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Abstract

The severity of post-stroke aphasia and the potential for recovery are highly variable and difficult 

to predict. Evidence suggests that optimal estimation of aphasia severity requires the integration of 

multiple neuroimaging modalities and the adoption of new methods that can detect multivariate 

brain-behavior relationships. We created and tested a multimodal framework that relies on three 

information sources (lesion maps, structural connectivity, and functional connectivity) to create an 

array of unimodal predictions which are then fed into a final model that creates “stacked 

multimodal predictions” (STAMP). Cross-validated predictions of four aphasia scores (picture 

naming, sentence repetition, sentence comprehension, and overall aphasia severity) were obtained 

from 53 left hemispheric chronic stroke patients (age: 57.1±12.3yrs, post-stroke interval: 20 

months, 25 female). Results showed accurate predictions for all four aphasia scores (correlation 

true vs. predicted: r=0.79–0.88). The accuracy was slightly smaller but yet significant (r=0.66) in a 

full split cross-validation with each patient considered as new. Critically, multimodal predictions 

produced more accurate results that any single modality alone. Topological maps of the brain 

regions involved in the prediction were recovered and compared with traditional voxel-based 

lesion-to-symptom maps, revealing high spatial congruency. These results suggest that 

neuroimaging modalities carry complementary information potentially useful for the prediction of 

aphasia scores. More broadly, this study shows that the translation of neuroimaging findings into 

clinically useful tools calls for a shift in perspective from unimodal to multimodal neuroimaging, 

from univariate to multivariate methods, from linear to non-linear models, and, conceptually, from 

inferential to predictive brain mapping.
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Introduction

Each year, stroke affects 800,000 people in the US and 15 million people worldwide 

(Mackay, et al., 2004; Mozaffarian, et al., 2015). An estimated one third of stroke survivors 

are left with permanent language deficits, commonly known as aphasia. Given the dramatic 

consequences of aphasia on life quality, tools that permit the prediction of aphasia severity 

and the potential for therapeutic intervention represent a major clinical goal.

The initial discovery that lesions of specific brain areas cause specific aphasic symptoms 

(Broca, 1861) has led to careful investigation of the relationship between lesion location and 

the severity of aphasia deficits. The importance of lesion location as a determinant of post-

stroke aphasia is also reflected in translational models that aim to predict aphasia severity 

(Basilakos, et al., 2014; Hope, et al., 2013; Seghier, et al., 2015; Wang, et al., 2013; 

Yourganov, et al., 2015). However, there is evidence that lesion location provides only a 

partial picture of the factors that contribute to cognitive performance after stroke (Carter, et 

al., 2012; Hope, et al., 2016; Kuceyeski, et al., 2016; Willmes and Poeck, 1993). This is 

likely because performance does not depend solely on the “missing” parts of the brain, but 

also on the structural and functional integrity of the remaining tissue, which can support the 

functional reorganization of language processes (Carter, et al., 2012; Corbetta, et al., 2005; 

Crofts, et al., 2011; Rorden and Karnath, 2004; Saur, et al., 2006; Siegel, et al., 2016; 

Turkeltaub, et al., 2011; Wu, et al., 2015a). Consequently, proper prediction of aphasia 

scores requires the integration of multiple neuroimaging modalities, each describing a 

different property, spanning from lesion maps to structural disconnections, and from 

pairwise connections to network properties (Carter, et al., 2012; Crofts, et al., 2011; Duncan 

and Small, 2016; Grefkes and Fink, 2014).

Although rich multimodal datasets are becoming increasingly available, the creation of 

predictive tools is hampered by methodological limitations. For example, neuroimaging data 

are often analyzed with a mass-univariate approach, in which individual voxels (or brain 

regions) are tested for a relationship with behavior. This strategy increases type I errors 

(Bennett, et al., 2009; Eklund, et al., 2016) and ignores the hodologic properties of the brain, 

that is, interactions. In principle, no area of the brain acts in isolation without sending or 

receiving signals to or from other areas. This means that cognitive processes are likely to 

emerge from multivariate signal interactions that cannot be captured when considering each 

area in isolation (Medaglia, et al., 2015; Price, et al., 2016; Turken and Dronkers, 2011). In 

voxel-based lesion-to-symptom (VLSM) analyses, the mass-univariate approach not only 

misses the interaction between lesioned brain areas but also produces displaced results along 

the vascular anatomy (Mah, et al., 2014). This may lead to wrong theoretical conclusions, 

and add to the current irreproducibility crisis in science (Collins and Tabak, 2014; Open 

Science Collaboration, 2015).

The linear models used for analyses (i.e., t-tests, linear regressions, ANOVAs) pose another 

limitation since they rely on the assumption that brain behavior relationship must be linear. 

