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Abstract

Emerging evidence suggests that early exposure to endocrine disrupting chemicals has long-term 

consequences that can influence disease risk in offspring. During gametogenesis, imprinted genes 

are reasonable epigenetic targets with the ability to retain and transfer environmental messages. 

We hypothesized that exposures to organophosphate (OP) flame-retardants can alter DNA 

methylation in human sperm cells affecting offspring’s health. Sperm and urine samples were 

collected from 67 men in North Carolina, USA. Urinary metabolites of a chlorinated OP, tris(1,3-

dichloro-2-propyl) phosphate, and two non-chlorinated OPs, triphenyl phosphate and mono-

isopropylphenyl diphenyl phosphate, were measured using liquid-chromatography tandem mass-

spectrometry. Sperm DNA methylation at multiple CpG sites of the regulatory differentially 
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methylated regions (DMRs) of imprinted genes GRB10, H19, IGF2, MEG3, NDN, NNAT, PEG1/
MEST, PEG3, PLAGL1, SNRPN, and SGCE/PEG10 was quantified using bisulfite 

pyrosequencing. Regression models were used to determine potential associations between OP 

concentrations and DNA methylation. We found that men with higher concentrations of urinary 

OP metabolites, known to originate from flame-retardants, have a slightly higher fraction of sperm 

cells that are aberrantly methylated. After adjusting for age, obesity-status and multiple testing, 

exposure to mono-isopropylphenyl diphenyl phosphate was significantly related to 

hypermethylation at the MEG3, NDN, SNRPN DMRs. Exposure to triphenyl phosphate was 

associated with hypermethylation at the GRB10 DMR; and tris(1,3-dichloro-2-propyl) phosphate 

exposure was associated with altered methylation at the MEG3 and H19 DMRs. Although 

measured methylation differences were small, implications for public health can be substantial. 

Interestingly, our data indicated that a multiplicity of OPs in the human body is associated with 

increased DNA methylation aberrancies in sperm, compared to exposure to few OPs. Further 

research is required in larger study populations to determine if our findings can be generalized.
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Introduction

Over the last few years it has been suggested that environmental pollutants that do not 

change the DNA sequence can instead alter gene expression through changes in DNA 

methylation causing reproductive abnormalities or other disorders. Evidence for this derives 

largely from animal models where exposure to endocrine disruptors was examined. Several 

of these environmental contaminants not only affect reproductive organs or increase chronic 

disease susceptibility, but some also have been linked to epigenetic modifications affecting 

offspring’s health [1–3]. Alteration at regulatory sequences of epigenetically malleable 

regions including differentially methylated regions (DMRs), that regulate establishment and 

expression of imprinted genes, is one mechanism that could explain the inheritance of 

environmentally induced risk for diseases. Imprinted genes acquire methyl groups 

differentially in developing sperm and oocytes and their methylation levels generally remain 

stable in diploid cells after fertilization and throughout development. Because these genes 

escape the genome-wide DNA methylation erasure after fertilization, they are reasonable 

candidates to capture environmentally induced epigenetic information during gametogenesis 

and transfer this “signature” to the next generation [4, 5].

Our study focuses on the potential effects of organophosphate (OP) flame-retardants on 

human male gametes and their DNA methylation patterns. OPs are widely present in the 

indoor environment and mainly originate from manufactured consumer products. OPs of 

interest include chlorinated OPs, such as tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) 

and tris(1-chloro-2-propyl) phosphate (TCIPP). Non-chlorinated OP esters include triphenyl 

phosphate (TPHP), mono-isopropylphenyl diphenyl phosphate (ipPDPP), and mono-

terbutylphenyl diphenyl phosphate (tbPDPP). These chemicals are currently used as flame-

retardants in furniture coatings, polyurethane fillings or foam, electronic applications, and 
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leisure products [6, 7]. Other applications include paints, adhesives, plasticizers, housing 

insulation materials, and pesticides used in agriculture [8, 9]. Recent epidemiological studies 

suggest that exposure to persistent organochlorine pollutants is associated with reduced 

human fecundity and markers of semen quality [10, 11]. Although harmful effects of new 

flame-retardants have been reported, to our knowledge no studies have been performed on 

the impact of recent industrially introduced OPs on the epigenome of animals or humans.

In the current study, we measured levels of OP metabolites in urine of male participants and 

examined associations between these urinary concentrations and DNA methylation at CpG 

sites of DMRs at imprinted genes in sperm. Imprinted genes are defined by having parent of 

origin-dependent methylation and expression. A DMR is a sequence region that exhibits 

differential methylation on the two parental alleles in a manner that guides monoallelic 

expression of the imprinted gene. If DNA methylation at the DMR is established during 

maturation of germ cells it is referred to as a “gametic DMR”. In this case it is continuously 

maintained in somatic cells and may serve as the imprinting mark throughout life [12]. 

Alternatively, if methylation is established in the embryo (post-fertilization) the DMR is 

referred to as a “somatic DMR”. Somatic DMRs serve to maintain parental-specific 

silencing [12]. We studied DMRs of the following genes where methylation is generally 

known to be set in place on the paternal allele during gametogenesis: H19 [13], Insulin-like 
Growth Factor 2 (IGF2) [14], and Maternally Expressed Gene 3 (MEG3; one gametic 

MEG3-IG DMR [15] and exceptionally also a somatic DMR, named MEG3 DMR [16]. 

