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Abstract

Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been 

related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging 

indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional 

magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, 

evoked grey matter physiological processes were associated with white matter diffusion in MS. 

Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO2) were 

measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, 

within occipital tracts were strongly associated with MS patients’ BOLD and CMRO2. However, 

these relationships were in opposite directions, complicating the interpretation of the relationship 
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between BOLD and white matter microstructural damage in MS. CMRO2 was strongly associated 

with individual differences in patients’ fatigue and neurological disability, suggesting that 

alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms 

of MS. This work demonstrates the first application of calibrated and diffusion imaging together 

and details the first application of calibrated functional MRI in a neurological population. Results 

lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial 

demonstration of the utility of evoked oxygen metabolism signals for neurology research.
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Multiple sclerosis (MS) is a complex neurological disease characterized by micro- and 

macrostructural central nervous system damage. MS pathology is deleterious to neural 

tissue, wherein the most extensive damage is largely incurred by white matter 

microstructures (WMMS; i.e., astrocytes, myelin, oligodendrocytes; cf. Frohman et al., 

2006; Lassmann, 2014; Trapp and Nave, 2008). Diffusion tensor imaging (DTI) studies 

reveal MS-related increases in regional and whole-brain isotropic diffusion of molecular 

water, indexing potential WMMS damage (see Ge et al., 2005). A central question in MS 

research concerns how such structural alterations are related to brain function. Research 

suggests that such alterations to WMMS could potentially influence grey matter function 

(e.g., Alshowaier et al., 2014; Au Duong et al., 2005; Hubbard et al., 2016a; see Paling et al., 

2011; Trapp and Nave, 2008).

Grey matter function is commonly studied in MS using blood-oxygen-level dependent 

(BOLD) signal (e.g., Au Duong et al., 2005; Cader et al., 2006; Genova et al., 2009; 

Hubbard et al., 2016a, b; Janssen et al., 2013; Passamonti et al., 2009; White et al., 2009). 

MS patients show relationships between their BOLD functional responses and white matter 

diffusion characteristics, demonstrating a link between grey matter function and WMMS in 

this group (Hubbard et al., 2014, 2016a; see also Alshowaier et al., 2014; Au Duong et al., 

2005). Although the two are related, it is important to emphasize a distinction between white 

matter macrostructural (i.e., lesions) and microstructural (i.e., WMMS) alterations in MS 

because (1) MS-related alterations to WMMS exist outside of apparent lesioned tissue (e.g., 

De Keyser et al., 1999; Klistorner et al., 2016; Sorbara et al., 2014) and (2) measures of 

WMMS account for variance in measures of MS patients’ neural function separate from the 

degree of patients’ macrostructural damage (e.g., Hannoun et al., 2012). In one study, for 

instance, we found that grey matter BOLD response amplitudes were strongly related to 

individual differences in MS patients’ white matter diffusion characteristics, however, no 

such relationship was found between grey matter BOLD and the extent of white matter 

macrostructural damage (i.e., lesion burden; Hubbard et al., 2016a).

BOLD signal changes are based upon multiple physiological processes. A precise 

understanding of what grey matter physiological processes are related to WMMS in MS 

cannot be deduced from BOLD signal alone. However, two hypotheses concerning 

pathophysiological alterations in MS could potentially explain BOLD-WMMS relationships 
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in this group. One hypothesis is that alterations to WMMS influence MS patients’ 

hemodynamic responses—which are intimately linked to BOLD signal (see Kim and 

Ogawa, 2012). MS-related damage to WMMSs that couple neural and vascular responses 

could result in decreased cerebral blood flow (CBF) and decreased functional hyperemia 

(see Brosnan and Raine, 2013; De Keyser et al., 2008; D’haeseeler et al., 2011). Although 

many studies have examined the relationship between cerebral blood flow and lesion burden, 

few studies have actually examined relationships between WMMS and cerebral blood flow 

(Saindane et al., 2007). Moreover, no study has examined the link between WMMS and 

evoked CBF in grey matter. Thus, the relationship between hemodynamics and WMMS in 

MS has not been thoroughly evaluated.

A second, but not necessarily mutually exclusive, hypothesis that might explain BOLD-

WMMS relationships involves WMMS damage and neurometabolism (see Campbell et al., 

2014; Mahad et al., 2015; Paling et al., 2011). Neurometabolism is also intimately linked to 

changes in BOLD signal (see Kim and Ogawa, 2012). Neuroimaging research has produced 

extensive evidence of altered neurometabolism across MS subtypes (e.g., Cader et al., 2007; 

Ge et al., 2012; Hannoun et al., 2012; Khan et al., 2016; Kindred et al., 2015; Sijens et al., 

2005; Sun et al., 1998; see Stromillo et al., 2013 for preclinical MS). Postmortem studies in 

advanced MS have also traced neurometabolic deficits to the level of the mitochondria and 

electron transport chain complexes in lesioned and non-lesioned neural tissue (Dutta et al., 

2006; see also Singhal et al., 2015). Relationships between MS patients’ metabolism 

markers in white matter and measures of WMMS have further been demonstrated (e.g., 

Hannoun et al., 2012; Sijens et al., 2005). For example, one magnetic resonance 

spectroscopy study of centrum semiovale white matter in MS patients showed that N-

acetylaspertate (NAA) and NAA:creatine ratios were strongly related to white matter 

diffusion in this region (Hannoun et al., 2012). However, such studies have been limited to 

examination of metabolism in white matter, precluding a direct understanding of the 

relationship between WMMS and grey matter metabolism in MS.