Examples from the literature suggest that brain-behavior relationships are not necessarily 

linear. For example, Wang et al. (2013) performed curve estimation on patients with post-
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stroke aphasia and found a non-linear relationship between lesion load and aphasia severity. 

Similarly, Saur at al. (2006) found that the contralesional healthy hemisphere follows a non-

linear activation pattern during recovery. To detect these non-linear relationships new 

analyses methods should be adopted which do not make strong assumptions on brain-

behavior relationships.

The creation of predictive models from neuroimaging data is also limited by the large 

number of predictors (i.e., voxels or brain regions) and the small number of subjects. This 

scenario increases dramatically the risk of overfitting; i.e., the model cannot generalize well 

to new cases. To avoid overfitting, researchers use data reduction strategies such as pre-

selection of relevant variables. However, many studies use statistical significance as a proxy 

for predictive power, a strategy that may produce poor predictive models since the most 

significant variables are not necessarily the best predictors (Lo, et al., 2015).

The limitations mentioned above demonstrate a legitimate need for new approaches that can 

achieve multimodal integration, multivariate analyses, non-linear modeling, and minimal 

overfitting. We propose a predictive framework of aphasia scores that utilizes data from 

three imaging modalities (lesion maps, structural connectivity, and functional connectivity) 

and produces a combined multimodal prediction; we refer to this approach as Stacked 

Multimodal Prediction (STAMP). Two key elements characterize the STAMP framework: 

random forests (RF) and prediction stacking. RF is particularly well-suited for our purpose 

because it overcomes the limitations of traditional statistical methods. RF can (1) detect 

linear and non-linear relationships, (2) detect variable interactions, and (3) utilize a large 

number of variables with minimal overfitting (Kuhn and Johnson, 2013). Prediction stacking 

is an enhancement method through which preliminary predictions from different sources are 

combined together in a final prediction (Breiman, 1996; Wolpert, 1992). Using these tools 

on a sample of 53 chronic stroke subjects with aphasia, we found that multimodal 

integration yields more accurate predictions than any single modality alone.

Methods

Subjects

Subjects were part of an ongoing project investigating the mechanisms of language 

disruption and recovery following left hemispheric chronic stroke (Mirman, et al., 2015; 

Schwartz, et al., 2012; Schwartz, et al., 2011; Zhang, et al., 2014). Only subjects with 

available neuroimaging data were included in the study, consisting in a sample of 53 subjects 

(age: 57.1±12.3yrs, post-stroke interval: 20±21 months [range: 2-76], 25 female). The 

project was approved by the authorized Institutional Review Board, and all subjects gave 

informed consent. At the time of testing, all subjects were medically stable, without major 

psychiatric disorders, premorbidly right-handed, native English speakers, and tested for 

adequate hearing and vision abilities.

Aphasia batteries

Language performance was assessed with: (1) the Philadelphia Naming Test (PNT) (Roach, 

et al., 1996), a 175-item test of picture naming widely used to measure naming accuracy and 
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error patterns in aphasia (Schwartz, et al., 2009); and (2) the Western Aphasia Battery 

(WAB) (Kertesz, 1982), a popular clinical assessment that yields a number of measures of 

language performance. For the present study we used the number of correctly named 

pictures (PNTcorrect), the global rating of aphasia severity (Aphasia Quotient: WABAQ), 

the repetition score (WABrep), and the comprehension score (WABcomp). The four aphasia 

scores showed medium to strong correlation with each other (range: 0.53-0.87). The mean, 

range, and distribution of these scores are displayed in Figure 1-B.

Image Acquisition

Neuroimaging data were collected during an 8-year span (2007–2015) using a Siemens Trio 

3T scanner. Two acquisition sequences were collected for this study: a structural T1-

weighted and a functional resting BOLD (blood oxygenation level dependent). A third 

modality was imputed by generating virtual tractography lesions (see paragraph “Virtual 

tractography lesions”). The T1 volume was acquired with a 3D inversion recovery sequence, 

160 axial slices, TR=1,620ms, flip=15°, inversion time=950ms, TE=3.87ms, FOV=192×256 

mm2, voxel size=0.98×0.98×1 mm. The BOLD sequence was acquired with a 2D sequence, 

consisting of 48 axial slices acquired with a TR=3s, TE=30ms, FOV=192×192mm2, 

flip=90°, voxel size=3×3×3mm, 100 volumes, 5 min acquisition. The BOLD sequence was 

repeated twice for each subject, and the two runs were later concatenated during 

preprocessing. Visual inspection was performed an all imaging data and no subject with 

excessive head motion was allowed in the study.

Manual lesion drawing

Lesions were drawn slice by slice on the T1 image using MRIcron software (http://

www.mricro.com/mricron/) in multi-view mode, such that the shape of the lesion could be 

understood from multiple orientations. A single expert (HBC) drew the lesions or reviewed 

the tracings completed by individuals he had trained. Figure 1-A displays the average lesion 

map of the 53 patients.

