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Abstract

Recent advances in human neuroimaging research have revealed that white matter connectivity can 

be described in terms of an integrated network, which is the basis of the human connectome. 

However, the developmental changes of this connectome in childhood are not well understood. 

The present study made use of two independent longitudinal diffusion-weighted imaging data sets 

to characterize developmental changes in the connectome by estimating age-related changes in 

fractional anisotropy (FA) for reconstructed fibers (edges) between 68 cortical regions. The first 

sample included 237 diffusion-weighted scans of 146 typically developing children (4-13 years 

old, 74 females) derived from the Pediatric Longitudinal Imaging, Neurocognition, and Genetics 

(PLING) study. The second sample included 141 scans of 97 individuals (8-13 years old, 62 

females) derived from the BrainTime project. In both data sets, we compared edges that had the 

most substantial age-related change in FA to edges that showed little change in FA. This allowed 

us to investigate if developmental changes in white matter reorganize network topology. We 

observed substantial increases in edges connecting peripheral and a set of highly connected hub 

regions, referred to as the rich club. Together with the observed topological differences between 

regions connecting to edges showing the smallest and largest changes in FA, this indicates that 

changes in white matter affect network organization, such that highly connected regions become 
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even more strongly imbedded in the network. These findings suggest that an important process 
in brain development involves organizing patterns of inter-regional interactions.
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Introduction

In recent years, researchers have unraveled the macroscale network of projections that form 

the basis for interactions between disparate brain regions, also referred to as the human 

connectome (Sporns, 2011). Neuroimaging techniques, including diffusion weighted 

imaging (DWI), have permitted researchers to map bundles of axons, which have shown to 

be relatively compatible with major fiber tracts. Herewith, the macro-scale layout of the 

human connectome can be estimated in vivo, which has resulted in the characterization of 

individual anatomical connectivity with predictive power for cognitive abilities (Kim et al., 

2016; Koenis et al., 2015; Li et al., 2009; Sporns, 2011) and mental health outcomes 

(Kaufmann et al, 2017; Collin et al., 2015). In the last years, there have been strong 

advances in studying the adult human connectome, but less is known about how this 

connectome changes during childhood, even though it is well known that this is a time 

period of substantial changes in brain development and white matter volume (Brouwer et al., 

2012; Giedd et al., 2015; Hagmann et al., 2010). During primary school age years, children 

show large changes in cognitive abilities, and researchers have speculated that these arise 

from the interaction of disparate brain regions (Johnson, 2011).

Prior research showed that childhood is characterized by widespread changes in FA and 

white matter volume (Brouwer et al., 2012; Giedd et al., 2015; Hagmann et al., 2010; 

Muetzel et al. 2015). In addition, different maturation rates across various brain regions have 

been observed (Lebel et al., 2008; Tamnes et al., 2010; Brouwer et al., 2012; Simmonds et 

al., 2014; Krogsrud et al., 2016; Pohl et al., 2016). However, it is currently not well 

understood if these white matter changes in childhood reflect substantial reorganization of 

network topology, or whether they merely contribute to a global increase in network 

efficiency.

Grey matter development studies show specific regional change during child development 

(Gogtay etal., 2004; Giedd et al., 1999; Sowell et al., 2001; Wierenga et al., 2014). 

Functional neuroimaging studies in primary school children suggest that refinement of the 

brain network is driven by a dual process of integration (increased neural synchrony as 

modeled by increased functional correlation strength) and segregation (decreased functional 

correlation strength) (Brown et al., 2005; Fair et al., 2009; Schlaggar et al., 2002; Supekar et 

al., 2009). These functional connectivity studies measure activity in the cortex and assume 

its connections based on correlated activity. In contrast, DWI assesses tissue properties of 

the white matter connections directly, which may add important information on 

developmental changes in the brain network. The present study was designed to test these 
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issues by examining developmental changes in the organization of DWI derived network 

reconstructions.

Previous studies applied graph theoretical analyses to study developmental changes in 

network topology (van den Heuvel et al., 2015; Wierenga et al., 2015; Dennis et al., 2013). 

Initial evidence that there may be systematic regional developmental changes in the human 

connectome comes from studies focusing on adolescents. In adolescence, white matter 

connections showed substantial changes among a set of densely connected hub regions 

(Baker et al., 2015; Kaufmann, 2017), which have been called the “rich club” (van den 

Heuvel & Sporns, 2011). The current study extends these initial studies by testing human 

connectome development in childhood, which is the time period presumably characterized 

by changes in interactive specialization (Johnson, 2011). Moreover, important advances can 

be made by using longitudinal data sets which have proven to 1) have more power to detect 

changes by including within person change, 2) reduce cohort effects and thereby noise, and 

3) tests for change rather than cross-sectional differences (Mills and Tamnes, 2014). The 

present study capitalizes on these methods by applying complex network analysis to two 

independent sets of DWI data including a total of 243 children aged 4-13.5 years old 

including serial data resulting in a total of 378 scans.

The first question addressed in this study concerns the spatial pattern of age effects in 

macro-scale structural connectivity. We hypothesize that this age period is characterized by a 

selective regional specific pattern of development, which would appear in different 

anatomical network layouts and topology for different developmental rates. In order to 

assess if there is indeed a regional specific maturational pattern of connectome development 

we examined the anatomical layout and network topology of connections (edges) that show 

the most substantial change in FA. We tested if this set of edges differentiated from edges 

that did not show substantial developmental changes. To do so we compared edges showing 

the largest level of change to edges showing the smallest level of change in FA. We 

hypothesize that large changes favor a specific set of edges between rich-club regions, as 

previously observed in adolescence (Baker et al., 2015). This is thought to support the 

developmental change in functional integration that marks the change in patterns of activity 

from adolescence into adulthood (Fair et al., 2009).

The second question that is addressed concerns the underlying biology that gives rise to the 

patterns of change. We hypothesized that long fibers show the largest change in FA, as 

previously reported in a smaller cross-sectional dataset (Hagmann et al., 2010). This 

hypothesis is in line with findings of resting state functional imaging studies, where 

functional correlations showed age related decreases in short range connectivity and age 

related increases in long-range connectivity (Supekar, Musen, & Menon, 2009; but see 

Power et al., 2012). Finally, we explored the link between developmental changes in network 

topology and the age-dependent change in fibers traced from their corresponding cortical 

region (Jeon et al., 2015). We test for consistency and replicability of our results by 

analyzing two independent datasets (Poldrack et al., 2017, see Tamnes et al. 2017, van den 

heuvel et al., 2013).
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Materials and Methods

The Human Research Protections Program and institutional review board at the University 

of California, San Diego (UCSD) approved the research protocol to collect and share the 

data of the Pediatric Longitudinal Imaging, Neurocognition, and Genetics (PLING) study. 

The BrainTime study was approved by the Institutional Review Board at Leiden University 

Medical Center.

Participants

This PLING sample included 237 scans of 146 typically developing children between 4 and 

13.5 years of age (74 females) recruited in the greater San Diego area by the Center for 

Human Development at UCSD (see Table I for demographics). Participants were recruited 

through local postings, outreach activities, and through school and community contacts in 

San Diego, CA, United Sates. Participants had no diagnosis of neurological disorders; 

history of head trauma; preterm birth (less than 36 weeks); diagnosis of autism spectrum 

disorder, bipolar disorder, schizophrenia, mental retardation or contraindications for MRI 

(such as dental braces, metallic or electronic implants, or claustrophobia). Data acquisition 

procedures for the PLING study was similar to the PING study, which has been described in 

detail (Jernigan et al., 2015). Written parental informed consent was obtained from all 

participants, in addition child assent was obtained for all participants older than 7 years.