A considerable breadth of work has examined MS alterations in white matter diffusion 

characteristics, metabolism, and blood-flow signals. To date however, no research has 

evaluated combined relationships between WMMS and these physiological processes in 

grey matter. Advances in functional neuroimaging now permit temporally-adjacent 

acquisition of BOLD and blood flow/volume signals which can be used along with 

biophysical modeling to non-invasively acquire oxygen metabolic signals via BOLD-signal 

decomposition (calibrated functional magnetic resonance imaging [cfMRI]; Davis et al., 

1998; Hoge et al., 1999). To be clear, many neurophysiological processes are linked to 

BOLD signal changes. For instance, changes to the electrochemical properties of 

populations of neurons (i.e., neural activity) are associated with BOLD signal changes (e.g., 

Logothetis et al., 2001). However, with cfMRI, we can isolate two distinct, 

neurophysiological processes (i.e., CBF and oxygen metabolism) that largely form the basis 

for BOLD signal changes (see Kim and Ogawa, 2012). In combination with DTI, these 

techniques could provide a novel understanding of grey matter physiological processes 

associated with WMMS damage and potentially offer data to further hypotheses about MS 

pathophysiology.
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Here, we directly investigated relationships between grey matter physiological processes and 

white matter diffusion in MS using cfMRI and DTI. With cfMRI we examined evoked 

BOLD, CBF, and oxygen metabolism within occipital cortex in MS patients during visual 

stimulation. The visual system is one of the most affected neural systems in MS and tends to 

show alterations in both structure and function even at early stages of the disease course (see 

Frohman et al., 2005; Frohman et al., 2008; Grahm and Klistorner, 2017; Kolappan et al., 

2009). With DTI, we were able to examine how cfMRI-based evoked physiological 

processes and BOLD signal were related to occipital-tract radial diffusivity (RD)—an index 

of potential WMMS damage (e.g., Harsan et al., 2007; Song et al., 2002) of particular 

relevance to MS (e.g., Alshowaier et al., 2014; Klistorner et al., 2016). Further, we 

elucidated which evoked signals were associated with individual variability in primary MS 

symptomology (i.e., fatigue and neurological disability).

Method

Participants

Twelve MS patients were recruited from the University of Texas Southwestern Medical 

Center. These patients were required to be between the ages of 18 and 65, free of MR-

contraindicators and concurrent substance abuse, have normal or corrected-to-normal vision, 

and speak fluent English. Because study procedures included a gas-inhalation challenge, 

patient selection was limited to non-smokers. Patients did not have histories of respiratory or 

pulmonary problems, cerebral vascular issues, or cardiac disease. Patients were required to 

have a score greater than 21 on the telephone interview for cognitive status (TICS; Brandt et 

al., 1988). Patients were also required to be at least 1 month past their most recent 

exacerbation and their last corticosteroid treatment. Patients did not report a history of optic 

neuritis and their vision was normal or corrected-to-normal. Two patients declined to 

complete the gas challenge (total n = 10). Patients who completed the scanning protocol had 

an average of 9.90 years since their initial MS diagnosis (SEM = 1.61 years) and an average 

estimated 28.60 months since their last exacerbation (SEM = 11.32 months; see Table 1). 

Because we have shown relationships between MS patients DTI-derived WMMS and 

visuocortical BOLD activity and we have not found these relationships for control 

participants (Hubbard et al., 2016a), we did not have evidence to warrant similar 

examinations in control participants. Thus, MS patients were the sole focus of these 

analyses.

Study procedures

Study procedures were approved by the University of Texas Southwestern Medical Center 

Institutional Review Board. Patients meeting inclusion criteria were asked to refrain from 

caffeine use at least two hours before their scheduled appointment time (e.g., Perthen et al., 

2008). They were also asked not to consume alcohol on the same calendar day before their 

scheduled appointment. Patients gave informed consent before undergoing procedures and 

were compensated for their time. Patients underwent functional and structural neuroimaging 

on a Philips 3-Tesla magnet (Philips Medical Systems, Best, The Netherlands) with an 8-

channel SENSE radiofrequency head coil. Foam padding was placed around the head to 

minimize motion during MRI scan acquisition. Patients completed standard 
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neuropsychological and clinical measures, as well as measures of symptom severity 

(Modified Fatigue Impact Scale [MFIS; Fisk et al., 1994] and a neurological disability scale 

[Verdier-Taillefer et al., 1994]). Fatigue and neurological disability were assessed as 

estimators of symptom severity because both fatigue and neurological disability are common 

features of MS and contribute significantly to MS patients’ quality of life (Amato et al., 

2001).

cfMRI parameters and theory

Dual-echo pseudocontinuous arterial spin labeling (pCASL) and BOLD images (together 

referred to as dual-echo images) were acquired near-simultaneously using an interleaved 

echo scanning protocol (see Hoge et al., 1999; Lu and van Zijl, 2005). Together, the 

perfusion (Echo 1) and BOLD-weighted (Echo 2) images along with biophysical modeling 

procedures allowed for estimation of the cerebral metabolic rate of oxygen (CMRO2) 

associated with steady-state stimulation (Davis et al., 1998; Hoge et al., 1999). One task run 

of dual-echo imaging data and one gas-challenge run of dual-echo imaging data were 

collected with the following parameters: Echo 1: labeling duration 1650 ms, labeling RF flip 

angle 18°, labeling gap = 63.5 mm, 3.44 × 3.44 × 5 mm voxel, TR = 4000 ms, TE = 14 ms, 

1525 ms post-label delay, 0 mm slice gap. Echo 2: 90° flip angle, 3.44 × 3.44 × 5 mm voxel, 

TR = 4000 ms, TE = 40 ms, 0 mm slice gap. Total scan time for the visual stimulation task = 

600 s (72 dual-echo dynamics). Total scan time for the gas challenge = 624 s (75 dual-echo 

dynamics).

Estimation of CMRO2 was based upon the Davis model of BOLD signal change (Davis et 

al., 1998; Hoge et al., 1999):

ΔS
S0

= M 1 − ΔCBF
CBF0

α − β ΔCMRO2
CMRO2 ∣ 0

β
(1)

where Δx/x0 denotes a change from baseline, α is an empirically-derived constant linking 

cerebral blood flow and cerebral blood volume, and β is an empirically-derived constant 

related to vascular exchange and susceptibility of deoxyhemoglobin at specific field 

strengths (e.g., Ances et al., 2011; Leontiev and Buxton, 2007). M is a subject-specific 

scaling factor dependent upon the washout of resting deoxyhemoglobin (see Buxton, 2010). 

M was estimated in each participant, using the gas challenge detailed below.