Image processing

Image processing was performed on a server cluster using ANTs and ANTsR software 

(Avants, et al., 2015; Avants, et al., 2011). T1-weighted images were skull-stripped 

(‘antsBrainExtraction.sh’) and registered to the template using a multi stage non-linear 

registration (‘antsRegistrationSyN.sh’). During the registration, cost function masking was 

applied to remove the lesioned area from computations. The template of reference was 

derived from 208 elderly individuals and is publicly available (Pustina, et al., 2016b).

A publicly available template was used to parcellate the brain in 268 areas. The parcellation 

was achieved by grouping voxels with similar functional connectivity in a dataset of 45 

healthy individuals (Finn, et al., 2015).

The overview of the analysis pipeline is shown in Figure 2.

Pustina et al. Page 4

Hum Brain Mapp. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.mricro.com/mricron/
http://www.mricro.com/mricron/


Lesion load

Lesion load in each of the 268 brain parcels was computed by counting the number of 

lesioned voxels in each region and dividing by the total number of voxels in the region. 

Healthy regions that were not damaged in any subject were removed, reducing the number 

of regions to 72. The array of lesion load values was used to obtain a single prediction of 

aphasia for each score.

Virtual tractography lesions

All tractography computations were performed in MRtrix3 (Tournier, et al., 2012) using the 

IIT HARDI template (Varentsova, et al., 2014). The template provides a fiber orientation 

distribution map derived from 72 healthy individuals. Since diffusion data were not available 

for our patients, we performed virtual tractography lesions using the following two steps. 

First, whole brain tractography was performed on the IIT HARDI template by seeding 70 

million streamlines in the GM/WM border (“-act” option, max angle=45°, step size=1mm, 

min length=2mm, max length=250mm, method=iFOD2). The original number of 

streamlines was reduced to 10 million by applying an algorithm which eliminates 

tractography artifacts and guarantees a better match of the tractogram with the underlying 

diffusion signal (SIFT, spherical-deconvolution informed filtering of tractograms) (Smith, et 

al., 2013). In a second step, the tractogram obtained from the template was virtually lesioned 

for each subject individually by removing the streamlines that entered the respective lesion 

mask. This procedure simulates the disconnections caused by stroke lesions (for a similar 

approach, see (Hope, et al., 2016)). Once the virtually lesioned tractogram was obtained, a 

268×268 connectome matrix was computed by counting the number of streamlines 

connecting each pair of regions in the parcellation template. In the following sections, this 

modality is named DTI (diffusion tractography imaging).

Resting state connectivity

Resting BOLD data were preprocessed with a dedicated ANTsR pipeline to account for 

stroke lesions (available at https://github.com/dorianps/strokeRest). Preprocessing involved: 

(i) removal of the first 4 volumes to allow for steady state stabilization of the BOLD signal, 

(ii) motion correction using the average subject-specific bold signal as reference (repeated 

twice to improve calculation of the bold average), (iii) fusion of the two runs in a single 

timeseries using a 4th order polynomial, (iv) motion scrubbing to eliminate volumes with 

frame displacement over 0.3mm, (v) nuisance regression to remove spurious signals (white 

matter, CSF, motion parameters, global intensity), (vi) nuisance regression based on the 

CompCor algorithm with four components (Behzadi, et al., 2007), (vii) band-pass frequency 

filtering (0.009–0.08 Hz), and (viii) 5mm Gaussian smoothing. The area under the lesion 

was removed during the calculation of nuisance regressors to account for uncertainties 

during the tissue segmentation process (i.e., WM can be assigned to GM). After 

preprocessing, a 268×268 connectome matrix was created by computing Pearson 

correlations between the average signals in each region pair of the parcellation template. In 

the following sections, the functional resting state data is named “resting BOLD” or 

“REST”. Quality control sheets were created for each subject, and visually inspected by two 
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authors (DP and JDM). Three cases were excluded from the initial pool of available subjects 

(N=56) because of severe motion artifacts that clearly affected the connectome matrices.

Graph theory measures

Weighted undirected graphs were obtained from DTI and REST connectomes, and four 

measures were extracted from each modality: (1) degree, (2) betweenness, (3) local 

transitivity, and (4) local efficiency (for an explanation of graph measures, see Bullmore and 

Sporns, 2009). Each of the graph measures obtained from each modality was used to derive 

a separate prediction of aphasia scores. These predictions were named by concatenating the 

modality and the measure names (e.g., DTI_deg, DTI_bwn, DTI_loc, DTI_eff, REST_deg, 

etc.).