The BrainTime sample included 141 scans of 97 individuals (62 females) aged between 8 

and 13.5 years old. This is a subsample of a large accelerated longitudinal research project 

as described previously (Braams et al., 2015, Achterberg et al. 2016; Peper et al., 2015) (see 

Table I for demographics). Subjects were recruited through schools in Leiden, the 

Netherlands. Self-report questionnaires were administered to confirm the absence of 

psychopathology, neurological or mental health problems or the use of psychotropic 

medication. Written informed consent was obtained from all participants and their parents.

Data Acquisition

In order to reduce data loss and maximize subject comfort and compliance a variety of 

procedures were developed. These procedures were applied depending on the subject's needs 

and included exposure and habituation to the scanner, parent or technician accompaniment 

in the scanning environment and extra rests in between scans.

For the PLING dataset all participants had a MRI-scan on a GE 3T Signa HDx 3T Discovery 

750× scanner (GE Healthcare, Waukesha, WI) using an eight-channel phased array head 

coil. The imaging sequences included a high-resolution 3D T1-volume and a set of 

diffusions-weighted scans. The T1-weighted volume was optimized for maximum grey/

white matter contrast and acquired using prospective motion correction (PROMO) and a 

magnetization prepared rapid gradient echo sequence (flip angle = 8°; receiver bandwith = 

± 31.25kHz, freq = 256, phase =192, slice thickness =1.2mm, FoV = 24 cm; TE = 3.5 ms; 

TR = 8.1 ms; TI =640 ms).

Furthermore a set of axial diffusion-weighted scans were collected with integrated B0 

distortion correction (DISCO) (30-directions, b-value = 1000 s/mm2) together with two sets 
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of diffusion-unweighted scans (b-value = 0s/mm2, flip angle 90 degrees, FOV 24 24 cm, 

freq = 96, phase = 96, slice thickness = 2.5 mm, TE = 83 ms; TR = 13600 ms) were 

acquired. Standardized quality control procedures were followed including computer 

algorithms and visual inspection ratings by trained imaging technicians at the Center for 

Human Development. Subjects that showed excessive head movement were excluded.

For the BrainTime dataset MRI scans were acquired on a 3 Tesla Philips Achieva scanner, 

using a six-element SENSE receiver head coil (Philips, Best, The Netherlands) at Leiden 

University Medical Centre. The image sequence included a high-resolution 3D T1 weighted 

volume (flip angle = 8°, slice thickness =1.2mm, FoV = 24 cm; TE = 4.6 ms; TR = 9.8 ms) 

and two transverse diffusion-weighted scans (30-directions, b-value = 1000 s/mm2) and 5 

sets of diffusion-unweighted scans (b-value = 0s/mm2, flip angle 90 degrees, FOV 240 240 

mm, freq = 96, phase = 96, slice thickness = 2 mm, TE = 69 ms; TR = 7315 ms). Visual 

inspection ratings by trained imaging technicians at Leiden University were performed, and 

subjects that showed excessive movement were excluded.

Data preprocessing; T1 data

Within each individual dataset, we used the T1 images for anatomical reference and the 

selection of brain network nodes. Tissue classification and anatomical labeling was 

performed on the basis of the T1-weighted MR image using the well-validated and well-

documented Freesurfer v5.3.0 software (http://surfer.nmr.mgh.harvard.edu/). Technical 

details of the automated reconstruction scheme are described elsewhere (e.g. Dale, Fischl, & 

Sereno, 1999).

DWI data preprocessing

The full protocol for the DWI preprocessing pipeline has been described elsewhere (Romme, 

2016). In short, it involved the following steps: First, both DWI sets were realigned and 

corrected for common distortions (Andersson, 2002). Second, diffusion images were 

corrected for eddy-current distortions and realigned to the b = 0 image. Third, we fitted a 

diffusion profile within each voxel using the two sets of 30 weighted images and the average 

b = 0 image from each subject. From the resulting tensor, the main diffusion direction in 

each voxel was selected as the principal eigenvector resulting from the eigenvalue 

decomposition of the fitted tensor, marking the preferred diffusion direction in each voxel. 

For each voxel in the brain mask, the FA values were computed, indicating the level of 

anisotropic diffusion (Basser & Pierpaoli, 1996; Beaulieu & Allen, 1994). Fourth, 

information on the preferred diffusion direction was extracted within each voxel in the brain 

mask to reconstruct streamlines based on deterministic fiber tracking using the FACT 

algorithm (fiber assignment by continuous tracking) (Mori & van Zijl, 2002; Mori et al., 

1999; van den Heuvel et al., 2009). DTI has shown relative high specificity of connection 

reconstruction as compared to other, more advanced algorithms for the estimation of the 

diffusion profile, which is indicated to be important when studying the topological structure 

of networks (Zalesky et al., 2016; Van den Heuvel et al. 2017). Streamlines were 

reconstructed by starting eight seeds in each voxel; these seeds were evenly distributed 

across the volume of the voxel. A streamline was started from each seed following the main 

diffusion direction (selected as the principal eigenvector) until the streamline entered a voxel 
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with a low level of diffusion preference (FA < 0.1), made an unexpected sharp angular turn 

(angle > 45°), or left the brain mask.

Network reconstruction

Each reconstructed network per time point of each individual was represented as a graph, 

matrix M. This matrix includes 68 cortical brain regions defined as the nodes of the graph 

and the edges between nodes i and j (i.e., brain region i and region j). These edges are based 

on the streamlines that were reconstructed as described above, an example of a 

representative subject can be observed in Figure 1.

Network node definition

The 68 nodes of the networks were represented by brain regions that were automatically 

segmented with Freesurfer v5.3.0 software using the Desikan-Killiany atlas (Desikan et al., 

2006). Individual T1-weighted images were co-registered to the b = 0 images (rigid 

transformations using mutual information). This procedure has been previously described 

(van den Heuvel et al., 2008; 2009).

In order to assess the robustness of results we additionally examined the impact of an 

alternative network node definition using higher-resolution parcellation of the brain from the 

Lausanne atlas (219 cortical nodes) (Cammoun et al., 2012).

Network edge definition

The FACT algorithm is sensitive to image resolution and noise and hence there is the 

possibility of tracing pseudo-streamlines (e.g. false positives). In order to minimize the 

number of false positives we included edges if two regions were connected by at least three 

fiber streamlines (Li et al., 2009; Lo et al., 2010; Shu et al., 2009). This cutoff did not affect 

our measure of interest (mean FA) as the mean number of streamlines was not related to 

mean FA (PLING: p-value = .891; BrainTime p-value = .597).

The connection strength of each edge was assessed by the mean FA of values in each voxel 

along the streamlines (van den Heuvel et al., 2008; 2009). Variation in FA has been 

associated with physical properties of the fiber bundles, such as packing density, myelination 

and axon diameter (Beaulieu, 2009). Although FA is affected by either one or a composite of 

these measures, they have in common that they reflect tissue characteristics that have 

functional relevance (Wolff & Balaban, 1994). Therefore, our measure of interest was mean 

FA, and the weights of each edge were set as such.

There was variability in edge topology between subjects, hence we estimated age-related 

change only for those edges that were present in a minimum number of participants. This 

variability was not related to age. We set this threshold at 60% as this has been shown to 

minimalize the balance between false positives and false negatives (de Reus & van den 

Heuvel, 2013).
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Network analysis

For graph theoretical analysis, we used the Brain Connectivity Toolbox (Rubinov & Sporns, 

2010). Each matrix M was used to compute the measures described below:

Number of edges, the total count of edges included in each un-thresholded binary matrix M 
for each lth individual and mth time point.