Other DMRs of interest included maternally methylated DMRs of the following genes: 

Growth factor Receptor-Bound protein 10 (GRB10) [17, 18], Necdin (NDN) [19], 

Neuronatin (NNAT) [20–22], Paternally Expressed Gene 1/Mesoderm Specific Transcript 
(PEG1/MEST) [23, 24], Paternally Expressed Gene 3 (PEG3) [25], Pleiomorphic Adenoma 
Gene-Like 1 (PLAGL1) [24], Epsilon Sarcoglycan/Paternally Expressed Gene 10 (SGCE/

PEG10) [26], and Small Nuclear Ribonucleoprotein Polypeptide N (SNRPN) [25]. These 

imprinted genes were selected because of their importance in growth and development of the 

early embryo and fetus. Deregulated expression of our genes of interest has been associated 

with obesity or enlarged adipocyte size [27, 28]. Because of the prominent role imprinted 

genes play in regulating growth and cell proliferation, these genes are frequently found to 

exhibit altered methylation and deregulated expression in neoplastic growth and 

malignancies [29–36]. We therefore set out to test the hypothesis that male exposure to OPs 

disrupts the normal patterns of methylation established in sperm at imprinted genes. If such 

associations are found, the affected sperm could transmit these shifted epigenetic patterns to 

the offspring.

Materials and Methods

Participants and Data Collection

Male volunteers were recruited as part of The Influence of the Environment on Gametic 

Epigenetic Reprogramming (TIEGER) study. The goal of this North Carolina-based cross-

sectional study was to explore if the programming fidelity of the sperm DNA methylation 

was adversely affected by exposure to environmental factors, including indoor toxins but 

also factors such as being overweight or obese [14]. Men were recruited in and around the 
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city of Durham, NC (USA), through advertisements on the Internet and flyers posted in the 

community. Eligibility criteria included: non-smoking, no personal history of cancer, no 

vasectomy, or other procedures that may cause infertility, in the age range of 18–35, and 

Caucasian; this was applied to keep our population relatively homogenous in this small 

study sample. Between May 2012 and November 2013 a total of 81 men contacted the study 

nurse. Volunteers were requested to abstain from ejaculation for at least 3 days, but no more 

than 10 days prior to their visit. Six men declined participation prior to informed consent. 

Eight men were excluded from our analyses because they were either non-Caucasian (n = 6) 

or failed to produce enough sperm cells (n = 2). DNA methylation analyses for a total of 67 

Caucasian participants were used in the present analyses. At recruitment, body mass index 

(BMI) was measured and a short questionnaire was completed by the participants, soliciting 

information on socio-demographic factors, including level of education, marital status, 

number of biological children, current occupation, and other occupations over the prior 5 

years with potential for high exposures to OPs (e.g. furniture manufacturing, carpet cleaner, 

pest control, electronics assembly and agriculture). The study protocol was approved by the 

Institutional Review Board at Duke University (reference number: Pro00036645). Informed 

consent was obtained from-all participants for the use of their biological specimens and 

questionnaire data.

Specimen Collection

Samples of urine and semen were obtained on the day of recruitment. Urine was stored in an 

amber-colored glass container at −20 °C. Semen was collected, processed and stored as 

described earlier [14]. In brief, semen was analyzed for standard clinical parameters after 

liquefaction, no later than 60 min from collection. These parameters include volume, pH, 

viscosity, liquification time, presence of white blood cells, concentration, and motility. The 

World Health Organization’s Laboratory Manual for the Examination and Processing of 

Human Semen 5th edition was referenced for normal values [37]. After completion of the 

clinical sperm analyses, the samples were subjected to two-step ISolate-gradient 

centrifugation (Irvine Scientific) to select a motile population enriched in normal 

morphology. This colloidal silica gradient, consisting of a 90% lower layer and 50% upper 

layer, is prepared by sequentially adding 1.5 ml of each layer to a 15-ml polystyrene conical 

tube. The sperm sample was pipetted on top of the upper layer and centrifuged at 200 ×g for 

15 min. The gradient solution was removed and the pelleted sperm was stored at −80 °C for 

subsequent DNA methylation analyses. Sperm sample enrichment for motility and 

morphology prior to epigenetic analysis was intended to select a population most likely to 

fertilize an oocyte and result in pregnancy. Fertilization rates correlate with motility and 

morphology [38, 39].

DNA Methylation Measurements at Imprinted Genes

Genomic DNA was extracted from sperm samples using Puregene Reagents (Qiagen, 

Valencia, CA, USA). Genomic DNA (800 ng) was treated with sodium bisulfite using the 

EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA). After bisulfite treatment, 

DNA (~40 ng, assuming complete recovery) was amplified by PCR in a 25-µl reaction 

volume. Primer sequences and PCR conditions used for the DMRs were reported previously 

[14, 36, 40]. Briefly, the 5′ end of one primer of each PCR primer pair was conjugated to 
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biotin to facilitate post-PCR retention of one strand with streptavidin beads. Using the 

Pyrosequencing Work Station, the single strand was isolated and then underwent 

pyrosequencing using a PyroMark Q96 MD pyrosequencing instrument (Qiagen). The 

region upstream from the IGF2 promoters includes three CpG dinucleotides (chr 11p15.5). 

