied, so difficult to make reliable annotations. Volume reductions reported with increasing duration/severity of BD.46 

FMRI evidence shows that HT may activate with abnormal ease in PTSD.47

HPC: hippocampus; HATA: hippocampal–amygdala transition area; ML: molecular layer of the HPC; DG: granule cell and ML of the dentate 
gyrus; CA: cornu ammonis; SUB: subiculum; PrSUB: presubiculum; PaSUB: parasubiculum; HT: HPC tail; AD: Alzheimer’s disease; BA: 
Broadmann area; BDNF: brain derived neurotrophic factor; BP: bipolar disorder; HPA: hypothalamus–pituitary–adrenal axis; HTH: Hypothalamus; 
PFC: prefrontal cortex.
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