Node degree, the number of edges K connected to each node in matrix M;

Node strength, the sum of weights (mean FA) of all edges to each node i in matrix M;

Path length, the minimum number of binary steps to get from one node i to another node j, 
averaged over all nodes j;

Normalized clustering coefficient gamma (γ), the ratio of number of edges between direct 

neighbors of a given node i and the total number of possible edges between these neighbors 

(Watts & Strogatz, 1998). Because this measure is highly related to the degree k of each 

node we compared the cluster coefficient of node i to the average cluster coefficients of its 

corresponding node in 500 random graphs. These random graphs were constructed by re-

distributing edge weights of each matrix M while keeping the degree distribution intact 

(Maslov and Sneppen, 2002; Rubinov and Sporns, 2010). Next, normalized clustering 

gamma (γ) is estimated as the cluster coefficient relative to clustering in the random 

networks;

Rich club classification, nodes with a high node degree that display more connectivity than 

one would expect on the basis of their degree alone are said to form a rich club core. This 

study used rich club classification based on previous studies in children, adults and clinical 

groups (van den Heuvel and Sporns, 2011; van den Heuvel, Kahn, Goni, & Sporns, 

2012;Baker et al., 2015; Ball et al., 2014; Daianu et al., 2015; Grayson et al., 2014). This a 

priori definition of rich club regions is an unbiased method and permits comparison with the 

literature. Regions included bilateral superior frontal gyrus, precuneus, superior parietal 

gyrus, and insula. Nodes in the network were classified as rich club or peripheral nodes. 

Next, edges were categorized into rich club edges (between rich club nodes), feeder edges 

(non-rich club to rich club nodes) and local edges (between non-rich club nodes).

Functional modules, each network node was assigned a priori to one of the functional 

network modules defined by Yeo et al. (2011). Baum et al., (2017) showed that even though 

these module partitions were defined using functional imaging, the modularity quality of the 

functional partition showed to fit structural connectivity data.

Statistical analysis

Age-related change in total number of edges, total number of streamlines, global mean FA, 

streamline length and each edge in matrix M were assessed using linear mixed modeling. 

This model accounts for irregular intervals between measures, missing data and within 

person dependence, and was therefore particularly suited for our datasets. More formally, 

each dependent measure y of the lth individual and mth time point was modeled as follows:
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Here, Agelm denotes the age of the lth individual at the mth time of his/her scan. The 

dependent variable is modeled as a function age (βage) plus a random person effect (dl) plus 

error (elm). Intercept and age, were fixed effects, while within person dependence (dl) was 

modeled as a random effect. Non-linear models including cubic and quadratic age terms did 

not improve model fit and were therefore not used in further analyses. We did not include 

gender in our model as it did not improve model fit. This is in line with previous 

observations of no to limited gender effects on DWI measures (Wierenga et al., 2015; 

Krogrud et al., 2015).

For assessment of the anatomical distribution of edges and anatomical layout of nodes a χ2 

analysis was used. Furthermore, for the analysis of network topology ANOVA analysis were 

performed.

Selection of edges

We estimated age related changes in FA (βage) for each edge included in our group level 

analyses with the statistical model described above. We were interested in edges showing 

either substantial or little change in FA, as an increase in FA for all edges would not per se 

result in changes in network topology and organization but could merely result in a global 

change in network efficiency. Rather a spatial heterogeneous pattern of change would affect 

network topology and organization. To address this pattern, we classified edges into different 

categories: edges that showed the largest change in FA and edges that showed the smallest 

change in FA. Edges were defined as largest or smallest change in FA when they had a βage 

of one SD above or below the average βage, respectively.

To improve power, we selected only those edges within the edge categories that formed an 

inter-connected structure, i.e. connected component. This method is comparable to cluster-

extent based methods that are often used in functional neuroimaging studies to account for 

the multiple comparison problem (Bullmore, Suckling, & Overmeyer, 1999). Rather than 

selecting a (unknown) threshold for component size we only included the largest connected-

components observed in the sets of largest and smallest change.

Results

Global changes in number of edges, streamlines and mean FA

First, we addressed the question if the structural layout is stable across the age range. For 

this goal we assessed the total number of edges for each matrix M and observed that indeed 

this did not change with age in both data sets, see results in Table II. Furthermore, there were 

no significant developmental changes in the mean number of streamlines in both data sets.

Next, we examined the global developmental change in FA to do so we estimated mean FA 

for each network M at each time point (l) of each individual (m) and observed that mean FA 

increased with age in both data sets (PLING: p < .001; BrainTime: p < .001). Mean FA was 

not mediated by intra-cranial volume (PLING: p-value < .001; BrainTime: p-value < .001). 
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Similar results were found when using the Lausanne 219 cortical parcellation schedule (p-

value < .001).

Anatomical distribution of edges

The anatomical layout of the connected components including edges showing the largest 

change in FA and smallest changes in FA are displayed in Figure 2. First, the overlap in 

anatomical layout of the largest component of the two datasets were compared to the overlap 

in 10 000 random networks. This analysis confirmed the stability of these components 

across the datasets where the overlap showed to be significant (large change component: p-

value < .0001; small change component: p-value = .0058).

We next addressed the question if large changes in FA favor a specific set of edges. As 

shown in Figure 3 and Table III, the large change component included a greater number of 

feeder edges than the small change component, which reached significance in the BrainTime 

dataset (p-value = .001), but not the PLING dataset (p-value = .223). As only 8 of 68 nodes 

were labeled as rich club regions, the number of possible rich club and feeder edges was 

smaller than the possible number of peripheral edges. To control for this, we compared the 

observed number of edges in the largest and smallest change components to the total 

possible number of edges. A χ2 analysis indicated that there was a significant effect for 

edges with large change compared to all possible connections (PLING: p-value < .001; 

BrainTime: p-value < 0.001) but not for edges with the smallest change in FA in the 

BrainTime dataset (BrainTime; p-value = .812). The PLING dataset did show a significant 

difference between the small change component and the total possible number of edges 

(PLING: p-value < .001). The Lausanne parcellation in the BrainTime dataset confirmed the 

pattern in the Desikan-Killiany parcellation.

Streamline length

The next questions we addressed concerns the underlying biology associated with these 

patterns of change. Edge categories showed to differ in mean streamline length (see results 

Table IV): edges that showed large changes in FA were longer (PLING: M = 51.979, SD = 

32.150; BrainTime: M = 51.939, SD = 35.658) than edges that showed small changes in FA 

(PLING: M = 25.377, SD = 23.289; BrainTime: M = 16.104, SD = 13.619), this difference 

was significant in both datasets (PLING: p-value < .001; BrainTime: p-value < .001) and the 

Lausanne 219 parcellation (p-value < .001). This effect remained significant when we 

accounted for average FA for each edge. Together, these findings demonstrate particularly 

strengthening of long-range connectivity.

Anatomical layout

In the following section, we mapped the anatomical layout of cortical regions and age-

dependent change in fibers traced from these regions. In order to do so, we identified three 

sets of nodes: i) nodes connecting to edges that showed large change, ii) nodes connecting to 

edges that showed small change and iii) nodes connecting to both edge categories.

In the BrainTime dataset the anatomical layout across the four lobes significantly differed 

between nodes connected to edges showing large age-related change in FA (i) and nodes that 
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connected to edges showing small changes in FA, as shown by a χ2 analysis (p-value = .

015). Large change was observed for a relative large number of nodes in the parietal and 

frontal lobes, while small changes were observed for a relative large number of nodes in the 

occipital lobe. This difference was not significant in the PLING dataset (p-value = .905). 

Table 5 shows the relative contribution by the number of nodes identified in each node 

category divided by the number of nodes in each lobe.