Raw connectivity

Beside graph measures, a separate prediction of aphasia severity was derived from raw 

pairwise connectivity values (i.e., the upper triangle of the connectome matrix). For REST, 

the number of pairwise connections was 35,778. For DTI, the connections that were not 

lesioned in any subjects were removed, leaving 12,107 pairwise connections. The resulting 

aphasia predictions were named by appending the word “mat” to each modality: DTI_mat 

and REST_mat.

Variable selection and predictive models

All predictive models were built using random forests (Breiman, 2001). RF rely on an 

ensemble of decision trees. Within each tree, simple decisions are made to split the sample 

into groups with similar outcome (e.g., if Broca's area is lesioned above 50%, then subjects 

fall in a group with average fluency score of 30). Splits are performed recursively to create 

smaller groups with more refined averages, until the full relationship between input variables 

and the output variable is captured. Each tree is presented with a random subset of subjects 

(typically 2/3, sampled with replacement), and splits are made using a random subset of the 

variables (typically, 1/3, randomly selected). This creates slightly different decision trees, 

and therefore different predictions of new cases. However, the predictions from all trees are 

averaged together into a powerful forest prediction. We used the ‘randomForest’ R package 

with default parameters (500 trees, mtry=1/3 variables, nodesize=5).

While RF is robust to overfitting, the prediction accuracy may suffer from the presence of 

many irrelevant variables. To remove irrelevant variables we utilized the Recursive Feature 

Elimination (RFE) procedure (Kuhn and Johnson, 2013). RFE gradually removes variables 

in steps predefined by the user. The variables to remove are determined by their “variable 

importance” (VI) score within random forests. VI is computed on out-of-bag data, that is, 

data that were not used during the creation of the branch/tree, and therefore VI is inherently 

cross-validated. However, RFE adds another layer of cross-validation by running a 10-fold 

split, such that variable selection is performed on 90% of the subjects. Once all elimination 

steps are performed on this 90%, the remaining 10% is used to obtain the prediction error for 

each step. The step with least prediction error identifies the optimal number of variables. 

The identity of the winning variables is finally obtained by ranking the variables by their VI 

scores from all folds. To further enhance stability, we repeated the above procedure 10 times, 

Pustina et al. Page 6

Hum Brain Mapp. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each time with a different 10-fold split, and performed variable selection from average 

scores of all repetitions. We also allowed a tolerance of 4% on the prediction error, such that, 

a step with fewer variables could be selected if the error did not increase more than 4% from 

the step with minimal error.

We applied RFE to three types of data: lesion data (p=72 variables), graph measures (p=268 

variables), and raw pairwise connectivity (p=35,778 for REST, and p=12,107 for DTI). The 

steps used during RFE were larger at the beginning (i.e., in the thousands for pairwise 

connections) and gradually smaller as the number of variables was reduced (i.e., in the 

hundreds and tens, see exact steps in “Supplementary Information - RFE steps”).

Predictive brain mapping

Variable selection allows both the optimization of the predictive model and the identification 

of topologic information about the brain regions participating in the prediction. Such 

“predictive” brain mapping can be used to understand functional specialization in the brain 

in a similar way “inferential” brain mapping is used (i.e., VLSM maps). To assess whether 

predictive brain mapping produces congruent information with more traditional methods we 

compared RFE maps with VLSM maps. RFE maps were obtained by using lesion load 

information to select which brain regions from the 72 available participated in the 

prediction. VLSM was performed on the same four behavioral scores using typical 

parameters found in earlier studies from our group (Mirman, et al., 2015; Schwartz, et al., 

2009). Specifically, massive t-tests were run, one at each voxel, to create a whole brain t-

map. Voxels lesioned in less than 10% of the subjects were excluded from the analyses 

(Sperber and Karnath, 2017), and results were thresholded at α=0.05 (FDR corrected for 

multiple comparisons) (Benjamini and Hochberg, 1995). Note, VLSM and RFE analyses are 

very different in nature: one on voxels, the other on regions; one univariate, the other 

multivariate; one using linear t-tests, the other using non-linear random forests, etc. 

However, as the underlying data are the same, we expected some spatial congruency.

From unthresholded to multi-threshold graph predictions

Current research standards assume that weighted graphs do not require thresholding of 

connectome matrices (van den Heuvel, et al., 2010). We ran preliminary tests to establish 

whether thresholding has an effect on the predictive power of graph measures. Ten 

predictions were obtained for each graph measure, each with connectomes thresholded 

between 10% and 100% in steps of 10%. For each threshold, RFE was performed and 

predictions were obtained with a 10-fold cross-validation. These preliminary tests showed 

that more accurate predictions could be obtained with thresholded graph measures (see 

“Supplementary Information - Graph Thresholds”). Hoewever, we could not identify a single 

threshold to optimize all measures; e.g., one measure benefitted from a threshold of 0.9, 

while another benefitted from a threshold of 0.3. Instead of using the “winning” threshold 

for each measure, we performed multi-threshold prediction stacking. That is, we used the 

predictions obtained from each threshold as inputs to a second RF model that combined 

them in a multi-threshold prediction. This procedure eliminated the need for determining 

optimal thresholds. Compared to the optimal threshold, the multi-threshold prediction 

showed minor decreases in accuracy, while many REST graph theory measures showed 
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more accurate predictions with multi-threshold stacking than with the best single-threshold 

prediction (see “Supplementary Information - Multithreshold Results”).