The DMR for H19 has four CpG sites (chr 11 p15.5). The two DMRs analyzed for the 

DLK1/MEG3 imprinted domain consist of the MEG3-IG (4 CpG sites) and MEG3 (8 CpG 

sites) at chr 14q32.2. The following DMRs were also tested: GRB10 (6 CpG sites, chr 

7p12.2), NDN (6 CpG sites, chr 15q11.2), NNAT (3 CpG sites, chr 20q.11.2), PLAGL1 (6 

CpG sites, chr 6q24), SGCE/PEG10 (6 CpG sites, chr 7q21.3), SNRPN (4 CpG sites, chr 

15q11.2), PEG1/MEST (4 CpG sites, chr 7q21.3), and PEG3 (10 CpG sites, chr 19q13.43). 

Assay validation data and the results of sensitivity tests for pyrosequencing have been 

previously described. We have shown that pyrosequencing can distinguish as little as 0.5% 

differences when methylation levels are low [14, 36, 40].

Extraction and Instrumental Analyses of OPs in Urine

Urinary metabolites of TDCIPP (bis(1,3-dichloro-2-propyl) phosphate or BDCIPP), TCIPP 

(bis(1-chloro-2-propyl) phosphate or BCIPP), TPHP (diphenyl phosphate or DPHP), 

ipPDPP (isopropylphenyl phenyl phosphate or ipPPP) and tbPDPP (terbutylphenyl phenyl 

phosphate or tbPPP) were extracted and quantified using previously described methods [41–

43]. Briefly, urine samples were thawed and a 5-ml aliquot was spiked with mass-labeled 

internal standards (d10-BDCIPP and d10-DPHP) and acidified to pH < 6.5 with formic acid. 

Urine samples were concentrated and cleaned using StrataX-AW SPE columns as previously 

described [41]. The eluent from the SPE column was blown to dryness under a gentle 

nitrogen stream, reconstituted in 500 µl of 1:1H2O:MeOH and spiked with the recovery 

standard (13C2-DPHP). Data were acquired under multiple reaction monitoring conditions 

using optimized parameters. BDCIPP was corrected for recovery using d10-BDCIPP, while 

DPHP, ipPPP, and tbPPP were corrected for recovery using d10-DPHP. Specific gravity (SG) 

measurements were taken with a digital refractometer (Atago USA, Inc., Bellevue, WA, 

USA) prior to analysis. In urine samples, the mean recovery of the mass-labeled standards 

was 91 ± 11% for d10-DPHP and 126 ± 40% for d10-BDCIPP. One replicate and laboratory 

blank (5 ml Milli-Q water only) sample was extracted with every batch (n = 8). Replicate 

values were generally within 13%. Very low levels of DPHP (mean = 0.12 ng) were 

consistently detected in the laboratory blanks. Urine analyte values were blank corrected 

using the mean laboratory blank values. Method detection limits (MDLs) were calculated as 

either three times the standard deviation of laboratory blanks (if detected in the laboratory 

blanks) normalized to the volume extracted (5 ml), or by using a signal to noise ratio of 10 

(if no analytes were detected in the lab blanks). MDLs were 88 pg/ml for BCIPP, 65 pg/ml 

for BDCIPP, 119 pg/ml for DPHP, 46 pg/ml for ipPPP, and 94 pg/ml for tbPPP, respectively. 

Concentrations were normalized to SG as previously described [44].

Statistics and Categorization of Variables

Raw urinary OP measurements were normalized, taking into account the SG of the urine 

sample. Correcting for SG is frequently used as an alternative to creatinine correction, 

because urinary creatinine concentrations may vary within and between persons [45]. 

Exposure values below the MDL were replaced by the value of the detection limit. Hence, if 
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values were below the MDL, the SG normalization was applied on the detection limit. This 

implied that two subjects with an exposure measured below the detection limit had a 

different SG normalized value as soon as the specific urine gravity differed. We calculated 

the mean and median of each OP for both values, raw and normalized. Two metabolites, 

tbPPP and BCIPP, did not reach a detection frequency that was high enough to proceed 

further statistical analyses, hence we did not include them in our further statistical analyses.

Spearman correlations were used to evaluate relationships between exposures to BDCIPP, 

DPHP and ipPPP, and DNA methylation at each CpG site of the DMRs of imprinted genes 

listed above. A total of sixty-four correlations were tested. Findings based on normalized 

values were similar to those from raw data and are presented here, whereas the results based 

on the raw values are shown in Supplementary data. Multivariable regression models were 

used to evaluate the relationships between concentrations of each specific OP metabolite and 

a specific outcome (DNA methylation at each CpG site), adjusting for confounding by age 

and BMI status, being overweight or obese (dichotomized as BMI ≥25 versus BMI <25), 

and potential selection bias by patient status (since 28% of our study population was 

recruited from the Duke Fertility Center). A robust regression approach was adopted to 

reduce the potential influence of outliers in response and predictor space [46]. 

Supplementary sensitivity analyses were performed using only the subgroups of non-patients 

(n = 48) and non-obese men (n = 44). To obtain a more symmetric distribution of model 

residuals, exposure values and methylation values were log-transformed (the latter after 

adding a constant of 1, given the presence of zero values in DNA methylation). To interpret 

results of our regression analyses we back-transformed our variables and calculated the 

predictive absolute and relative effects on the numbers of sperm cells methylated (at 

maternally imprinted genes) or unmethylated (at paternally methylated genes) at each CpG 

site, comparing the 75th quartile (Q3) with the 25th quartile (Q1) in OP exposure (Table 1); 

these effects are further referred as interquartile DNA methylation effects. Odds ratios from 

a logistic regression model, correcting for age and obesity status, are reported; cutoff values 

for exposure (OP concentration) and outcome (methylation %) were based on the median 

values. To take into account the correlation between multiple endpoints (n = 64 for each OP) 

the Dubey/Armitage-Parmar (D/AP) procedure was applied, referred by Sankoh et al. [47]. 