The measurement of BOLD, CBF, and M allows for the estimation of CMRO2. Here, 

ΔCMRO2 reflects the task-related change in neurometabolism of oxygen from resting 

baseline:

ΔCMRO2
CMRO2 ∣ 0

= 1 −

ΔBOLD
BOLD0

M

1/β

ΔCBF
CBF0

1 − α/β
(2)
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where Δx/x0 reflects percent change of signal during task compared to resting baseline.

cfMRI task and gas challenge

Participants completed a visual stimulation task during dual-echo task imaging. This task 

was chosen for two reasons. First, differences in the functional response to visual stimulation 

have been observed in MS visual cortex and these results have generalized to other regions 

(e.g., motor and prefrontal cortices; see Hubbard et al., 2014, 2016a, b). Second, because 

this task involved minimal cognitive demand, individual differences in performance were not 

expected to be a factor.

Patients were trained on the task before entering the MR environment. During the task, 

patients focused on a fixation cross in the center of their visual field. Patients were required 

to respond via bilateral, thumb-button press when a change in the luminance of the fixation 

cross occurred. This secondary-task was used to control the center of the participants’ visual 

field (Hutchison et al., 2013a, b; Pasley et al., 2007). Luminance changes were jittered and 

occurred every 2, 3, 4, or 6 s. Visual stimulation occurred in a block format. There were 6 

visual stimulation task “on” blocks consisting of 60 s of continual annulus flickering in the 

participants’ near-foveal visual field. Annuli alternated at orthogonal orientations (0 to 90°) 

to avoid neural adaptation (Pasley et al., 2007). Alterations occurred at a constant frequency 

of 8 Hz because both electrochemical neural activity and BOLD signal peak at this 

frequency, yielding the greatest signal-to-noise estimates (e.g., Lin et al., 2008; Singh et al., 

2003). Task “off” blocks were jittered at 32, 34, 36, 38, and 40 s intervals (see Figure 1).

Patients also completed a gas-challenge in order to estimate M. In this challenge, 

participants breathed room air for 4 minutes (≈ .03% CO2: 21% O2: 78% N2) and iso-oxic, 

CO2 solution for 6 minutes (5% CO2: 21% O2: 74% N2) during dual-echo imaging. During 

this portion of the study, each participant was fitted with a two-way, non-rebreathing valve/

mouthpiece and a nose clip. Baseline end-tidal CO2 (EtCO2), O2 saturation, breath rate, and 

heart rate measures were collected. After 4 minutes of room air breathing, a valve was 

opened to release the CO2 solution from a Douglas airbag which then flowed into the 

participants’ breathing apparatus for 6 minutes (Hutchison et al., 2013a, b). Hypercapnic 

challenge, via an inhaled 5% CO2 solution, increases global CBF, but exerts no, or minimal, 

depressant effects on oxygen metabolism (e.g., Peng et al., 2017; Xu et al., 2011; Zappe et 

al., 2008). Hypercapnia-induced increase in CBF, but null or decreasing resting response in 

oxygen metabolism washes out local baseline concentrations of deoxyhemoglobin, yielding 

a local maximum estimate of resting BOLD signal. Potential changes to oxygen metabolism 

due to hypercapnic challenge do not appreciably alter the estimation of M; relationships 

between hypercapnia-derived M and M derived from non-hypercapnic techniques show high 

correspondence (Yucel et al., 2014).

cfMRI processing

Task and gas-challenge Echo 1 and Echo 2 data were processed in Analysis of Functional 

Neuroimages (AFNI; Cox, 1996) and FMRIB Software Library (FSL; FMRIB Analysis 

Group, www.fsl.fmrib.ox.ac.uk/fsl). Data were transformed into cardinal planes. Anomalous 

data points in each voxel time series were then attenuated using an interpolation method 
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based upon the average signal. Data were volume registered to correct for motion to the 

fourth functional volume of each dataset’s (task or gas challenge) Echo 2 sequence using a 

heptic polynomial interpolation method. CBF was estimated from Echo 1 images using the 

surround subtraction method (as described in Liu and Wong, 2005). Dual-echo BOLD data 

were also interpolated by pairwise averaging of temporally adjacent images.

For the visual stimulation task, Echo 2 data were linearly registered (12 degrees-of-freedom) 

to each participant’s anatomical data using the align_epi_anay.py program. The 

transformation matrix from this registration was then applied to Echo 1 data. For gas-

challenge data, a binary mask was created for functional voxels in Echo 2 to aid in co-

registration. This mask was then registered to the respective participant’s anatomical space 

using the align_epi_anay.py program. Gas-challenge Echo 2 and Echo 1 data were also 

aligned to the mask which was registered in native anatomical space. After alignment, 

Echoes 1 and 2 data from both the visual task and gas challenge were visually inspected for 

registration errors. Echoes 1 and 2 data from the visual task and gas challenge were then 

spatially smoothed using a Gaussian kernel (FWHM = 8 mm) and high-pass filtered (1/256 

Hz). The 1/256 Hz cutoff produced BOLD model fit estimates and BOLD and CMRO2 

percent signal changes estimates that were significantly greater than the more typically 

applied 1/100 Hz cutoff, indicating increased signal-to-noise using this filter criterion (see 

Supplemental Figure 1). No change was observed between these cutoffs on CBF.

Preprocessed data from Echoes 1 and 2 in the visual stimulation task were analyzed via 

generalized linear modeling of task versus rest periods using a boxcar reference function. 

This modeling quantified task-related CBF and BOLD changes from baseline. BOLD and 

CBF beta-values were scaled to each voxel’s resting baseline signal and were multiplied by 

100, yielding percent signal change estimates from baseline (ΔBOLD and ΔCBF). Data were 

averaged from a visual (functional) region of interest (ROI) comprised of overlapping 

ΔBOLD and ΔCBF suprathreshold signals within occipital lobe (see Structural and 

Functional ROI; Hutchison et al., 2013a, b).