Final STAMP predictions

Single-modality measures yielded 11 preliminary predictions: five from DTI (four from 

graph theory, one from pairwise connectivity), five from REST (four from graph theory, one 

from pairwise connectivity), and one from lesion patterns. Given the numerous reports of a 

strong relationship between lesion size and aphasia scores (Dell, et al., 2013; Fridriksson, et 

al., 2016; Hope, et al., 2013; Kertesz, et al., 1979; Schwartz, et al., 2009; Wu, et al., 2015b), 

we added lesion size as a twelfth predictor. These 12 variables were submitted to a final RF 

model to create a single final stacked multi-modal prediction (STAMP, or “Final_All”). Age 

and post-stroke duration were not included as predictors because earlier work on the same 

data showed no appreciable benefit (Pustina, et al., 2016a). Beside the “Final_All” 

prediction, another prediction was obtained by running RFE on the 12 predictors and 

selecting the most useful ones (“Final_RFE”). The entire process, from deriving preliminary 

predictions to the final STAMP combination was repeated 20 times, each time with a 

different 10-fold split. Pearson correlations were computed between predicted and true 

values for single-modality and multimodal predictions. The correlation scores of the 20 runs 

were Fisher-z transformed and submitted to paired Wilcoxon tests (single tailed) to assess 

whether the combined multimodal prediction showed a systematic advantage over the best 

single modality prediction. We also assessed whether the difference in correlation was 

significant at each individual run (comparison with the Fisher method, ‘paired.r’ function in 

R). This test is usually more conservative and requires large increases in ‘r’ to become 

significant because it relies on single observations.

Full separation of training-test groups

Although we kept training and test subjects separate at most stages, variable selection was 

performed using the whole sample (albeit with two layers of cross validation). Proper 

assessment of the generalizability of results requires a complete separation of the training/

testing groups during all stages, including variable selection. The computational costs to 

achieve this validation were very high for the our pipeline; i.e., a single behavioral score 

with a 10-fold split requires ∼830 RFEs. However, we performed a single 10-fold cross-

validation of picture naming, where training and test subjects were never mixed at any stage.

Computational and time considerations

All computations were performed on a computing cluster using Xeon E4-2450, 2.1GHz 

CPUs. Most of the steps were performed separately with dedicated scripts (i.e., image 

preprocessing, feature selection, training, and testing). Each computation was submitted as a 

single job using one CPU core. Beside the preprocessing step, recursive feature elimination 

was the most time consuming step. RFE required ∼1 hour of computations for a single graph 

theory measure (268 variables), and ∼6-10 hours for a single full connectome (∼34,000 

variables). The final step which performed 20 different training-test predictions required ∼1 

hour per aphasia score. Most of the time in the final step was spent on accessing RFE files 

from the disk – our pipeline relied heavily on disk files. The above times are only 
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approximate, and depended on the research needs of this project. In practice, a trained 

STAMP model can be used to predict aphasia scores in just a few minutes.

Results

Figure 3 displays boxplots of the preliminary and final predictions for the four behavioral 

scores (see also individual predictions in “Supplementary Information - Scatterplots”). 

Overall, STAMP predictions (indicated with an arrow) correlated with true scores in the 

range r=0.79-0.88. Table 1 shows the comparison of STAMP with the best single modality 

prediction. Crucially, STAMP predictions were systematically more accurate than the best 

single modality prediction. For three of the four behavioral scores (PNTcorrect, WABAQ, 

WABcomp) the advantage was statistically significant (p < 0.001), while the fourth showed a 

trend toward significance (p = 0.06). The three significant behavioral scores showed also 

above chance improvements at each run (15%-20% of individual runs were significant as 

opposed to a 5% chance level). Results for each behavioral score are as follows.

For picture naming, the most accurate single-modality prediction was derived from DTI_lot 

(r=0.78). The STAMP predictions produced a small but systematic improvement in accuracy 

(r=0.82, p < 0.001). Four single-modality predictors were selected in Final_RFE (DTI_lot, 

DTI_eff, REST_bwn, and REST_mat) which yielded another slight increase in accuracy 

(Final_RFE: r=0.85±0.03, RMSE=15.6±1.2). Among the 72 lesion load regions, RFE 

selected four regions as predictive of picture naming, including the post-central gyrus and 

supramarginal gyri and extending into the temporoparietal junction and inferior angular 

gyrus (Figure 4A). Visual comparison showed close proximity of RFE regions with peak 

clusters in the VLSM map (see Figure 4A). Raw pairwise connections produced highly 

accurate predictions (DTI: r=0.71±0.02, REST: r=0.72±0.04). These scores relied on 160 

DTI and 800 REST connections.