Based on our data an average Spearman correlation of 0.324 was measured. Consequently, 

an α-level of 0.0031 could be applied to keep the type-I error under control. In order to 

verify the effect of exposure to multiple OPs in one subject we performed the following 

analyses. Binary multivariable logistic regression models, correcting for age and BMI-status, 

were used to evaluate the relation between exposure and (mean) methylation. The exposure 

was quantified per subject as the number of OPs with “high” exposure (defined as exposure 

value above the median), hence varying between zero and three. DNA methylation was 

dichotomized using the median methylation value of the specific CpG (or the mean of CpGs, 

if the mean methylation per gene was studied) in the dataset. This binary variable served as 

dependent variable in the regression model, thus the probability of increased methylation is 

modeled. We first considered a distinction between subjects without any exposure above the 

median and subjects with one, two or three high exposures (Table 2A). Further, a distinction 

was made as a function of the accumulation of “high” exposures to multiple OPs (Table 2B 

and C).
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In addition to DNA methylation in sperm, the second outcome in our study included clinical 

sperm characteristics. These were evaluated as continuous variables and as binary sperm 

parameters (normal versus abnormal), based on the WHO cut-off values [37]. A total motile 

count (TMC) of ≤39 × 106 spermatozoa/ejaculate was categorized as abnormal TMC. Sperm 

motility lower than 40% was characterized as abnormal (or asthenozoospermia), and sperm 

concentration of <15× 106 spermatozoa/ml was considered as oligozoospermia. Spearman 

correlations were used to evaluate the relation between exposure and TMC and sperm 

motility percentage. All analyses were performed using SAS software, version 9.2 of the 

SAS System for Windows.

Ethics

The TIEGER Study was performed with the approval of the Duke University Institutional 

Review Board (reference number: Pro00036645). Informed consent was obtained from all 

participants for the use of their biological specimens and questionnaire data.

Results

Characteristics of Study Participants and Measured Urinary and Sperm Variables

Socio-demographic data of the study population are shown in Table 3. About 40% were aged 

less than 25 years old, 28% were 25–29 years old, and 31% were 30–35 years old. About 

one-third had a graduate degree. Most men had no children (87%) and half (53%) were 

single. Twenty-three men were categorized as overweight or obese, representing 33.3% of 

our study population. Of these, 11 were classified as overweight (25 ≤ BMI <30) and 12 as 

obese (BMI ≥30). Having a BMI of 25 or more was strongly associated with older age (P = 

0.001). Marital status was also strongly associated with age (P < 0.001). The subgroup of 

patients recruited from the clinic was more likely to be obese or overweight compared to 

those recruited through advertisements (P < 0.001). Furthermore, being a patient at the clinic 

and being 30 or older were strongly associated (P < 0.001). In general, few men showed 

abnormal clinical sperm parameters. Only three participants had oligozoospermia. 

Asthenozoospermia was detected in 19.7%; the mean percentage of motility was 52.2% (SD: 

13.09) and the median was 54.9% (range: 8.3–76.7). TMC—a parameter combining sperm 

count, motility and volume—was abnormal in 18.2% of our participants; the mean was 

130.0 × 106 (SD: 104.0 × 106) and the median was 112.5 × 106 (range: 3.7 × 106 to 650.0 × 

106).

Urinary DPHP and BDCIPP were detected in nearly all TIEGER participants, and ipPPP 

was detected in about 90% of our male participants (Table 3). We observed a significant 

correlation between DPHP and ipPPP (ρ = 0.28; P = 0.021) and between DPHP and 

BDCIPP (ρ = 0.33; P = 0.0067), suggesting a low-level of co-occurrence of these chemicals. 

Urinary concentrations of tbPPP and BCIPP were detected in 19 and 8% of our subjects, 

respectively. Supplementary Table S1 shows the normalized and raw urinary values of the 

OPs that were frequently measured. The range of urinary DPHP, BDCIPP and ipPPP varied 

from very low (around zero) to several times the median (Supplementary Fig. S1). Median 

values of normalized DPHP, BDCIPP, and ipPPP were 1.76, 2.61, and 0.72 ng/ml, 

respectively. All exposures were expected to be non-occupational; hence, within a seemingly 
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“low-range” of environmental exposure. We calculated the mean outcomes of DNA 

methylation at each DMR (Table 4), as well as at each individual CpG site (Supplementary 

Table S2). In general, methylation outcomes were as expected. Maternally methylated genes 

were close to 0% methylation in sperm cells, consistent with the maternal methylation marks 

undergoing erasure in primordial germ cells. Paternally methylated genes were close to fully 

methylated, although none were 100% methylated. Only 80, 88, and 94% of the sperm cells 

were methylated at the DMRs of MEG3-IG, H19, and IGF2, respectively. One exception, 

however still consistent, is the DMR of MEG3 that acquires DNA methylation after 

fertilization; hence, this paternally methylated gene is unmethylated (~0%) in sperm.