For the gas challenge, resting baseline BOLD and CBF signals during room air breathing 

were averaged for each voxel time-series (BOLD0 and CBF0). The first two minutes of 

hypercapnia BOLD and CBF time-series were discarded to allow participants’ blood flow to 

stabilize to the CO2 solution (e.g., Hutchison et al., 2013a, b). The last four minutes of 

hypercapnia BOLD and CBF time-series were averaged to yield BOLDhc and CBFhc 

respectively. Average values were extracted from a functional region of interest (see 

Structural and Functional ROI) using overlapping BOLDhc and CBFhc suprathreshold 

signals within occipital lobe, and were used to calculate M, using the following equation:

M =

(BOLDhc − BOLD0)
BOLD0

1 − 1 +
(CBFhc − CBF0)

CBF0

α − β (3)
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where (xhc − x0)/x0 reflects percent change in signal from normocapnic to hypercapnic 

states, normalized by the signals during normocapnia and multiplied by 100. We assumed α 
= .38 (Grubb et al., 1974) and β = 1.3 (Lu and van Zijl, 2005); these values were chosen 

because they have been shown to yield plausible estimates of visual cortex CMRO2 and n 
(Hutchison et al., 2013a). There is some debate about the optimal specification of these 

parameters (e.g., Griffeth and Buxton, 2011). However, the outcomes of associations 

between diffusion characteristics and CMRO2, as well as CMRO2 associations with MS 

symptom severity measures, were similar between our chosen α, β parameters and others 

used in extant literature (e.g., Davis et al., 1998; Chen and Pike, 2009; Griffeth and Buxton, 

2011; see Supplemental Figure 2). Once M was estimated, ΔCMRO2 was also estimated (see 

Equation 2; see Figure 2) within a functional region of interest (see Structural and 

Functional ROI; Figure 3).

Structural and Functional ROIs

One T1-weighted magnetization-prepared rapid acquisition gradient-echo (MPRAGE) 

image was acquired for each participant: 160 slices, TE = 3.7 ms, repetition time TR = 8.1 

ms (fast field gradient-echo), sagittal slice orientation, 1 × 1 × 1 mm3 voxel, 12° flip angle. 

The MPRAGE data were processed to create a native-space, occipital ROI. The skull was 

removed using AFNI’s 3dSkullStrip command, separating parenchyma and cerebral spinal 

fluid from the skull. An intensity-based automated segmentation algorithm (FSL FAST) was 

used to delineate primarily white matter, grey matter, and cerebral spinal fluid voxels 

yielding a partial volume estimate of each tissue type, for each voxel. A grey matter mask 

was then created, retaining voxels with only a greater-than-or-equal-to grey-matter partial 

volume estimate of 80%.

A structural ROI of occipital lobe was manually delineated on each participant’s MPRAGE 

image. Manual delineation is generally the standard by which automatic labeling programs 

are compared (e.g., Desikan et al., 2006). Further, previous work in our laboratories has 

shown that in order to get the most robust estimates of BOLD signal from older or patient 

populations, automated spatial normalization/parcellation programs (i.e., Freesurfer) require 

manual landmark demarcation and considerable quality assurance. In total, these processes 

can take up to four working days per subject with atypical neuroanatomy (Hutchison et al., 

2014), whereas our manual delineation of occipital cortex approach took on average less 

than one hour per subject. The structural ROI was drawn using gyral and sulcal landmarks 

and encompassed most of occipital cortex including calcarine sulcus, cuneus, and occipital 

portions of lingual gyrus. Several anatomical landmarks were used in the demarcation of this 

ROI (parieto-occipital sulcus, occipital pole, pre-occipital notch). Within the anatomically 

defined occipital lobe, only voxels with partial volume estimates of grey matter (≥ 80%) 

were retained. Final masks were down-sampled to the functional voxel size.

A visual-task functional ROI was created within the structural ROI described above to 

estimate ΔBOLD, ΔCBF, and ΔCMRO2 for this task (see Hutchison et al., 2013a, b; see 

Figure 1). This procedure was done because by eschewing noise from inactive voxels, 

functional ROIs have greater signal estimates compared to structural ROIs (Hutchison et al., 

2014). Voxels comprising each participants’ functional ROI were the overlapping top 5% of 
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BOLD and top 5% of CBF t-values obtained from the generalized model, within the 

structural ROI. This was done so as to ensure that ΔBOLD and ΔCBF estimates were being 

derived from the same, task-responsive voxels and that ΔCMRO2 was derived in voxels with 

both CBF and BOLD task-related increases (see Figure 3; see Supplemental text). ΔCMRO2 

was calculated voxel-wise within this functional ROI using ΔBOLD, ΔCBF, M. Average 

positive ΔBOLD, ΔCBF, and ΔCMRO2 were extracted from the functional ROI (see Figure 

3A–B).

Because the gas challenge data differed for some participants in occipital coverage 

compared to the visual task data, M was estimated ex situ. To create a functional ROI for the 

gas challenge, ΔBOLDhc/BOLD0 and ΔCBFhc/CBF0 maps were thresholded and extracted 

from the structural ROI detailed above. The criteria for retention of a voxel within these 

maps required that the voxel was within the top 15% (top 20% for one participant) of 

ΔBOLDhc/BOLD0 and ΔCBFhc/CBF0 voxels in the structural ROI; and that these ΔBOLDhc/

BOLD0 and ΔCBFhc/CBF0 voxels overlapped. This procedure ensured complementary 

maximum ΔBOLDhc/BOLD0 and ΔCBFhc/CBF0 signals in the retained voxels. Average 

ΔBOLDhc/BOLD0 and ΔCBFhc/CBF0 signals were extracted from this ROI and M was 

calculated (see Equation 4). Importantly, this approach to calculating M did not bias our 

primary results (see Supplemental Figure 3)

T2 images

A T2 fluid attenuated inversion recovery (FLAIR) scan was also acquired for each 

participant: 33 slices, TE = 125 ms, TR = 11000 ms, no slice gap, transverse slice 

orientation, 0.45 × 0.45 × 5.00 mm3 voxel, 120° refocusing angle.

FLAIR images were used to estimate the extent of gross lesion burden for each participant. 