For the aphasia quotient, the most accurate single-modality prediction was derived from 

REST_bwn (r=0.81). The STAMP predictions produced a systematic increase in accuracy 

(r=0.88, p < 0.001). Four single-modality measures were selected in Final_RFE (DTI_bwn, 

REST_bwn, REST_mat, Parc_Damage; r=0.89±0.02, RMSE=9.0±0.5). Among the 72 

lesion load regions, RFE selected eight regions as predictive of aphasia quotient, which were 

distributed in the temporo-parietal junction, pre- and post-central gyri, and inferior frontal 

cortex (Figure 4B). These areas were similar to the heatmap distribution of VLSM, with a 

small displacement in the frontal lobe (Figure 4B). Raw pairwise connections showed again 

high predictive accuracy: 50 connections were selected from DTI (r=0.7±0.02) and 20 

connections were selected from resting BOLD (r=0.74±0.02).

For repetition, the most accurate single-modality prediction was derived from REST_bwn 

(r=0.86). The STAMP predictions produced only a marginal gain in accuracy which did not 

reach significance (r=0.87, p=0.06). Eight single-modality predictors were selected in 

Final_RFE (DTI_bwn, DTI_eff, DTI_mat, REST_deg, REST_bwn, REST_lot, REST_mat, 

Parc_Damage; r=0.87±0.02, RMSE=1.13±0.06). Among the 72 lesion load regions, RFE 

selected two regions as predictive of repetition, both located in the temporo-parietal junction 

(Figure 4C). The VLSM map showed peaks in a similar area, with a slight anterior 

Pustina et al. Page 9

Hum Brain Mapp. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



displacement (Figure 4C). Raw pairwise connections showed high predictive accuracy, 

which was achieved from 10 DTI (r=0.77±0.01, RMSE=1.5±0.03) and 5 REST 

(r=0.72±0.02, RMSE=1.64±0.03) connections.

For comprehension, the most accurate single-modality prediction was derived from 

DTI_bwn (r=0.73). The STAMP predictions produced a systematic improvement in accuracy 

(r=0.79, p < 0.001). Eight single-modality predictors were selected in Final_RFE (DTI_deg, 

DTI_bwn, DTI_eff, DTI_mat, REST_deg, REST_lot, REST_eff, Parc_Damage; 

r=0.78±0.03, RMSE=0.95±0.05). Among the 72 lesion load regions, RFE selected five 

regions as predictive of comprehension, which were distributed in anterior (prefrontal 

cortex) and posterior (angular gyrus, lateral occipital lobe) areas of the brain (Figure 4D). 

The VLSM map showed peaks in close proximity to the prefrontal and temporo-parietal 

junction regions, while the occipital region found with RFE was not found with VLSM, and, 

vice versa, a peak located in the superior parietal lobe with VLSM was not found with RFE. 

Raw connections were still successful at predicting comprehension, albeit less than with 

other measures. Five DTI and 5,000 REST connections were selected, which yielded 

r=0.62±0.02 (RMSE=1.17±0.02) and r=0.5±0.01 (RMSE=1.38±0.03), respectively.

Connectome-based predictions

The “mat” scores from REST and DTI, which is the raw connectivity score, showed 

relatively high predictive power for every measurement with the exception of the 

“comprehension”. This observation raises the question whether STAMP predictions using 

only these two measurements (DTI_mat and REST_mat) would be equally accurate, without 

the need to compute graph theory scores. To answer this question, we re-ran the STAMP 

pipeline and added a prediction that used only DTI_mat and REST_mat scores. Results 

showed that, although the combination of the *_mat predictions produced a small boost 

compared to each individual mat-score, the combined prediction was less accurate than the 

Final_ALL prediction which used all single-modality scores (boxplots are shown in 

“Supplementary Material - STAMP from raw connectivity”).

Fully separated training-test groups

A single cross-validation was performed to obtain picture naming scores from fully separate 

training-test groups. Initially, we noticed a major drop in the accuracy of the final STAMP 

prediction (from r-0.82 to r=0.52, Δr=0.3). Upon decreasing the tolerance value used during 

variable selection from 4% to 2% (i.e., steps with more variables were selected), predictions 

improved, yielding a STAMP prediction accuracy of r=0.66 (a drop of Δr=0.16 from 

previous results). Importantly, even in this single run the accuracy of the final STAMP 

prediction (r=0.66) was higher than the best single modality prediction (DTI_mat: r=0.63).