Associations between Metabolites of OPs and DNA Methylation

We evaluated potential associations between exposure values of urinary metabolites of 

chlorinated OPs and the mean DNA methylation outcomes (Table 4), as well as at each CpG 

site of the DMRs of interest (Supplementary Table S3), in sperm. The following gene 

regions showed no association between OP exposures and DNA methylation: IGF2, PEG1/
MEST1, and PEG3 DMRs. When analyzing at an individual CpG level, all other genes 

studied indicated some association. After correction for age and BMI-status, those with a P-

value below 0.05 are summarized in Table 1. After correction for multiple testing the 

following results remained significant. An increase in ipPPP concentration was associated 

with positive DNA methylation shifts at MEG3 at CpG2 (β = +0.120; P = 0.0003), CpG 4 (β 
= +0.070; P = 0.0008), and CpG5 (β = +0.117; P = 0.0021). Graphical representations of 

predicted changes in DNA methylation % by OP exposure are shown in Fig. 1. 

Corresponding absolute and relative interquartile effects at each CpG site were calculated 

and indicate a general effect of hypermethylation (Table 1). Comparable results were found 

when odds ratios were calculated: if a subject was exposed to ipPPP levels above the median 

the odds to have hypermethylated sperm at MEG3 CpG2 and CpG 4 was about four times 

higher (Table 1). The mean DNA methylation at the MEG3 DMR was also elevated (β = 

+0.083; P = 0.0005) and an OR of 2.6 was observed (95% CI: 0.9–7.1) (Table 4). Similar 

associations with ipPPP exposures were seen at NDN and SNRPN. After correcting for 

multiple testing the following sites remained significant: NDN CpG1 (β = +0.111; P = 

0.0013) and SNRPN CpG2 (β = +0.088; P = 0.0014). Other CpG sites of NDN and SNRPN 
followed the same trend, but results were not significant (Table 1). However, when using the 

mean methylation of all CpG sites at the SNRPN DMR this association remained significant 

(Table 4). A borderline significant association was observed between ipPPP exposure and 

DNA methylation at SGCE CpG1 (β = +0.084; P = 0.005) (Table 1), but this could not be 

confirmed if the mean of all CpGs at SGCE was analyzed (Table 4).

We found that an increase in DPHP concentration was associated with an increase in DNA 

methylation at CpG5 of the GRB10 DMR (β = +0.053; P = 0.002); the other CpG sites were 

not significantly related. A borderline significant effect was seen at PLAGL1 CpG5 (β = 

+0.307; P = 0.004); other CpG regions showed similar trends. A graphical representation is 

shown in Fig. 2. When calculating the mean methylation at PLAGL1 (Table 4), or the odds 

ratios (Tables 4 and 1), the results did not differ. Methylation results at other DMRs were 

suggestive for potential correlations with DPHP. These genes included: MEG3, MEG3-IG, 
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NNAT, SGCE/PEG10, and SNRPN DMRs; but, associations were not significant after 

testing for multiple gene sites.

Increasing urinary concentrations of BDCIPP were associated with DNA methylation 

differences at only a few DMRs. DNA methylation was slightly decreased by BDCIPP at 

CpG5 of MEG3-IG (β = −0.007; P = 0.0021) and at CpG3 of H19 (β = −0.005; P = 0.0026) 

(Table 1 and Fig. 3). These patterns of association remained unchanged at other CpG sites or 

when calculating the means (Supplementary Table S3; Table 4).

We further redid our analyses on raw urinary OP concentrations, hence without correction 

for urinary density. Although fewer correlations between raw values and DNA methylation 

outcomes were significant, the direction of associations was comparable with the analyses 

using the normalized OP values (Supplementary Table S4).

DNA Methylation in Sperm by Exposure to Multiple OPs

We verified a potential impact of exposures to more than one OP on DNA methylation in 

sperm, as described in the methods section. In brief, results of our multivariable logistic 

regression model on dichotomized exposure to OPs and DNA methylation in sperm are 

shown for the mean DMRs in Table 2. The odds ratios presented in Table 2A reflect the 

impact on the mean DNA methylation if a subject was exposed to any of the OPs (ipPPP, 

DPHP, or BDCIPP) versus if a subject was not exposed or below median values. Exposure 

was separated by one, two, or three (cumulative) OP exposures, regardless of the nature of 

the exposure (ipPPP, DPHP, or BDCIPP). We found an OR of 11.04 (95% CI: 1.33; 91.67) 

and 14.62 (95% CI: 1.54; 138.37) at MEG3 and SNRPN, respectively, if an individual was 

exposed to 3 OPs versus no OPs. We further verified the effects of an increase in exposure as 

follows: 2 OPs versus 1 OP and 3 OPs versus 1 OP (Table 2B); as well as 3OPs versus 2OPs 

(Table 2C). Again, we found significant effects with increasing exposures at the MEG3 and 

SNRPN DMRs. For example, the odds for being hypermethylated was 6.53 (95% CI: 1.09; 

39.11) at MEG3 DMR and 8.87 (95% CI: 1.35; 58.35) at SNRPN DMR, when exposed to 3 

OPs compared to 2 OPs (Table 2C).