Lesion burden was calculated using a semi-automated procedure (Hart Jr. et al., 2013; 

Hubbard et al., 2016a, b). Here, hyperintense voxels were demarcated using in-house 

MATLAB code based upon slice-wise, signal intensity (i.e., voxels that were ≥ 1.25 SD over 

the slice mean intensity). Next, lesions were manually delineated from the hyperintense 

tissue by two trained researchers (L.H., S.F.). Manual delineation was used so as to rule out 

false positives in the lesion classification due to fat signals, motion, ventricular edge effects, 

skull, or signal inhomogeneites (Hubbard et al., 2016b, p. 6; see also Hart Jr. et al., 2013). 

Lesion burden was estimated by extracting the number of voxels that were demarcated by 

the automated and manual procedures. Inter-rater agreement of lesion burden was calculated 

using a Dice ratio (κ) of the lesion burden estimates made by the two researchers on a 

sample of several subjects (Dice, 1945). After the researchers were trained on lesion 

classification, inter-rater agreement was found to be high, κ = .89; where κ > .70 is generally 

thought to reflect excellent inter-rater agreement (Zhang et al., 2007).

Diffusion Images

DTI images were acquired using a single-shot, echo-planar imaging sequence with a 

Sensitivity Encoding parallel imaging scheme (SENSE, reduction factor = 2.3), 112 × 112 

matrix, field of view = 224 × 224 mm2 (nominal resolution of 2 mm), 65 slices (0 mm gap), 

slice thickness = 2 mm, TR = 7.78 s, TE = 97 ms. The diffusion weighting was encoded 
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along 30 independent orientations (Jones et al., 1999) and the b-value was 1000 s/mm2. 

Imaging time was 5 min and 15 s.

Automatic Image Registration (Woods et al., 1998) was performed on raw diffusion-

weighted images to correct distortion caused by eddy currents. Six elements of the 3 × 3 

diffusion tensor were determined by multivariate least-squares fitting. The tensor was 

diagonalized to obtain three eigenvalues (λ1–3) and eigenvectors (ν1–3). Standard tensor 

fitting was conducted with DTIStudio (Jiang et al., 2006) to generate the DTI-derived 

diffusion characteristic, fractional anisotropy (FA), which was used in the registration/

alignment/skeletonization process, and the diffusion characteristic of interest, RD. RD was 

chosen as the diffusion characteristic of interest because this measure is highly sensitive to 

WMMS changes (e.g., Harsan et al. 2007; Song et al., 2002) and is often operationalized as 

reflecting the degree of WMMS damage in MS. Further, RD has been demonstrated in MS 

to show considerable alterations regardless of macrostructural damage to tissue, whereas 

diffusion characteristics of other DTI measures (e.g., axial diffusivity) tend to fluctuate 

appreciably within patients across normal-appearing and lesioned tissue types (Klistorner et 

al., 2016). Also, RD has been shown in optic neuritis, a syndrome closely tied to MS, to be 

significantly related to occipital lobe electrical activity (Trip et al., 2006). Thus, for these 

reasons and to limit comparisons and minimize potential Type-I error, RD alone was 

evaluated here.

DTI measurements were obtained at the skeletons of the white matter using FSL (Smith et 

al., 2006) to alleviate partial volume effects with tract-based spatial statistics. Participant FA 

maps were registered nonlinearly to the EVE single-subject FA template (Huang et al., 

2012a,b; Ouyang et al., 2016) for better alignment with a digital white matter atlas (JHU 

ICBM-DTI-81; Mori et al., 2008). Registered FA maps of all subjects were averaged to 

generate a mean FA map, from which an FA skeleton mask was created (see Figure 4). 

Skeletonized FA images of all subjects were obtained by projecting the registered FA images 

onto the mean FA skeleton mask. Occipital tract-specific RD was obtained by averaging RD 

in the skeletal voxels of tracts with connections to and from occipital lobe (occipital tracts; 

i.e., bilateral fronto-occipital fasciculus, bilateral superior longitudinal fasciculus, bilateral 

superior fronto-occipital fasciculus, bilateral posterior thalamic/optic radiations.

Statistical analyses

Data were analyzed in JMP Pro version 12.2.0 (SAS Institute, Inc.) and R version 3.3.2 (R 

Core Development Team; r-project.org). Distributions were scrutinized for outliers (≥ ± 2 

SD mean) which were censored from these tests. Single-sample t-tests were used to test 

distribution differences against hypothesized means. Individual difference hypotheses were 

tested using ordinary least-squares regression. Bootstrapped 95% confidence intervals (B = 

1,000) and Pearson product-moment correlations are also reported for significant individual 

differences effects in order to provide a thorough overview of the effect sizes for primary 

results. Multivariate ordinary-least squares modeling was used to assess the effects of 

multiple independent variables; partial Pearson correlations were used to demonstrate 

significant effect sizes. The Monte Carlo method for assessing mediation (Preacher and 

Selig, 2012; code retrieved from Selig and Preacher, 2008) with 20,000 resampling iterations 
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was used for assessing the significance of indirect effects (unstandardized ab—a measure 

indirect effects independent of sample size [Preacher and Kelley, 2011]) via 95% confidence 

intervals. This method was employed when both independent variables in the multivariate 

models were significant. Descriptive statistics are expressed as means ± 1 standard error.

Results

Response to CO2 and Visual Stimulation Task Performance/Activity

We formally tested whether patients showed a significant change (> 0%) in BOLD 

([BOLDhc-BOLD0]/BOLD0) and CBF response to the CO2 solution ([CBFhc-CBF0]/CBF0). 

Patients showed a significant increase in BOLD (3.85% ± 0.47), t(9) = 8.12, P < .001, and 

CBF (167.48% ± 19.8), t(8) = 8.44, P < .001, in response to CO2 administration. Other 

physiological responses to CO2 solution are in Table 2. MS patients (92.75% ± 1.11) showed 

significantly greater than chance accuracy (> 50%) on the visual stimulation secondary task, 

t(8) = 38.28, P < .001, with the high degree of accuracy verifying that foveae were 

appropriately positioned throughout the task. ΔBOLD, ΔCBF, and ΔCMRO2 responses 

within the visual cortex ROI were formally tested against a mean of 0 (no change from 

baseline; see Table 3).