Discussion

We tested a framework for the prediction of aphasia scores from multimodal datasets. Our 

results showed that the combination of preliminary single-modality predictions into a 

stacked multimodal prediction (STAMP) can produce aphasia estimates that systematically 

exceed the accuracy obtained from each separate modality. These results suggest that 
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superior behavioral predictions can be achieved by combining modern connectomic 

approaches with a multimodal perspective. Importantly, our results showed that a predictive 

framework can also be utilized to recover topological information that can be used to make 

inferences about the functional organization of cognitive systems.

Previous work on post-stroke aphasia has focused on the relationship between lesion 

location and language deficits (Basilakos, et al., 2014; Bates, et al., 2003; Dronkers, et al., 

2004; Mirman, et al., 2015; Schwartz, et al., 2012; Schwartz, et al., 2009; Thothathiri, et al., 

2011). This relationship, however, may carry only partial information about the factors that 

contribute to cognitive performance. For example, aphasia deficits have been found 

frequently to correlate with white matter damage (Dronkers, et al., 2007; Forkel, et al., 2014; 

Fridriksson, et al., 2013; Marchina, et al., 2011; Mirman, et al., 2015). This indicates that 

interruptions in structural networks might play an important role in aphasia. However, 

disconnections can occur at any segment along WM tracts, and, consequently, lesions 

apparently unrelated to each other can cause disruption of the same tract, producing similar 

symptoms. Supporting this rationale, recent studies have shown that structural 

disconnections can predict cognitive performance more accurately than lesion location 

(Hope, et al., 2016; Kuceyeski, et al., 2016; Kuceyeski, et al., 2015). Non-overlapping 

lesions can also affect the same functional network, leading to similar clinical syndromes 

(Boes, et al., 2015). Thus, evidence from the literature shows that lesions of a focal nature 

can impact brain networks well beyond the lesion itself. In this scenario, cognitive deficits 

and the potential for recovery depend on factors that go beyond lesion location, such as, 

disruption of functional networks, disruption of structural networks, functional 

compensation by domain-general systems, and plastic reorganization of networks that 

subserve alternative routes of cognitive processing. In our study, we found that structural and 

functional networks were frequently more powerful than lesion information at predicting 

aphasia scores; i.e., the best predictors were consistently derived from connectome data 

rather than lesion size or location (see Figure 3). From this perspective, our results confirm 

the advantage of adopting a network perspective (Boes, et al., 2015; Carter, et al., 2012). 

However, STAMP findings go beyond this comparison in showing that multimodal 

integration has the potential to improve the prediction accuracy beyond any modality and 

beyond a simple connectomic approach. It this context, the separate predictive power of each 

modality is not directly informative of the contribution of that modality in the final outcome, 

because a less accurate prediction can interact with other predictors to yield an enhanced 

result (i.e., note the selection of DTI_eff over DTI_mat for Picture Naming in Figure 3). Our 

results, therefore, suggest that neuroimaging modalities carry complementary information 

potentially useful for the prediction of behavioral deficits, and that, rather than comparing 

modalities with each other or selecting the best one, the key choice for enhancing aphasia 

predictions might be the combination of all information sources.

Although many studies have identified potential biomarkers for the prediction of aphasia, 

few have attempted to build rigorous predictive models. Among these, Hope et al. (2013) 

created a model of speech production from 270 subjects and achieved a correlation of r=0.77 

between true and predicted scores. More recently, Yourganov et al. (2016) created predictive 

models of several aphasia scores from 90 subjects using either lesion or structural 

connectivity information, and achieved correlation scores in the range r=0.52-0.72. In 

Pustina et al. Page 11

Hum Brain Mapp. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



another study, Kuceyeski et al. (2016) predicted future cognitive abilities in post-stroke 

subjects using virtual tractography lesions, achieving an accuracy of r=0.75. Compared to 

the above literature, STAMP showed higher correlation of predicted with true scores 

(r=0.79-0.88) by integrating multimodal information. The advantage of STAMP might 

derive from the introduction of prediction stacking, an approach which has been recently 

shown to improve the predictive accuracy over predictions derived from a single model 

(Rahim, et al., 2017).

One result that requires particular consideration is the drop in accuracy from full-split 

validations. This finding shows that variable selection can be a critical step. Broadly 

speaking, we found that brain regions which are powerful at predicting 90% of the subjects 

are not equally powerful at predicting the remaining 10%. The use of multiple layers of 

cross-validation during variable selection excludes the possibility that this might be caused 

by analyses choices. The reason, instead, might be inter-individual variability (Price, et al., 

2016). In the healthy population, substantial individual differences have been shown in 

cytoarchitectonic maps (Amunts, et al., 1999) and resting state networks (Finn, et al., 2015). 