We next investigated the anatomical layout of edges in functional networks: the limbic 

system showed mostly small changes in FA while visual regions showed predominantly 

large changes in FA (see Figure 4). Furthermore, regions in somatomotor and sensory 

systems (insula, pre- and postcentral gyrus, paropercularis, paracentral region, superior 

temporal and transverse temporal region) and default mode network (inferior parietal cortex, 

middle temporal cortex, cingulate cortex, precuneus and superior frontal cortex) showed a 

larger proportion of edges with the largest change compared to edges with the smallest 

change in FA, this pattern was more pronounced in the BrainTime dataset. The visual system 

showed a similar number of edges showing large and small changes.

Network topology

We next compared the topological properties of nodes that were uniquely connected to either 

large (i) or small (ii) changing edges or to both edge categories (iii) to further address the 

question if development of the connectome is region specific (see results in Table VI). In the 

BrainTime data set it was observed that nodes that were connected to edges with large 

changes in FA (i) had greater average node strength (p-value = .002) and shorter path length 

(p-value < .001) compared to nodes solely connected to edges showing small change in FA 

(ii). Gamma also significantly differed between node categories, where larger gamma was 

observed for nodes connecting to large changing edges (p-value = .003). This effect was not 

replicated in the PLING dataset. The Lausanne parcellation showed significant effects of 

node strength and gamma, but not path length.

Furthermore, we tested how the two components (large and small changes in FA) related to 

developmental changes in the topological organization of the network. Age related changes 

in node strength, path length and gamma did not show significant differences between node 

groups (p-value > 0.05).

Discussion

This study investigated the spatial pattern of human connectome development in two 

independent longitudinal datasets of 4 to 13 year old children. These white matter 

connections may represent potential routes of information flow between pairs of brain 

regions and herewith may contribute to information processing and synchronization patterns 

between distant regions (Singer, 1993). We observed that there is a selective regional 

specific pattern of network development, as edges that show substantial change across age 

differ in anatomical layout and network topology from edges that show little change. We 

furthermore confirmed previous findings that long fibers show larger changes in FA than 

short fibers (Hagmann et al., 2010). Together these findings are interpreted to suggest that 

developmental changes in white matter connections may promote developmental changes in 
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the brain network that are marked by simultaneous progressive and regressive 

neurobiological changes (Rubinov &Sporns, 2010).

The primary aim of this study was to test if the connectivity network follows global or 

specific developmental changes. A robust finding across the two samples, was that the brain 

network follows a heterogeneous pattern of development in childhood and herewith extends 

previous findings that show different rates of development in major white matter tracts 

(Dean et al., 2015; Lebel et al., 2008). The observations in this study contrast findings in 

previous studies that suggested a rather global pattern of white matter development 

(Brouwer et al., 2012; Giedd et al., 2015; Hagmann et al., 2010; Muetzel et al. 2015). The 

present study made use of advanced analysis methods and longitudinal data sets and 

therefore had increased power to detect region specific and heterogeneous change, consistent 

with the hypothesis that developmental progressions occur through interactive specialization 

(Johnson et al., 2011).

Interestingly, edges that showed large and small changes in FA had different anatomical 

layouts. The frontal and parietal lobes had a substantial large number of edges that showed 

large increases in FA values. In addition, edges within the cortical limbic network 

predominantly showed small changes in FA values. This spatial heterogeneous 

developmental pattern is in line with findings of connectome development in a smaller 

cross-sectional sample of toddlers where efficiency in medial nodes significantly increased 

with age, while in lateral located nodes decreases were observed (Huang et al., 2015). 

Furthermore, the pattern of development observed in the present study indicates that a 

considerably large number of feeder edges, connecting peripheral to rich club regions, 

showed the largest changes in FA. Although speculative, this may indicate that childhood 

development is characterized by changes in the ability to integrate complex information, as 

rich club regions are known to process information from multiple functional modalities (van 

den Heuvel and Sporns, 2011). Developmental changes in connectivity between peripheral 

and rich club regions may also be reflected in cognitive changes during this age period, such 

as changes in attention and working memory processes (Diamond et al., 2013), as these 

processes are dependent on the efficient integration of information from multiple regions 

(Braun et al., 2015). An outstanding question for future research concerns how development 

of white matter connectivity correlates with developmental advances in cognitive control.

The second question we addressed concerned the underlying biology that gives rise to the 

patterns of change. We extend previous findings by showing that longer fibers had larger 

changes in network topology than shorter fibers (Hagmann et al., 2010). This finding may 

indicate that long-range connectivity shows a delayed maturational pattern compared to 

short-range connectivity, as previously reported in functional imaging studies (Supekar, 

Musen, & Menon, 2009, but see Power et al., 2012; van Dijk et al., 2012). Together these 

findings suggest that childhood is marked by both progressive and regressive 

neurobiological processes that lead to some cortical regions being more strongly embedded 

in the brain network while other regions are subtracted from the brain network through the 

course of development.
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The last question we addressed concerns how these changes in FA relate to network 

topology. We observed in the BrainTime dataset that network topology differed between 

edges showing large and small changes in FA, where edges showing substantial changes 

connected to regions with higher node strength, path length and gamma than edges showing 

little change. Note that these results could not be replicated across the two datasets and 

should therefore be interpreted with care.

A strength of this study is the use of two large independent longitudinal samples, that allow 

for unambiguous replication and the assessment of within subject changes (Poldrack et al., 

2017). Several findings showed to be robust across the two datasets and parcellation of 

cortical nodes. These results included; mean FA showed age-related increases in both 

datasets, as expected. Also, no age-effects in global number of edges and mean number of 

streamlines was observed. This result supports previous observations that the majority of 

tracts are already present early in development (Ball et al., 2014; van den Heuvel et al., 

2015; Wierenga et al., 2015). Furthermore, the anatomical distribution of edges that showed 

the largest and smallest change in FA significantly overlapped between the datasets, and 

both datasets revealed that edges showing large changes had larger streamline length than 

edges showing small changes. In addition, both datasets showed that cortical limbic 

structures connected to a larger number of small change edges. Furthermore, the BrainTime 

dataset showed a pattern where large changing edges included a larger number of feeder and 

hub edges, this effect was not significant in the PLING dataset. Also, the observation that the 

large and small change components showed significant differences in anatomical distribution 

between lobes and differences in network topology was significant in the BrainTime but not 

PLING dataset, hence these results should be interpreted with caution.

Several limitations should be considered when interpreting the results. First, DWI is known 

to be sensitive to motion artifacts (Yendiki, Koldewyn, Kakunoori, Kanwisher, & Fischl, 

2013). This was partially tackled with integrated distortion correction algorithms in the 

PLING dataset and the quality assessment on all scans, where subjects that showed 

excessive movement were excluded. Second, the spatial resolution of our imaging technique 

makes it currently unfeasible to trace short cortical U-fibers. Thus, our fiber tracing 

technique may identify only a fraction of the actual neural interactions involved (Sporns 

2011). Third, it should be kept in mind that the main communication path between two 

regions can also occur via a third region, this may best be detected with functional 

correlation analysis. Therefore, the integration between distant regions through 

synchronization cannot be apparently manifested solely based on DWI-based networks used 

in the present study.