RD associations with grey matter functional measures

Similar to our previous findings (Hubbard et al., 2014), occipital-tract RD significantly 

predicted visual ROI ΔBOLD, β = -3280.38, t(8) = -2.71, P = .027, r = -.69 (95% CI: -.96 to 

-.05; see Figure 5A). Occipital-tract RD also significantly predicted visual ROI ΔCMRO2, β 
= 39048.28, t(7) = 3.10, P = .017, r = .76 (95% CI: .41 to .94; see Figure 5B). Occipital-tract 

RD was not a significant predictor of MS patients’ visual ROI ΔCBF, β = 363579.67, t(7) = 

1.56, P = .163.

RD associations with grey matter functional measures, independence from lesion burden

We assessed whether the associations between occipital-tract RD and visual ROI ΔBOLD 

and ΔCMRO2 remained significant when controlling for lesion burden. The association 

between occipital-tract RD and visual ROI ΔBOLD remained significant when controlling 

for lesion burden, β = -4396.60, t(6) = -4.18, P = .006, rXY|Z = -.86. Lesion burden was also 

a significant predictor in this model, β = .00002, t(6) = 2.63, P = .039, rXY|Z = .73. Because 

both occipital-tract RD and lesion burden were significant predictors of ΔBOLD, we 

formally assessed the significance of the independent, indirect (mediation magnitude) effect 

of lesion burden on the RD-ΔBOLD relationship. The indirect effect was not significant, ab 
= 1544.97 (95% CI: -174 to 3268). The significant associations between occipital-tract RD 

and visual ROI ΔCMRO2 remained when controlling for lesion burden, β = 42384.83, t(6) = 

2.62, P = .040, rXY|Z = .73. There was no significant association between lesion burden and 

visual ROI ΔCMRO2 in this model (P > .05).

Grey matter function associations with MS symptom severity factors

We sought to test whether the visual cortex functional measures could reflect a marker of 

individual variability in MS symptom severity (fatigue and neurological disability). Visual 

ROI ΔBOLD was not a significant predictor of MFIS scores, β = -24.36, t(8) = -0.76, P = .
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469, nor neurological disability scores, β = -26.50, t(8) = -1.87, P = .100. Visual ROI ΔCBF 

was a significant predictor of MS patients’ MFIS scores, β = 0.50, t(7) = 3.62, P = .009, r = .

81 (95% CI: .24 to .95). Visual ROI ΔCBF was not a significant predictor of neurological 

disability, β = 0.14, t(7) = 1.37, P = .212. Visual ROI ΔCMRO2 was a significant predictor of 

patients’ MFIS scores, β = 7.01, t(7) = 3.59, P = .009, r = .81 (95% CI: .27 to .95), and 

neurological disability, β = 3.21, t(7) = 2.88, P = .024, r = .74 (95% CI: .15 to .97; see Figure 

6).

Grey matter ΔCMRO2 associations with MS symptom severity factors, independence from 
lesion burden and RD

We sought to assess whether ΔCMRO2 accounted for unique variance in symptom severity 

factors, when controlling for occipital-tract RD or lesion burden. ΔCMRO2 accounted for 

significant variance in MFIS scores when controlling for RD, β = 7.98, t(6) = 2.49, P = .047, 

rXY|Z = .78. There was no significant association between RD and MFIS in this model (P > .

05). ΔCMRO2 also accounted for significant variance in MFIS scores when controlling for 

lesion burden, β = 6.32, t(6) = 3.03, P = .023, rXY|Z = .78. There was no significant 

association between lesion burden and MFIS in this model (P > .05). Visual ROI ΔCBF also 

remained a significant predictor of MFIS scores when controlling for occipital-tract RD and 

lesion burden (Ps < .05). ΔCMRO2 did not account for significant variance in neurological 

disability when controlling for occipital-tract RD (P > .05). There was also no significant 

association between occipital tract RD and neurological disability in this model (P > .05). 

ΔCMRO2 did however, account for significant variance in neurological disability when 

controlling for lesion burden, β = 3.16, t(6) = 2.46, P = .049, rXY|Z = .71. There was no 

significant association between lesion burden and neurological disability in this model (P > .

05).

Discussion

Our primary aim was to investigate relationships between WMMS and grey matter function 

in MS. We tested associations between occipital-tract WMMS damage, as indexed by RD, 

and visual cortex BOLD, blood flow, and oxygen metabolism during visual stimulation. 

Results demonstrated that, consistent with our previous work, increases in occipital-tract RD 

were significantly associated with decreased BOLD response to visual stimulation. 

Moreover, increases in RD were associated with increases in CMRO2 responses to visual 

stimulation. These effects were independent of individual differences in brain-wide 

macrostructural white matter damage (i.e., lesion burden). Increases in the CMRO2 response 

were also strongly related to increases in factors of MS symptom severity (i.e., fatigue and 

neurological disability). These relationships remained significant after controlling for lesion 

burden. Further, the relationship between fatigue and CMRO2 remained significant when 

accounting for WMMS damage. Taken together, these findings indicated that evoked grey 

matter oxygen metabolism in MS is (1) strongly linked to WMMS damage, and (2) can 

largely account for unique variance in MS symptom severity regardless of the extent of 

white matter micro- and macrostructural damage.
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This study was the first to use cfMRI in a neurological population. Although the technique is 

not as easily employed as standard BOLD imaging, it does offer several advantages relative 

to measurement of BOLD signal exclusively. First, the blood flow and oxygen metabolism 

measures gathered from cfMRI reflect unambiguous physiological processes, whereas 

BOLD reflects a confluence of processes and as such, is physiologically non-specific. This 

is particularly beneficial for study questions like ours, wherein a specific understanding of 

grey matter physiological (i.e., cerebral blood flow and oxygen metabolism) alterations is 

necessary to gain more nuanced insight into individual differences in brain function. Second, 

calibration-derived CMRO2 is strongly coupled to electrical and chemical measures of 

neural activity (e.g., Herman et al., 2009, 2013; Hyder et al., 2001; Hyder, 2004; Lin et al., 

2010; Smith et al., 2002). For example, calibration-derived CMRO2 has been shown to 

account for approximately 98% of the production of the primary neuroenergetic substrate, 

adenosine triphosphate (ATP), in visual cortex during visual stimulation (Lin et al., 2010). 