Assessment of Associations between OPs, Clinical Sperm Parameters and DNA 
Methylation

We examined if clinical sperm characteristics were associated with exposure to OPs. A 

Spearman correlation analysis showed that most clinical characteristics were not related to 

OP concentration. Only an increase in ipPPP was associated with a decrease in TMC (ρ = 

−0.25; P = 0.04) (Table 5). This association was attenuated when age, BMI and patient status 

were included in the model (β = −23.57; P = 0.06). We further verified if the outcomes, 

DNA methylation and TMC or motility, were correlated using a Spearman correlation test 

(Supplementary Table S5). We found that lower TMC was associated with higher DNA 

methylation at genes that are normally unmethylated in sperm, this was particularly the case 

at sites that were also affected by ipPPP, such as CpG4 and CpG5 of the MEG3 DMR (P-

values are 0.0007 and 0.0002, respectively).
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Discussion

With the phase-out of some brominated flame-retardants, OPs are becoming more widely 

used, yet no studies have investigated their effects on human fecundity and epigenetic 

perturbations in sperm. In this study we evaluated associations between urinary OP 

concentrations and DNA methylation profiles in sperm of men aged ≤35 years. After 

adjusting for potential confounding by age, BMI status and multiple testing, we found that 

participants with higher concentrations of urinary OP metabolites have significantly higher 

fractions of sperm cells that are aberrantly methylated at the DMRs of multiple growth 

regulating genes. Urinary ipPPP concentrations were related to hypermethylation at the 

MEG3, NDN, SNRPN DMRs. Our data further suggest similar but weak associations at the 

PLAGL1 and SNRPN DMRs by DPHP, and at the SGCE/PEG10 DMR, by ipPPP. An 

increase in urinary DPHP concentrations was correlated with a significant higher fraction of 

methylated sperm cells at the GRB10 DMR. Urinary BDCIPP concentrations were 

associated with lower methylation levels at imprinted genes that are expected to be fully 

methylated; this was the case at the MEG3-IG and H19 DMRs. Interestingly, analyses of 

potential effects from multiple exposures revealed enhanced hypermethylation at the MEG3 
and SNRPN DMRs. Our data suggest that the addition of a third OP was responsible for this 

observation. Although it is currently not clear what the consequences are if a fraction of the 

sperm cells are aberrantly methylated, the following information regarding these potentially 

OP-affected imprinted gene regions has been reported in literature. MEG3 is a long non-

coding RNA that activates p53 and inhibits tumorigenesis. In various cancer types 

hypermethylation at the MEG3 promotor has been observed, suggesting that if both maternal 

and paternal alleles are methylated this gene is silenced and its tumor suppressor activity in 

the cell is lost [48, 49]. Studies on imprinting disorders, including Prader–Willi syndrome, 

provided evidence that defects at NDN and SNRPN result in hyperphagia (overeating) and 

obesity [50, 51]. Aberrant methylation at promoter regions of PLAGL1 and SGCE have 

been related with metabolic diseases and cancer [52, 53]. Further, it is known that the 

imprinted gene GRB10 is maternally expressed and that its product inhibits fetal and 

placental growth [54]. The paternal allele is normally not methylated in sperm, but 

overexpression of Grb10 in transgenic mice has been associated with growth retardation, 

glucose intolerance and insulin resistance [55, 56]. Although we measured only small 

differences by OP exposure, if fertilization were to occur successfully with a sperm cell that 

is aberrantly methylated at one of the genes described above the consequences for the 

offspring are detrimental. For instance, our interquartile calculations showed that a higher 

exposure to ipPPP could result in an increase of 0.4% sperm cells being aberrantly 

methylated at MEG3 CpG2. On an individual level this can be translated to 400 000 aberrant 

sperm cells in an ejaculate of 100 million cells, associated with the OP exposure. Although 

the chance is low that this individual will father a child carrying this particular mark, on a 

population level this could be translated in an increase of 0.4% offspring carrying at least 

one affected CpG site, caused by paternal exposure to this particular environmental toxin. 

This estimate is possibly an underestimation, given our data shows that one chemical is able 

to affect multiple CpG sites and genes and the multiplicity of toxins in our environment may 

result in larger responses. Indeed, we found that presence of multiple OP exposures in our 

subjects was related to a higher probability of increased sperm DNA methylation. Literature 
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supports this finding. Mixtures of endocrine disrupting plastics administered in gestating 

female rats resulted in DNA methylation alterations in sperm of the F3 offspring generation 

at DMRs of several gene promoters [3].

Further, we measured the following trend: if one CpG site was aberrantly methylated the 

others were affected as well (although not always significant). Because of technical 

limitations it was not possible to deduce from our measurements if the aberrant methylation 

pattern at each specific CpG site concerned the same sperm cell; analyses on a single cell 

level are necessary to verify this. Furthermore, the mean methylation across all CpG sites of 

each DMR followed the same trend as predicted from single CpG analyses, suggesting the 

same mode of action at most CpGs of the DMR through OP exposure.