An interesting question for future research will be to unravel the underlying biological 

conditions that are related to the age-related variability in FA. Although FA has one of the 

highest correlations with myelin water fraction, in comparison with other diffusion measures 

(Mädker et al., 2008), a number of other biological conditions may effect FA, including 

physical properties of the fiber bundles (e.g. changes in axonal diameter and packing 

density) or their environment (e,g, angiogenesis). Moreover, a composite of these factors 

that differ per region may be at play. However, some of these conditions may be more 

plausible in relation to the developmental changes observed in the present study than others. 
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For example, changes in the axon packing density is an unlikely candidate for the observed 

developmental changes in the present study as an increase in the number of axons in this age 

range is not in line with findings in animal models (Price et al., 2006). Alternative measures, 

such as T1-weighted T2-weighted ratio, might provide additional information on changes in 

myelin deposition (Ganzetti et al., 2014; Glasser and Van Essen, 2011). Combining these 

measures into multimodal approaches are recommended for future studies.

In summary, we showed that refinement of the brain network in childhood is a selective 

systematic region specific process, supporting the notion that this developmental period is 

characterized by large changes in interactive specialization (Johnson, 2011). This was 

supported by the finding that substantial differences in anatomical layout and topological 

organization were observed between edges that showed the largest increase in FA compared 

to edges that showed the smallest change in FA. Mapping the specific developmental pattern 

of the connectome may help us better understand the processes essential for childhood 

cognitive development (Diamond, et al., 2013) and may ultimately predict vulnerability and 

guide interventions.

Acknowledgments

The authors thank all subjects and their parents for participating in this study. Data collection, processing, sharing, 
and investigator effort for the PLING project was funded by multiple grants from the National Institutes of Health 
(RC2DA029475; R24HD075489; R01DA038958; R01HD061414). PLING data are disseminated by the Center for 
Human Development, University of California, San Diego. All authors declare no competing financial interests. 
Collection of the BrainTime data was dunede by the ERC Starting Grant for Innovative Ideas (ERC-2010-
StG-263234 to EC) and the The Dutch Science Foundation (NWO, 451-10-007 to JSP).

References

Achterberg M, Peper JS, van Duijvenvoorde ACK, Mandl RCW, Crone EA. Frontostriatal White 
Matter Integrity Predicts Development of Delay of Gratification: A Longitudinal Study. J Neurosci. 
2016 Feb 10; 36(6):1954–61. [PubMed: 26865618] 

Andersson J, Skare S. A Model-Based Method for Retrospective Correction of Geometric Distortions 
in Diffusion-Weighted EPI. NeuroImage. 2002

Baker STE, Lubman DI, Yucel M, Allen NB, Whittle S, Fulcher BD, et al. Developmental Changes in 
Brain Network Hub Connectivity in Late Adolescence. The Journal of Neuroscience : the Official 
Journal of the Society for Neuroscience. 2015; 35(24):9078–9087. http://doi.org/10.1523/
JNEUROSCI.5043-14.2015. [PubMed: 26085632] 

Ball G, Aljabar P, Zebari S, Tusor N, Arichi T, Merchant N, et al. Rich-club organization of the 
newborn human brain. Proceedings of the National Academy of Sciences. 2014; 111(20):7456–
7461. http://doi.org/10.1073/pnas.1324118111. 

Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-
diffusion-tensor MRI. J Magn Reson B. 1996; 111:209–219. [PubMed: 8661285] 

Baum, GL., Ciric, R., Roalf, DR., Betzel, RF., Moore, TM., Shinohara, RT., et al. Modular Segregation 
of Structural Brain Networks Supports the Development of Executive Function in Youth; Current 
Biology. 2017. p. 1-32.http://doi.org/10.1016/j.cub.2017.04.051

Bava S, Thayer R, Jacobus J, Ward M, Jernigan TL. Longitudinal characterization of white matter 
maturation during adolescence. Brain Research. 2010

Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: implications for diffusion-
weighted MRI of the nervous system. Magn Reson Med. 1994; 32:579–583. [PubMed: 7808259] 

Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews. 
Neuroscience. 2003; 4(6):469–480. http://doi.org/10.1038/nrn1119. [PubMed: 12778119] 

Wierenga et al. Page 13

Hum Brain Mapp. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.org/10.1523/JNEUROSCI.5043-14.2015
http://doi.org/10.1523/JNEUROSCI.5043-14.2015
http://doi.org/10.1073/pnas.1324118111
http://doi.org/10.1016/j.cub.2017.04.051
http://doi.org/10.1038/nrn1119


Braams BR, van Duijvenvoorde ACK, Peper JS, Crone EA. Longitudinal Changes in Adolescent Risk-
Taking: A Comprehensive Study of Neural Responses to Rewards, Pubertal Development, and 
Risk-Taking Behavior. The Journal of Neuroscience : the Official Journal of the Society for 
Neuroscience. 2015; 35(18):7226–7238. http://doi.org/10.1523/JNEUROSCI.4764-14.2015. 
[PubMed: 25948271] 

Braun U, Schäfer A, Walter H, Erk S, Romanczuk-Seiferth N, Haddad L, et al. Dynamic 
reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the 
National Academy of Sciences. 2015; 112(37):11678–11683. http://doi.org/10.1073/pnas.
1422487112. 

Brouwer RM, Mandl RCW, Schnack HG, van Soelen ILC, van Baal GC, Peper JS, et al. White matter 
development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study. 
PloS One. 2012; 7(4):e32316. http://doi.org/10.1371/journal.pone.0032316. [PubMed: 22514599] 

Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE, Schlaggar BL. Developmental changes 
in human cerebral functional organization for word generation. Cerebral Cortex (New York, NY: 
1991. 2005; 15(3):275–290. http://doi.org/10.1093/cercor/bhh129. 

Bullmore ET, Suckling J, Overmeyer S. IEEE Xplore Abstract - Global, voxel, and cluster tests, by 
theory and permutation, for a difference between two groups of …. Medical Imaging. 1999

Cammoun L, Gigandet X, Meskaldji D, Thiran JP, Sporns O, Do KQ, Maeder P, Meuli R, Hagmann P. 
Mapping the human connectome at multiple scales with diffusion spectrum MRI. J Neurosci 
Methods. 2012; 203:386–397. [PubMed: 22001222] 

Catani M. Occipito-temporal connections in the human brain. Brain : a Journal of Neurology. 2003; 
126(9):2093–2107. http://doi.org/10.1093/brain/awg203. [PubMed: 12821517] 

Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, et al. Tracking neuronal fiber 
pathways in the living human brain. Proceedings of the National Academy of Sciences. 1999; 
96(18):10422–10427. http://doi.org/10.1073/pnas.96.18.10422. 

Collin, G., de Nijs, J., Hulshoff Pol, HE., Cahn, W., van den Heuvel, MP. Connectome organization is 
related to longitudinal changes in general functioning, symptoms and IQ in chronic schizophrenia. 
Schizophrenia Research. 2015. http://doi.org/10.1016/j.schres.2015.03.012

Daianu M, Jahanshad N, Nir TM, Jack CR, Weiner MW, Bernstein MA, et al. Rich club analysis in the 
Alzheimer's disease connectome reveals a relatively undisturbed structural core network. Human 
Brain Mapping. 2015; 36(8):3087–3103. http://doi.org/10.1002/hbm.22830. [PubMed: 26037224] 

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface 
reconstruction. NeuroImage. 1999; 9(2):179–194. http://doi.org/10.1006/nimg.1998.0395. 
[PubMed: 9931268] 

Dean DC, O'Muircheartaigh J, Dirks H, Waskiewicz N, Walker L, Doernberg E, et al. Characterizing 
longitudinal white matter development during early childhood. Brain Structure & Function. 2015; 
220(4):1921–1933. http://doi.org/10.1007/s00429-014-0763-3. [PubMed: 24710623] 

Dennis EL, Jahanshad N, McMahon KL, de Zubicaray GI, Martin NG, Hickie IB, et al. Development 
of brain structural connectivity between ages 12 and 30: A 4-Tesla diffusion imaging study in 439 
adolescents and adults. NeuroImage. 2013; 64:671–684. [PubMed: 22982357] 