Thus, the metabolic process measured by this signal is crucial for the substrate that drives 

neuronal work. Finally, cerebral blood flow and oxygen metabolism measures used here are 

not dependent upon the hemodynamic assumptions of BOLD, making these optimal 

measures of brain function in populations with atypical hemodynamics, like MS (e.g., 

Hutchison et al., 2013 a, b; see Iannetti and Wise, 2007). Although calibration-derived 

CMRO2 relies upon BOLD signal fluctuations, it is estimated using concurrent changes in 

CBF. Further, implementation of the BOLD scaling factor, M, within the Davis model can 

account for individual differences in baseline BOLD physiology at regional and voxel 

resolutions (e.g., Davis et al., 1998; Hoge et al., 1999; see Buxton, 2010). Thus, the 

calibration approach provides data about individual differences in hemodynamics and 

models these data to derive CMRO2.

Using the cfMRI approach along with DTI permitted new observations regarding the 

relationships between grey matter functioning and WMMS in MS. We demonstrated that 

visual cortex BOLD and CMRO2 had large-effect relationships with occipital-tract RD (cf. 

Cohen, 1988). Of note was the opposite directions of these relationships; RD and BOLD 

were negatively correlated, and RD and CMRO2 were positively correlated (a formal test 

indicated that these correlations were significantly different [P < .05; see Supplemental 

Material]). These findings complicate the interpretation of relationships between BOLD 

signal and white matter measures in MS. It is possible that the relationship observed 

between BOLD signal and WMMS damage is misrepresenting the relationship between 

WMMS damage and neurophysiological processes in these patients. The healthy system 

uses active hyperemic processes to ensure a surfeit of oxygen delivery for ongoing 

neurometabolic processes during periods of increased neuronal activity (e.g., Malonek and 

Grinvald, 1996; see Attwell et al., 2010; Hillman, 2014). Even minor alterations in the 

coupling of increased blood flow/volume changes to neural activity (i.e., neurovascular 

coupling) are thought to result in dramatic changes to the magnitude of the BOLD signal (cf. 

Ances et al., 2008). In MS, neurovascular coupling is suspected to be altered given known 

alterations to perfusion and neural-vascular communicating structures (i.e., astrocytes; see 

D’haeseeler et al., 2011; De Keyser et al., 1999; Lassmann, 2014). Potential neurovascular 

uncoupling in MS could result in the magnitude of the BOLD response reflecting an 
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attenuated or even inverted reflection of the actual, evoked neural or neurometabolic activity 

(Hubbard et al., 2016a; see Iannetti and Wise, 2007).

Precisely understanding the directionality of WMMS-grey matter function relationships is 

important for understanding the pathophysiology of MS. For instance, energy failure 

hypotheses postulate links between increased white matter damage and increased energy 

demand in early MS, eventually leading to mitochondrial damage and neuronal death in later 

stages of the disease (Campbell et al., 2014; Mahad et al., 2015; Paling et al., 2011). 

Specifically, Paling and colleagues (2011) posited that WMMS damage in MS leads to axon 

sodium channel upregulation and consequent increased energy burden. Because metabolic 

substrate and mitochondrial production are largely supported by the cell bodies (see 

MacAskill and Kittler, 2010), this increase in energetic burden for white matter related to its 

extent of damage, would weigh heavily upon the grey matter. Increased burden on grey 

matter, coupled with decreased transport of metabolic substrate (see Paling et al., 2011), 

probably results in decreases in basal levels of neurometabolism (for work on mitochondrial 

inhibition and neuroimaging see Sanganahalli et al., 2013; Kannurpatti, 2017). For example, 

negative relationships have been observed between basal NAA:creatine ratios and RD in MS 

white matter (Hannoun et al., 2012; see also Kahn et al., 2016). Our results showing positive 

relationships between evoked CMRO2 and RD/symptom combined with the prospect of MS-

related decreases in basal neurometabolism suggest energy failure as a plausible explanation.

The metabolic process studied here was measured from relative changes scaled by each 

patient’s baseline BOLD and CBF. Previous work using cfMRI has established that reduced 

baselines of BOLD and CBF demonstrate greater evoked changes in CMRO2 relative to 

higher baselines (Pasley et al., 2007; see also Hyder et al., 2002; Restom et al., 2007; 

Shulman et al., 2007). Negative relationships between whole-brain resting CMRO2 and 

neurological disability (Ge et al., 2012; see also Kindred et al., 2015), and basal 

NAA:creatine ratios and RD (Hannoun et al., 2012; see also Kahn et al., 2016) have also 

been observed in MS. These baseline associations demonstrate that decreased basal 

metabolism is associated with increased WMMS damage and more severe MS 

symptomology. Consistent with the basal neurometabolism associations, the baseline 

metabolism findings from the cfMRI literature (e.g., Pasley et al., 2007), and with the 

predictions of energy failure hypotheses, it possible that more WMMS damaged/

symptomatic patients here also had reduced basal oxygen metabolism. This reduced 

metabolic baseline could result in increased metabolism relative to this baseline for more 

WMMS damaged/more symptomatic patients compared to their less damaged and less 

symptomatic counterparts. Such a mechanism would account for the positive relationships 

between ΔCMRO2 and RD, and ΔCMRO2 and the symptom indices we observed.

Relative changes from different neurometabolic baselines provides one explanation for our 

results. Even with the assumption of homogeneous peak absolute oxygen metabolism (e.g., 

μmol/100g parenchyma), a reduced metabolic baseline for more WMMS damaged/

symptomatic MS patients implies that these patients produced greater neurometabolic 

responses to stimulation in order to reach the same absolute metabolic peak as their less 

affected cohorts (Figure 7; e.g., Hyder et al., 2002; see also Pasley et al., 2007; Restom et 

al., 2007; Shulman et al., 2007). Foregoing the unlikely scenario of increased basal oxygen 
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metabolism for more WMMS damaged/symptomatic MS patients (cf. Hannoun et al., 2012; 

Ge et al., 2012; Kahn et al., 2016), conclusions related to either absolute or relative increases 

in oxygen metabolism suggest a similar interpretation: stimulation induced oxygen 

metabolism increased as of function of the extent of WMMS damage/symptomology. Of 

note is that our MS cohort was predominantly earlier stage MS patients—90% of patients 

had relapsing-remitting diagnoses and were on average over 2 years removed from their last 

exacerbation; all were ambulatory with intact cognitive status (TICS > 21). It is likely that in 

cases such as acute exacerbations (including acute optic neuritis) or more advanced MS, 

extreme damage at either anterior or posterior portions of the afferent visual pathway would 

result in a potential decrease in absolute and relative visuocortical neurometabolic activity, 

due to cell death and/or a paucity of signal throughput (cf. Trip et al., 2006).