More research is needed to better understand the long-term (health) effects of methylation 

changes at imprinted genes. We further noted some overlap in affected DMRs sites by ipPPP 

and DPHP. This could be explained by the fact that their metabolites were correlated (ρ = 

0.28; P = 0.021) and that these OPs could originate from similar sources, such as 

Firemaster® 550 (FM550). This new flame-retardant contains TPHP, ipPDPP, 2-

ethylhexyl-2,3,4,5-tetrabromobenzoate, bis(2-ethylhexyl)-2,3,4,5,-tetrabromophthalate, and 

additional isoproplylated triaryl phosphate isomers. Recently, FM550’s safety and potential 

health risks have been questioned [57–59]. In our study population, presence of chlorinated 

(BDCIPP) and non-chlorinated (DPHP) OPs was also highly correlated (P = 0.0067), likely 

because they are used as flame-retardants and plasticizers and may be found in the same 

products. Both BDCIPP and DPHP affected the GRB10 and MEG3-IG DMRs. Besides 

common sources, it is also possible that the OPs studied influence the same endocrine 

pathway and ultimately affect the DMR region. Our findings that urinary biomarkers for 

flame-retardants or organochlorine pollutants are associated with male reproductive health 

and sperm parameters are consistent with previous studies [10, 11, 60]. For instance, a 

significant inverse correlation was shown between urinary DPHP and BDCIPP and sperm 

motility and concentration [61]. In our study population we found a weak inverse association 

between exposure to ipPPP and total motile sperm count (TMC), but could not confirm an 

association between other OPs and clinical sperm characteristics. After supplementary 

analyses on potential correlations between DNA methylation and TMC, our results indicated 

an inverse relationship. Specifically, we noticed that the effect of ipPPP on the MEG3 DMR 

was paralleled by a decrease in TMC. It has been documented that when considering 

epigenetic endpoints in epidemiological studies in relation to a low-dose range of 

environmental chemical exposures the phenotypic effects or disorders are not always 

measurable [62]. Although more research is needed to confirm our results, our study 

provides novel findings linking low-dose exposures to OPs with aberrant DNA methylation 

and suggests this may be an indicator of lower sperm quality and potentially also infertility. 

In order to provide insights regarding the mechanisms of action for OPs on sperm 

development it is of interest to consider the nature of the effect sizes of the OPs on sperm 

DNA methylation; particularly at imprinted genes, where changes are transmissible to the 

next generation. Although our sample size is small, our results indicate larger effects on 

DMRs that are expected to be unmethylated in sperm, compared with the DMRs that are 

paternally methylated. A possible explanation for this could be that during the final stages of 

spermatogenesis, methylation processes are disrupted by environmental OP exposure. 
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Normally, maternally methylated DMRs do not acquire DNA methylation in sperm cells, 

and paternally methylated DMRs are fully methylated in mature sperm. An exception is the 

MEG3 DMR that only acquires DNA methylation post fertilization [16]. We hypothesize 

that endocrine disruptors induce methylation at DMRs that are expected to be unmethylated 

through overexpression of DNMT enzymes. Evidence for this hypothesis exists in animal 

models, where low-dose exposures to BPA were correlated with hypermethylation at the 

ERα gene; this was paralleled with an increase in Dnmt1, Dnmt3a, and Dnmt3b expression 

[63, 64]. These enzymes catalyze DNA methylation during the final stages of sperm 

development. Although we did not verify the levels of DNMTs in our samples, it would be 

interesting to further explore these and other components of the epigenetic machinery in 

relation to exposures to environmental pollutants. If an affected sperm cell fertilizes an 

oocyte, the zygote can inherit and maintain this epigenetic alteration, since imprinted gene-

associated DNA methylation patterns are retained through the period of post-fertilization 

reprogramming. It is presently unclear if and how the changes that we observed in the 

current study would affect health of the offspring. Most epidemiological studies collect data 

on mother–child pairs, with less focus on paternal exposures or potential defects in the 

sperm epigenome. For instance, a recent epidemiological study suggested that in utero 
exposures to OP pesticides alter glucose metabolism at birth in a sex-dependent manner 

[65], suggesting involvement of an epigenetic response. Animal models provided evidence 

that environmental toxins, such as fungicides, plasticizers, dioxin, hydrocarbons and alcohol, 

can all affect the epigenome through the germ line. These chemicals were found to cause 

late-onset chronic diseases in subsequent generations, including obesity and reproductive 

disorders [2, 3, 66, 67]. For instance, Stouder et al. showed that in utero exposure to alcohol 

resulted in a 3% decrease in the number of methylated CpGs at H19 in offspring sperm [67]. 

A study by Liang et al. showed a “dose–response” effect. Increasing alcohol concentrations 

in male mice altered sperm DNA methylation at imprinted genes and hearing loss was 

observed in the offspring [68]. Stouder and Paoloni-Giacobino also reported deleterious 

effects of the endocrine disruptors vinclozin (fungicide) and methoxychlor (insecticide) at 

the level of imprinted genes in sperm of mice [69, 70]. Methoxychlor induced an increase in 

DNA methylation of at the maternally imprinted genes Snrpn, Peg3, and Peg1/Mest (ranging 

from 7 to 11%, depending on the gene); and a decrease of 4% was measured at the 

paternally imprinted Dlk1/Meg3 domain [70]. Our study was performed on a different group 

of endocrine disruptors and was limited to relative low levels of exposure in human. This 

could explain why our results on imprinted genes were at a lower range, but still they are 

consistent with what was reported by Stouder et al. Hence, we hypothesize that these types 

of toxins influence the same network of genes that orchestrates specific cellular pathways.