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling 
system for subdividing the human cerebral cortex on MRI scans into gyral based regions of 
interest. NeuroImage. 2006; 31(3):968–980. http://doi.org/10.1016/j.neuroimage.2006.01.021. 
[PubMed: 16530430] 

Diamond, A. Executive functions. Annual Review of Psychology. 2013. http://doi.org/10.1146/
annurev-psych-113011-143750

Van Dijk KRA, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional 
connectivity MRI. NeuroImage. 2012; 59(1):431–438. http://doi.org/10.1016/j.neuroimage.
2011.07.044. [PubMed: 21810475] 

Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, et al. Functional Brain 
Networks Develop from a “Local to Distributed” Organization. PLOS Computational Biology. 
2009; 5(5):e1000381. http://doi.org/10.1371/journal.pcbi.1000381. [PubMed: 19412534] 

Wierenga et al. Page 14

Hum Brain Mapp. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.org/10.1523/JNEUROSCI.4764-14.2015
http://doi.org/10.1073/pnas.1422487112
http://doi.org/10.1073/pnas.1422487112
http://doi.org/10.1371/journal.pone.0032316
http://doi.org/10.1093/cercor/bhh129
http://doi.org/10.1093/brain/awg203
http://doi.org/10.1073/pnas.96.18.10422
http://doi.org/10.1016/j.schres.2015.03.012
http://doi.org/10.1002/hbm.22830
http://doi.org/10.1006/nimg.1998.0395
http://doi.org/10.1007/s00429-014-0763-3
http://doi.org/10.1016/j.neuroimage.2006.01.021
http://doi.org/10.1146/annurev-psych-113011-143750
http://doi.org/10.1146/annurev-psych-113011-143750
http://doi.org/10.1016/j.neuroimage.2011.07.044
http://doi.org/10.1016/j.neuroimage.2011.07.044
http://doi.org/10.1371/journal.pcbi.1000381


Ganzetti M, Wenderoth N, Mantini D. Whole brain myelin mapping using T1- and T2-weighted MR 
imaging data. Frontiers in Human Neuroscience. 2014; 8:26. http://doi.org/10.1055/
s-0032-1306382. 

Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, 
Rapoport JL. Brain development during childhood and adolescence: a longitudinal MRI study. Nat 
Neurosci. 1999; 2:861–863. [PubMed: 10491603] 

Giedd JN, Raznahan A, Alexander-Bloch A, Schmitt E, Gogtay N, Rapoport JL. Child psychiatry 
branch of the National Institute of Mental Health longitudinal structural magnetic resonance 
imaging study of human brain development. Neuropsychopharmacology : Official Publication of 
the American College of Neuropsychopharmacology. 2015; 40(1):43–49. http://doi.org/10.1038/
npp.2014.236. [PubMed: 25195638] 

Giorgio A, Watkins KE, Chadwick M, James S. Longitudinal changes in grey and white matter during 
adolescence. NeuroImage. 2010

Glasser MF, Van Essen DC. Mapping Human Cortical Areas In Vivo Based on Myelin Content as 
Revealed by T1- and T2-Weighted MRI. The Journal of Neuroscience : the Official Journal of the 
Society for Neuroscience. 2011; 31(32):11597–11616. http://doi.org/10.1523/JNEUROSCI.
2180-11.2011. [PubMed: 21832190] 

Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of 
human cortical development during childhood through early adulthood. Proceedings of the 
National Academy of Sciences. 2004; 101(21):8174–8179. http://doi.org/10.1073/pnas.
0402680101. 

Grayson DS, Ray S, Carpenter S, Iyer S, Dias TGC, Stevens C, et al. Structural and Functional Rich 
Club Organization of the Brain in Children and Adults. PloS One. 2014; 9(2):e88297. [PubMed: 
24505468] 

Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, et al. White matter maturation 
reshapes structural connectivity in the late developing human brain. Proceedings of the National 
Academy of Sciences. 2010; 107(44):19067–19072. http://doi.org/10.1073/pnas.1009073107. 

Hänggi J, Fövenyi L, Liem F, Meyer M, Jäncke L. The hypothesis of neuronal interconnectivity as a 
function of brain size-a general organization principle of the human connectome. Frontiers in 
Human Neuroscience. 2014; 8:915. [PubMed: 25426059] 

Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett D, Freeman S, et al. Structural 
foundations of resting-state and task-based functional connectivity in the human brain. 
Proceedings of the National Academy of Sciences. 2013; 110(15):6169–6174. http://doi.org/
10.1073/pnas.1219562110. 

Horn A, Ostwald D, Reisert M, Blankenburg F. The structural-functional connectome and the default 
mode network of the human brain. NeuroImage. 2014; 102 Pt 1:142–151. http://doi.org/10.1016/
j.neuroimage.2013.09.069. [PubMed: 24099851] 

Huizinga M, Dolan CV, van der Molen MW. Age-related change in executive function: Developmental 
trends and a latent variable analysis. Neuropsychologia. 2006

Jeon T, Mishra V, Ouyang M, Chen M, Huang H. Synchronous Changes of Cortical Thickness and 
Corresponding White Matter Microstructure During Brain Development Accessed by Diffusion 
MRI Tractography from Parcellated Cortex. Frontiers in Neuroanatomy. 2015; 9 http://doi.org/
10.3389/fnana.2015.00158. 

Jernigan TL, Brown TT, Hagler DJ, Akshoomoff N, Bartsch H, Newman E, et al. The Pediatric 
Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage. 2016; 124(Pt B):
1149–1154. http://doi.org/10.1016/j.neuroimage.2015.04.057. [PubMed: 25937488] 

Johnson MH. Interactive specialization: a domain-general framework for human functional brain 
development? Developmental Cognitive Neuroscience. 2011; 1(1):7–21. http://doi.org/10.1016/
j.dcn.2010.07.003. [PubMed: 22436416] 

Kaufmann, T., Alnæs, D., Doan, NT., Brandt, CL. Delayed stabilization and individualization in 
connectome development are related to psychiatric disorders. Nature. 2017. http://doi.org/10.1016/
j.neuroimage.2010.08.063

Wierenga et al. Page 15

Hum Brain Mapp. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.org/10.1055/s-0032-1306382
http://doi.org/10.1055/s-0032-1306382
http://doi.org/10.1038/npp.2014.236
http://doi.org/10.1038/npp.2014.236
http://doi.org/10.1523/JNEUROSCI.2180-11.2011
http://doi.org/10.1523/JNEUROSCI.2180-11.2011
http://doi.org/10.1073/pnas.0402680101
http://doi.org/10.1073/pnas.0402680101
http://doi.org/10.1073/pnas.1009073107
http://doi.org/10.1073/pnas.1219562110
http://doi.org/10.1073/pnas.1219562110
http://doi.org/10.1016/j.neuroimage.2013.09.069
http://doi.org/10.1016/j.neuroimage.2013.09.069
http://doi.org/10.3389/fnana.2015.00158
http://doi.org/10.3389/fnana.2015.00158
http://doi.org/10.1016/j.neuroimage.2015.04.057
http://doi.org/10.1016/j.dcn.2010.07.003
http://doi.org/10.1016/j.dcn.2010.07.003
http://doi.org/10.1016/j.neuroimage.2010.08.063
http://doi.org/10.1016/j.neuroimage.2010.08.063


Kim DJ, Davis EP, Sandman CA, Sporns O, O'Donnell BF, Buss C, Hetrick WP. Children's intellectual 
ability is associated with structural network integrity. NeuroImage. 2016; 124:550–556. http://
doi.org/10.1016/j.neuroimage.2015.09.012. [PubMed: 26385010] 