Our findings provide new evidence of an evoked oxygen metabolism facet of fatigue and 

neurological disability in MS. The study of neural factors related to fatigue and neurological 

disability is of considerable importance as these maladies are key features of MS (e.g., 

Sandry et al., 2014; Sehle et al., 2014) and contribute substantially to these patients’ quality 

of life (Amato et al., 2001). Here, evoked CMRO2 responses accounted for 65% of the 

variance in MS patients fatigue scores and 55% of the variance in their neurological 

disability scores (CBF also showed a large effect relationship with fatigue, but no significant 

relationship with neurological disability). These shared variances remained large when 

controlling for lesion burden. Further, the shared variance remained large for the fatigue-

CMRO2 relationship while also controlling for occipital-tract RD. These results establish a 

relative independence, particularly in the case of fatigue, of the relationship between evoked 

grey matter metabolism and MS symptomology. These findings also suggest that evoked 

grey matter metabolic processes are playing a unique role in the manifestation of individual 

differences in symptomology relative to macro- and microstructural white matter damage—

or at least the standard measures of these employed here. This interpretation is also 

consistent with energy failure hypotheses, because these models posit that mitochondria and 

neuroenergetic dysfunction are integral in the pathogenic cascade resulting in MS-related 

neurodegeneration, and thus, progressive symptomology (cf. Mahad et al., 2015).

The present results elucidated WMMS and evoked, grey matter physiological relationships 

in MS. Increased occipital-tract RD was associated with increased visual cortex oxygen 

metabolism, establishing a link between increased WMMS damage and increased evoked 

neurometabolism. Evoked oxygen metabolism was also highly related to individual 

variability in MS fatigue and neurological disability, demonstrating that evoked 

neurometabolism could be an indicator of MS symptom severity. The associations between 

evoked oxygen metabolism, WMMS damage, and MS symptomology suggests this measure 

as a focus for elucidating pathophysiological mechanisms of MS and provides a 

neurophysiological target for future works to understand progression of MS symptomology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of three-trial visual stimulation task. Participants viewed a fixation cross at the 

center of the screen. This cross changed color at jittered intervals throughout task. Rest 

periods were also jittered. Continuous stimulation blocks lasted 60 s with 0° to 90° 

flickering annuli (at 8 Hz).
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Figure 2. 
Example of visually-evoked cfMRI signal in occipital cortex. A. Evoked BOLD response to 

visual stimulation. B. Evoked CBF response to visual stimulation. C. Evoked CMRO2 

response to visual stimulation derived from BOLD and CBF via the Davis model.
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Figure 3. 
Graphical overview of masking procedure. Top 5%, overlapping BOLD and CBF signals 

within the anatomical ROI (green) were used to create the functional ROI mask (green). 

Average Δ BOLD, Δ CBF, Δ CMRO2 estimates were taken from the functional ROI mask 

for each participant.

Hubbard et al. Page 24

Hum Brain Mapp. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
DTI occipital tract processing stream. A. White matter skeleton. B. JHU ICBM-DTI-81 atlas 

labels. C. Diffusion characteristics within white matter skeleton extracted from occipital 

tracts (e.g., posterior thalamic radiations).
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Figure 5. 
WMMS associations with visual cortex function. A. Occipital tract RD and visual cortex 

ΔBOLD. B. Occipital tract RD and visual cortex ΔCBF. C. Occipital tract RD and visual 

cortex ΔCMRO2. Note: Degrees of freedom differ due to outlier removal (see Statistical 

Analyses).
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Figure 6. 
Significant visual cortex functional and MS symptom severity associations. A. ΔCMRO2 

and fatigue (MFIS scores). B. ΔCBF and fatigue (MFIS scores). C. ΔCMRO2 and 

neurological disability ratings. Note: Degrees of freedom differ due to outlier removal (see 

Statistical Analyses).
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Figure 7. 
Interpretation of CMRO2 differences between MS patients with lesser WMMS damage/

symptomology versus those with greater WMMS damage/symptomology. This shows 

differential basal and task metabolism but similar absolute neuronal work across MS 

participants (baseline + task; see Hyder et al., 2002; Shulman et al., 2007; Pasley et al., 

2007).
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Table 2

Non-neural Physiological Data

Baseline 5% CO2 P

Breath Rate 11.20 (1.00) 13.35 (1.28) .124

EtCO2 42.70 (1.81) 48.95 (1.45) < .001

Heart Rate 66.90 (2.38) 69.67 (2.38) .156

SpO2 98.10% (0.35%) 97.58% (0.39%) .443

Mean (SEM). Breath Rate in breaths per minute. EtCO2 = end-tidal CO2 in mmHg. Heart Rate in beats per minute. SpO2 = peripheral oxygen 

saturation in percent hemoglobin saturation. P-values were based on paired-samples t-tests.
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Table 3

Visual ROI response to Visual Stimulation Task

Mean SEM Range P

ΔBOLD 1.12 0.08 0.77–1.36 <.001 a

ΔCBF 48.06 12.58 21.77–137.85 <.001 a

ΔCMRO2 9.59 0.90 6.87–14.72 <.001 a

ΔBOLD = BOLD percent signal change response to visual stimulation. ΔCBF = cerebral blood flow percent signal change response to visual 
stimulation. ΔCMRO2 = cerebral metabolic rate of oxygen percent signal change response to visual stimulation. n = functional hyperemic response 

to visual stimulation.

a
P-values were based on single-sample t-test against a mean of 0 (no change from baseline).
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