We attempted to determine if specific occupational or housing exposures could be at the 

origin of our results, but we found no suggestive associations. For instance, twelve men have 

worked in occupations with potential increased OP exposures, but no associations were 

found with the OPs studied in this study (not shown). Hence, our results are reflective of 

young males with moderate to low (chronic) exposures and without any indication of 

occupational exposures or sources of exposure to high concentrations of hazardous 

materials. In our population of young male participants, DPHP and BDCIPP were most 

abundant; ipPPP was also frequently present in participants’ urine samples. This suggests 
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that their parent compounds are ubiquitously present in the environment, which is in 

agreement with other studies in the US [41, 42, 71, 72]. Given that parent chemicals, such as 

TPHP and TDCIPP, are rapidly eliminated from the body, detecting their metabolites in 

urine suggests a continuously present source, such as contaminated indoor dust [73]. 

Frequencies of most OPs were comparable with those of another study performed in the 

same area [42]. Low frequencies of tbPPP and BCIPP could theoretically be explained by 

lower exposure levels, or a different metabolic turnover rate. As we suggested earlier, the 

existence of epigenetic windows of susceptibility to environmental insults during sperm 

differentiation [4], including the final reproductive cycle of about 74 days (to produce 

spermatozoa from spermatocytes), it is possible that a relatively recent exposure from the 

(indoor) environment could be at the origin of small methylation defects. Increasing 

evidence in animal models supports the idea that epigenetic marks acquired during 

spermatogenesis from exposures to paint, solvents, pesticides, plastics, etc. can be sustained 

through embryonic development, causing phenotypic changes in the offspring; reviewed in 

the same reference [4].

The distribution of BMI in our TIEGER study population is not representative of young men 

in North Carolina. We corrected for BMI status and age, and we repeated our analyses in a 

subgroup of men with normal weight and found no major differences in our results. We also 

controlled for patient-status and performed a second sensitivity test where only non-patients 

were included, but these approaches did not change our final results (data not shown). A 

weakness of our study is the small sample size. Furthermore, our study sample was limited 

to Caucasian subjects only, while North Carolina also includes substantial populations from 

other ethnic backgrounds. Another potential limitation of our study is the fact that we 

collected spot urine samples instead of 24 hour urine samples. However, a recent study 

showed that urinary concentrations of BDCIPP and DPHP remain relatively constant 

throughout the day in adult volunteers [73]. A strength of our study is the simultaneous 

collection of urine and sperm in a group of young men, hence potential future fathers.

In summary, we linked measurements of metabolites of OPs in urine with epigenetic 

changes in sperm DNA. Although OPs are widely used in consumer products, to our 

knowledge, no other studies have been performed on the potential effects of OPs on the 

sperm epigenome. Our data show that aberrant DNA methylation patterns are present in 

sperm when the exposure to OPs is increased. Should these findings be replicated in a larger 

study, and if indoor contamination from flame-retardants affects the sperm epigenome, 

fecundity can be affected. Furthermore, if the environmentally induced “signature” is 

maintained through in utero development, the next generation will potentially generate the 

phenotype or develop the disease that is related to imprinting defects at the affected gene; 

including metabolic disorders, mental health disorders, or cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
DNA methylation in sperm by urinary ipPPP concentration at the MEG3, NDN, SNRPN, 

and SGCE DMRs; the predicted DNA methylation percentages at each CpG site are shown 

by ipPPP concentration; adjusted for age and overweight/obesity status. *Associations that 

remained significant after taking into account multiple testing at all genes and CpG sites in 

this study
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Figure 2. 
DNA methylation in sperm by urinary DPHP concentration at the GRB10 and PLAGL1 
DMR; the predicted DNA methylation percentages at each CpG site are shown by DPHP 

concentration; adjusted for age and overweight/obesity status. *Associations that remained 

significant after taking into account multiple testing at all genes and CpG sites in this study
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Figure 3. 
DNA methylation in sperm by urinary BDCIPP concentration at the MEG3-IG and H19 
DMRs; the predicted DNA methylation percentages at each CpG site are shown by BDCIPP 

concentration; adjusted for age and overweight/obesity status. *Associations that remained 

significant after taking into account multiple testing at all genes and CpG sites in this study
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Table 3

Socio-demographic and clinical sperm data of study participants and frequencies of OP exposures

TIEGER participants (n = 67) na %

Age (years) 18–24 27 40.3

25–29 19 28.4

30–35 21 31.3

Marital status Single/divorced/widow 35 53.0

Married/living with partner 30 45.5

Divorced/widow 1 1.5

Fathered at least one child No 58 86.6

Yes 9 13.4

Highest degree of education High school 6 10.7

Some college or college degree 32 57.1

Graduate 18 32.1

Obesity status normal weight (18 ≤ BM<25) 44 66.7

overweight or obese (25 ≤ BMI) 23 33.3

Patient at fertility clinic No 48 71.6

Yes 19 28.4

Sperm total motile count(TMC) ≤39 × 106 (abnormal) 12 18.2

>39 × 106 (normal) 54 81.8

Sperm motility <40% (asthenozoospermia) 13 19.7

≥40% (normal) 53 80.3

Sperm concentration <15×106 (oligozoospermia) 3 4.6

≥15×106 (normal) 62 95.4

BDCIPP Detected (above MDL) 66 98.5

DPHP Detected (above MDL) 66 98.5

ipPPP Detected (above MDL) 60 89.6

tbPPP Detected (above MDL) 13 19.4

BCIPP Detected (above MDL) 5 7.5

MDL, measured detection limit.

a
If the sum was not 67, data were missing, and percentage was calculated on known data.
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