Kochunov P, Glahn DC, Lancaster J, Thompson PM, Kochunov V, Rogers B, et al. Fractional 
anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. 
NeuroImage. 2011; 58(1):41–49. http://doi.org/10.1016/j.neuroimage.2011.05.050. [PubMed: 
21640837] 

Koenis, MMG., Brouwer, RM., van den Heuvel, MP., Mandl, RCW., van Soelen, ILC., Kahn, RS., et 
al. Development of the brain's structural network efficiency in early adolescence: A longitudinal 
DTI twin study. Human Brain Mapping. 2015. http://doi.org/10.1002/hbm.22988

Krogsrud SK, Fjell AM, Tamnes CK, Grydeland H, Mork L, Due-Tønnessen P, et al. Changes in white 
matter microstructure in the developing brain—A longitudinal diffusion tensor imaging study of 
children from 4 to 11years of age. NeuroImage. 2016; 124:473–486. [PubMed: 26375208] 

Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging of white 
matter tract evolution over the lifespan. NeuroImage. 2012; 60(1):340–352. http://doi.org/10.1016/
j.neuroimage.2011.11.094. [PubMed: 22178809] 

Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the human brain 
from childhood to adulthood. NeuroImage. 2008; 40(3):1044–1055. http://doi.org/10.1016/
j.neuroimage.2007.12.053. [PubMed: 18295509] 

Li Y, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T. Brain anatomical network and intelligence. PLOS 
Computational Biology. 2009; 5(5):e1000395. http://doi.org/10.1371/journal.pcbi.1000395. 
[PubMed: 19492086] 

Lo CY, Wang PN, Chou KH, Wang J, He Y, Lin CP. Diffusion Tensor Tractography Reveals Abnormal 
Topological Organization in Structural Cortical Networks in Alzheimer's Disease. The Journal of 
Neuroscience : the Official Journal of the Society for Neuroscience. 2010; 30(50):16876–16885. 
http://doi.org/10.1523/JNEUROSCI.4136-10.2010. [PubMed: 21159959] 

Mädler B, Drabycz SA, Kolind SH, Whittall KP, MacKay AL. Is diffusion anisotropy an accurate 
monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor 
anisotropy in human brain. Magnetic Resonance Imaging. 2008; 26(7):874–888. http://doi.org/
10.1016/j.mri.2008.01.047. [PubMed: 18524521] 

Mills KL, Tamnes CK. Methods and considerations for longitudinal structural brain imaging analysis 
across development. Developmental Cognitive Neuroscience. 2014; 9:172–190. http://doi.org/
10.1016/j.dcn.2014.04.004. [PubMed: 24879112] 

Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review. NMR Biomed. 
2002; 15:468–480. [PubMed: 12489096] 

Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the 
brain by magnetic resonance imaging. Ann Neurol. 1999; 45:265–269. [PubMed: 9989633] 

Muetzel RL, Mous SE, van der Ende J, Blanken LME, van der Lugt A, Jaddoe VWV, et al. White 
matter integrity and cognitive performance in school-age children: A population-based 
neuroimaging study. NeuroImage. 2015; 119:119–128. http://doi.org/10.1016/j.neuroimage.
2015.06.014. [PubMed: 26067345] 

Peper JS, de Reus MA, van den Heuvel MP, Schutter DJLG. Short fused? Associations between white 
matter connections, sex steroids, and aggression across adolescence. Human Brain Mapping. 2015; 
36(3):1043–1052. [PubMed: 25359710] 

Pohl KM, Sullivan EV, Rohlfing T, Chu W, Kwon D, Nichols BN, et al. Harmonizing DTI 
measurements across scanners to examine the development of white matter microstructure in 803 
adolescents of the NCANDA study. NeuroImage. 2016; 130:194–213. [PubMed: 26872408] 

Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafò MR, et al. Scanning the 
horizon: towards transparent and reproducible neuroimaging research. Nature Reviews 
Neuroscience. 2017; 18(2):115–126. http://doi.org/10.1038/nrn.2016.167. [PubMed: 28053326] 

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in 
functional connectivity MRI networks arise from subject motion. NeuroImage. 2012; 59(3):2142–
2154. http://doi.org/10.1016/j.neuroimage.2011.10.018. [PubMed: 22019881] 

Wierenga et al. Page 16

Hum Brain Mapp. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.org/10.1016/j.neuroimage.2015.09.012
http://doi.org/10.1016/j.neuroimage.2015.09.012
http://doi.org/10.1016/j.neuroimage.2011.05.050
http://doi.org/10.1002/hbm.22988
http://doi.org/10.1016/j.neuroimage.2011.11.094
http://doi.org/10.1016/j.neuroimage.2011.11.094
http://doi.org/10.1016/j.neuroimage.2007.12.053
http://doi.org/10.1016/j.neuroimage.2007.12.053
http://doi.org/10.1371/journal.pcbi.1000395
http://doi.org/10.1523/JNEUROSCI.4136-10.2010
http://doi.org/10.1016/j.mri.2008.01.047
http://doi.org/10.1016/j.mri.2008.01.047
http://doi.org/10.1016/j.dcn.2014.04.004
http://doi.org/10.1016/j.dcn.2014.04.004
http://doi.org/10.1016/j.neuroimage.2015.06.014
http://doi.org/10.1016/j.neuroimage.2015.06.014
http://doi.org/10.1038/nrn.2016.167
http://doi.org/10.1016/j.neuroimage.2011.10.018


Price DJ, Kennedy H, Dehay C, Zhou L, Mercier M, Jossin Y, et al. The development of cortical 
connections. European Journal of Neuroscience. 2006; 23(4):910–920. [PubMed: 16519656] 

de Reus MA, van den Heuvel MP. The parcellation-based connectome: Limitations and extensions. 
NeuroImage. 2013; 80:397–404. http://doi.org/10.1016/j.neuroimage.2013.03.053. [PubMed: 
23558097] 

Romme, I., de Reus, MA., Ophoff, RA., Kahn, RS. Connectome disconnectivity and cortical gene 
expression in patients with schizophrenia. Biological Psychiatry. 2017. http://doi.org/10.1016/
j.biopsych.2016.07.012

Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. 
NeuroImage. 2010

Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, Petersen SE. Functional 
neuroanatomical differences between adults and school-age children in the processing of single 
words. Science (New York, NY). 2002; 296(5572):1476–1479. http://doi.org/10.1126/science.
1069464. 

Shu N, Liu Y, Li J, Li Y, Yu C, Jiang T. Altered anatomical network in early blindness revealed by 
diffusion tensor tractography. PLoS ONE. 2009; 4:e7228. [PubMed: 19784379] 

Simmonds DJ, Hallquist MN, Asato M, Luna B. Developmental stages and sex differences of white 
matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging 
(DTI) study. NeuroImage. 2014; 92:356–368. [PubMed: 24384150] 

Singer W. Synchronization of cortical activity and its putative role in information processing and 
learning. Annual Review of Physiology. 1993; 55:349–374. http://doi.org/10.1146/annurev.ph.
55.030193.002025. 