Inter-individual differences in activation maps are so prominent that Fedorenko and 

colleagues have proposed the use of subject-specific functional localizers (Fedorenko, et al., 

2010; Mahowald and Fedorenko, 2016). The large inter-individual variability is also 

reflected in multimodal parcellations of each subject (Glasser, et al., 2016). Adding to these 

differences, stroke lesions are very different in size and location from one subject to another. 

Moreover, recovery from post-stroke aphasia is different from subject to subject (Hope, et 

al., 2013). Considering the above evidence, it is not surprising that brain regions of 90% of 

the subjects might be less powerful at predicting the remaining 10%. This limitation does 

not undermine the power of multimodal integration since the STAMP prediction was more 

accurate than the best single modality prediction even after full-split cross-validation. Future 

studies might focus at addressing the problem of inter-individual variability with new tools 

(Chai, et al., 2016; Glasser, et al., 2016; Wu, et al., 2015a). A large sample size may also 

increase the chances that similar brain architectures exist in the training and test groups 

(Price, et al., 2010). It is important to note that all previous studies have performed variable 

selection on the whole group (Hope, et al., 2013; Kuceyeski, et al., 2016). An exception to 

this trend is the study of Yourganov et al. (2016), who selected the variables only from the 

training group. However, even in this case variables were first filtered based on group 

statistics, before running full-split cross-validation. Our findings, therefore, raise the 

possibility that, similar to our main analyses, existing methods described in the literature 

might be overly optimistic.

Besides providing aphasia predictions, STAMP revealed topological information about the 

brain areas participating in the prediction. Although an interpretation of topological findings 

is beyond the scope of this paper, it is important to note that the information obtained with 

RFE was largely congruent with VLSM maps. This finding lays groundwork for the 

potential replacement of mass-univariate lesion-to-symptom analyses, whose limitations 

have been articulated by several authors (Kimberg, et al., 2007; Mah, et al., 2014), with 

multivariate methods that can capture interactions between brain regions.
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In this study we used a novel approach to combine multi-threshold graph theory measures. 

The identification of appropriate thresholds when constructing graph theory measures is an 

ongoing challenge that has led some authors to propose the use of multi-threshold graph 

measures (Drakesmith, et al., 2015). Our approach, which relies on multi-threshold 

prediction stacking, may offer an alternative solution to the search for threshold-free graph 

theory analyses.

Several limitations affect the present study. First, we acknowledge that the results from our 

main analyses might be overoptimistic, as shown in the full-split validation. Part of this 

limitation may have derived by the limited sample size. Note, this does not necessarily 

undermine the advantage of multimodal integration. Our findings, however, indicate the full-

split validation is a necessary step to assess the true translational value of predictive models. 

Second, the ultimate aim of any predictive model is longitudinal prediction, which we did 

not achieve for lack of longitudinal data. The approach described here, however, can be 

easily extended to longitudinal predictions, either by including baseline neuroimaging data 

or by including baseline cognitive scores. Based on the work of Hope et al. (2013) the 

inclusion of baseline cognitive scores can be expected to boost the predictive accuracy. 

Third, lesion load was computed mainly from cortical areas, while the lesion load of specific 

white matter tracts was not computed. This might have decreased the predictive value of 

lesion load compared to the other two modalities. The study, however, aimed at integrating 

rather than comparing modalities.

In conclusion, we found that the adoption of a multimodal perspective might be key for the 

successful translation of neuroimaging research into clinical tools. More generally, our 

findings indicate the necessity of considering brain diseases in their entire complexity 

through the combination of information from different sources in order to achieve 

potentially useful clinical models. To help researchers start with the concepts presented in 

this paper, we have made publicly available the R code used in this study (https://

github.com/dorianps/STAMP).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. (A) Surface and slice views of the average lesion map. (B) Average, range, and 
histogram, of true aphasia score measured from patients
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Figure 2. Overview of the analyses pipeline
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Figure 3. Correlations between true and predicted scores for four aphasia measures
Whisker plots show the distribution of correlations from 20 repetitions with different 10-fold 

splits. Boxes extend from 25th to 75th percentiles. Whiskers extend to the closest value up to 

1.5 times the length of the box itself. Values beyond the whiskers are shown as outliers 

(single dots). Arrows point to the STAMP predictions. Lesion size shows a single line 

corresponding to the correlation with the behavioral score (converted to positive for plotting 

purposes). Asterisks denote the measures selected for the Final_RFE prediction.
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Figure 4. Comparison of RFE and VLSM maps
RFE shows the brain regions used to predict the respective aphasia score, while VLSM 

shows t-maps. The results are projected on the brain surface and rendered with BrainNet 

Viewer (Xia, et al., 2013).
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