Sowell ER, Thompson PM, Tessner KD, Toga AW. Mapping continued brain growth and gray matter 
density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain 
maturation. J Neurosci. 2001; 21:8819–8829. [PubMed: 11698594] 

Sporns O. The human connectome: a complex network. Annals of the New York Academy of 
Sciences. 2011

Supekar K, Musen M, Menon V. Development of large-scale functional brain networks in children. 
PLoS Biology. 2009; 7(7):e1000157. http://doi.org/10.1371/journal.pbio.1000157. [PubMed: 
19621066] 

Tamnes CK, Østby Y, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB. Brain Maturation in 
Adolescence and Young Adulthood: Regional Age-Related Changes in Cortical Thickness and 
White Matter Volume and Microstructure. 2010

Tamnes, CK., Herting, MM., Goddings, AL., Meuwese, R., Blakemore, SJ., Dahl, RE., et al. 
Development of the cerebral cortex across adolescence: A multisample study of interrelated 
longitudinal changes in cortical volume, surface area and thickness; The Journal of Neuroscience : 
the Official Journal of the Society for Neuroscience. 2017. p. 3302-16.http://doi.org/10.1523/
JNEUROSCI.3302-16.2017

van den Heuvel M, Mandl R, Luigjes J, Hulshoff Pol H. Microstructural organization of the cingulum 
tract and the level of default mode functional connectivity. J Neurosci. 2008b; 28:10844–10851. 
[PubMed: 18945892] 

van den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state 
networks reflect the underlying structural connectivity architecture of the human brain. Human 
Brain Mapp. 2009; 30:3127–3141.

van den Heuvel MP, Sporns O. Rich-Club Organization of the Human Connectome. The Journal of 
Neuroscience : the Official Journal of the Society for Neuroscience. 2011; 31(44):15775–15786. 
http://doi.org/10.1523/JNEUROSCI.3539-11.2011. [PubMed: 22049421] 

van den Heuvel MP, Kahn RS, Goni J, Sporns O. High-cost, high-capacity backbone for global brain 
communication. Proceedings of the National Academy of Sciences. 2012; 109(28):11372–11377. 
http://doi.org/10.1073/pnas.1203593109. 

van den Heuvel MP, Kersbergen KJ, de Reus MA, Keunen K, Kahn RS, Groenendaal F, et al. The 
Neonatal Connectome During Preterm Brain Development. Cerebral Cortex. 2015; 25(9):3000–
3013. http://doi.org/10.1093/cercor/bhu095. [PubMed: 24833018] 

Wierenga et al. Page 17

Hum Brain Mapp. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.org/10.1016/j.neuroimage.2013.03.053
http://doi.org/10.1016/j.biopsych.2016.07.012
http://doi.org/10.1016/j.biopsych.2016.07.012
http://doi.org/10.1126/science.1069464
http://doi.org/10.1126/science.1069464
http://doi.org/10.1146/annurev.ph.55.030193.002025
http://doi.org/10.1146/annurev.ph.55.030193.002025
http://doi.org/10.1371/journal.pbio.1000157
http://doi.org/10.1523/JNEUROSCI.3302-16.2017
http://doi.org/10.1523/JNEUROSCI.3302-16.2017
http://doi.org/10.1523/JNEUROSCI.3539-11.2011
http://doi.org/10.1073/pnas.1203593109
http://doi.org/10.1093/cercor/bhu095


van den Heuvel, MP., Sporns, O., Collin, G. Abnormal rich club organization and functional brain 
dynamics in schizophrenia. Jama. 2013. http://doi.org/10.1001/jamapsychiatry.2013.1328

van den Heuvel MP, de Lange SC, Zalesky A. Proportional thresholding in resting-state fMRI 
functional connectivity networks and consequences for patient-control connectome studies: Issues 
and recommendations. NeuroImage. 2017; 152:437–449. [PubMed: 28167349] 

Wierenga LM, Langen M, Oranje B, Durston S. Unique developmental trajectories of cortical 
thickness and surface area. NeuroImage. 2014; 87:120–126. http://doi.org/10.1016/j.neuroimage.
2013.11.010. [PubMed: 24246495] 

Wierenga LM, van den Heuvel MP, van Dijk S, Rijks Y, de Reus MA, Durston S. The development of 
brain network architecture. Human Brain Mapping. 2015; 37(2):717–729. http://doi.org/10.1002/
hbm.23062. [PubMed: 26595445] 

Wolff SD, Balaban RS. Magnetization transfer imaging: practical aspects and clinical applications. 
Radiology. 1994; 192:593–599. [PubMed: 8058919] 

Wu M, Lu LH, Lowes A, Yang S, Passarotti AM, Zhou XJ, Pavuluri MN. Development of superficial 
white matter and its structural interplay with cortical gray matter in children and adolescents. 
Human Brain Mapping. 2014; 35(6):2806–2816. http://doi.org/10.1002/hbm.22368. [PubMed: 
24038932] 

Yendiki A, Koldewyn K, Kakunoori S, Kanwisher N, Fischl B. Spurious group differences due to head 
motion in a diffusion MRI study. NeuroImage. 2013; 88C:79–90. http://doi.org/10.1016/
j.neuroimage.2013.11.027. 

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization 
of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of 
Neurophysiology. 2011; 106(3):1125–1165. http://doi.org/10.1152/jn.00338.2011. [PubMed: 
21653723] 

Zalesky A, Fornito A, Cocchi L, Gollo LL. Connectome sensitivity or specificity: which is more 
important? NeuroImage. 2016; 142:407–420. [PubMed: 27364472] 

Wierenga et al. Page 18

Hum Brain Mapp. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://doi.org/10.1001/jamapsychiatry.2013.1328
http://doi.org/10.1016/j.neuroimage.2013.11.010
http://doi.org/10.1016/j.neuroimage.2013.11.010
http://doi.org/10.1002/hbm.23062
http://doi.org/10.1002/hbm.23062
http://doi.org/10.1002/hbm.22368
http://doi.org/10.1016/j.neuroimage.2013.11.027
http://doi.org/10.1016/j.neuroimage.2013.11.027
http://doi.org/10.1152/jn.00338.2011


Figure 1. 
Representation of reconstructed anatomical parcellation of freesurfer (A), DWI streamlines 

(B), and graph representation (C) for one representative subject of the BrainTime dataset. D 

shows a single subject connectome as a connectivity matrices with rows and columns 

depicting source (i) and target regions (j). Pathways are grouped by hemisphere colors 

represent mean FA values ranging from 0.1 (grey) to 0.7 (black).
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Figure 2. 
Connected components of largest (red) and smallest changes (blue) in FA frontal lobe at the 

top of the image. The PLING dataset is represented in the top row and the BrainTime dataset 

in the bottom row. Nodes (circles) and edges (lines) are displayed for the reconstructed 

thresholded group averaged brain networks. The histogram shows βage values for all edges 

in the group network. Edges that showed an age-related change in 1 SD smaller than the 

mean change in FA are displayed in blue (small Δ FA). Connections larger than 1 SD above 

mean change in FA are displayed in red (large Δ FA). The largest two connected components 

were selected for both sets of edges. Rich-club nodes are represented by large circles.
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Figure 3. 
Percentage of anatomical distribution of rich club, feeder and local edges in red, orange and 

yellow respectively. The middle graph shows a schematic representation of the group 

averaged reconstructed brain network. Nodes (circles) represent brain regions where rich 

club nodes are indicated by red circles. The bar graphs on the left (PLING set) and right 

(BrainTime set) indicate that a larger proportion of feeder and hub edges and a smaller 

proportion of peripheral edges were observed in the edges showing large age-related 

changes in FA (large Δ FA) compared to the distribution of edges showing the smallest 

change in FA (small Δ FA) as well as compared to the distribution of edge categories for all 

possible edges.
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Figure 4. 
Sub-networks fort the PLING (top) and BrainTime (bottom) datasets showing percentage of 

edges showing large change (red) and small changes(blue) in FA connecting to nodes in one 

of the following sub-network: cortical limbic network; somato-motor network; default mode 

network and visual network (left to right).
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