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Abstract

Background—Lesion load is a common biomarker in multiple sclerosis, yet it has historically 

shown modest associations with clinical outcomes. Lesion count, which encapsulates the natural 

history of lesion formation and is thought to provide complementary information, is difficult to 

assess in patients with confluent (i.e. spatially overlapping) lesions. We introduce a statistical 

technique for cross-sectionally counting pathologically distinct lesions.
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Methods—MRI is used to assess the probability of lesion at each location. The texture of this 

map is quantified using a novel technique, and clusters resembling the center of a lesion are 

counted. Validity compared to a gold-standard count was demonstrated in 60 subjects observed 

longitudinally, and reliability was determined using 14 scans of a clinically stable subject acquired 

at 7 sites.

Results—The proposed count and the gold-standard count were highly correlated with (r=.97, 

p<.001), and not significantly different (t59=−.83, p=.41), and the proposed count’s variability 

across repeated scans was equivalent to that of lesion load. Accounting for lesion load and age, 

lesion count was negatively associated (t58=−2.73, p<.01) with the Expanded Disability Status 

Scale (EDSS). Average lesion size had a higher association with EDSS (r=.35, p<.01) than lesion 

load (r=.10, p=.44) or lesion count (r=−.12, p=.36) alone.

Conclusion—This study introduces a novel technique for counting pathologically distinct 

lesions using cross-sectional data, and demonstrates its ability to recover obscured longitudinal 

information. The proposed count allows for more accurate estimation of lesion size, which 

correlated more closely with disability scores than either lesion load or lesion count alone.

1. Introduction

Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by demyelinating 

lesions that occur in the central nervous system. Magnetic resonance imaging (MRI) is the 

most commonly used method to observe these lesions, especially in the white matter of the 

brain1. The presence of new lesions on MRI is often considered an important clinical marker 

of disease activity, yet MRI-based measures of disease severity have been elusive2. The total 

lesion burden in the white matter, or “lesion load” – measured as volume or volume fraction 

of brain size – is often used in the study of MS, typically as a measure of disease severity3 

and as a clinical trial outcome4. However, lesion load has consistently shown a surprisingly 

weak association with clinical measures of disease severity, calling into question its 

usefulness as a surrogate and reinforcing the need for further development of MRI outcomes 

for MS2,5.

In past years, several clinical studies have discussed the number of lesions in a patient’s 

brain as a possible outcome of interest6–8. In these studies, baseline lesion count has been 

shown to be correlated with EDSS and changes in lesion count have been shown to be 

correlated with changes in EDSS. However, obtaining an accurate count of biologically 

distinct lesions in the brain can be costly and logistically challenging, typically requiring 

expert review or automated analysis of scans taken at frequent follow-up visits. This process 

is especially difficult in patients with a high lesion load and many confluent lesions9.

Confluent lesions commonly occur when pathologically distinct lesions (i.e., lesions that 

arise due to spatially separate sources of structural damage in the brain, usually separated in 

time) occur in close proximity to each other, creating a larger connected region of lesion 

tissue. Depending on the level of lesion burden, confluent lesions can range from two 

overlapping lesions with a single connecting edge to dozens of connected lesions spanning 

large stretches of white matter. The existence of such confluent tissue can make it difficult or 

impossible to estimate the number distinct lesions in the brain at any given visit. To obtain 
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accurate lesion counts a patient must be scanned regularly, with temporality of appearance 

serving to separate spatially confluent lesions. However, MRI scans are extremely costly, 

which can make regular follow-up visits infeasible. Additionally, in patients with a great 

deal of disease activity, even monthly or bi-monthly scans can produce multiple new lesions 

that are overlapping in space10,11. These considerations render lesion counts unavailable or 

inaccurate in most clinical settings, in which patients are typically scanned yearly or twice 

yearly.

To address this issue, the current study introduces a statistical analysis technique for 

obtaining valid and reliable estimates of lesion count from a single cross-sectional MRI 

study. This fully automated method utilizes cutting-edge statistical models for segmenting 

lesion tissue and well-demonstrated mathematical methods for quantifying texture to obtain 

the number and location of temporally distinct white matter lesions. Additionally, this study 

provides evidence that the derived lesion counts are associated with clinical measures of 

disease severity, independent of total lesion volume.

2. Methods

2.1 Proposed lesion count algorithm

To obtain the lesion count estimate in a given subject, the following steps are carried out. 

First, a map of lesion probability at each voxel in the brain is obtained using preprocessed 

and co-registered MRI volumes from a single visit. Depending on the automated 

segmentation method that is used, a combination of T1-weighted (T1), fluid attenuated 

inversion recovery (FLAIR), T2-weighted (T2), and proton density (PD) volumes will be 

required for probability estimation. A threshold is then applied to the probability map to 

create a binary mask of regions that are considered lesion tissue.

Using the probability map, the texture of the lesion tissue is quantified to find regions that 

exhibit the properties expected of the center of a single lesion. Texture is quantified using the 

eigenvalues of the Hessian matrix. The Hessian matrix is calculated for the intensity of the 

lesion probability map at every voxel in the lesion mask, with a gradient window of one 

voxel in each direction. In the context of a 3-dimensional image, the Hessian matrix 

describes the second-order variation in image intensity in the local neighborhood around a 

voxel. When applied to a lesion probability map, the eigenvalues of the Hessian matrix at 

each voxel represent the three primary directions of change in lesion probability at that 

voxel.

Thus, voxels in the center of a lesion would be expected to have a negative eigenvalue, 

implying a decrease in probability, in all directions. This follows from the commonly 

accepted pathology of MS lesions, in which initial damage to a vein causes residual 

inflammation to spread outwards from the vein in a relatively ovoid fashion, with less 

damage occurring around the periphery of the visible lesion12. Therefore, voxels are 

eliminated if any of the three eigenvalues are positive, indicating that the voxel is less likely 

to be lesion than its surroundings in at least one direction. Remaining voxels with three 

negative eigenvalues are clustered by location, and connected clusters (operationalized as the 

centers of distinct lesions) are counted. Figure 1 provides a visual example of this technique.
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2.2 Data and preprocessing

2.2.1 Validation and clinical-radiological association—Sixty subjects diagnosed 

with MS were scanned between 2000 and 2008 on a monthly basis over a period of up to 5.5 

years (mean = 2.2 years, sd = 1.2) as part of a natural history study at the National Institute 

of Neurological Disorders and Stroke in Bethesda, Maryland. The subjects ranged from 18 

to 60 years of age, with a mean age of 38 years (sd = 9). Of the 60 subjects, 38 were female 

and 22 were male. The majority of the subjects (n = 44) were diagnosed with relapsing-

remitting MS, 13 were characterized as secondary-progressive, one as primary progressive, 

and two were unspecified. Subjects were either untreated or treated with a variety of disease-

modifying therapies during the observation period, including both FDA-approved (various 

preparations of interferon-beta) and experimental therapies.

Details of the image acquisition and preprocessing have been previously published13 and are 

briefly summarized in this section. Whole-brain 2D FLAIR, PD, T2, and 3D T1-weighted 

volumes were acquired in a 1.5 tesla (T) MRI scanner (Signa Excite HDxt; GE Healthcare, 

Milwaukee, Wisconsin). The 2D FLAIR, PD, and T2 volumes were acquired using fast-spin-

echo sequences, and the 3D T1 volume was acquired using a gradient-echo sequence. All 

scanning parameters were clinically optimized for each acquired image. Subjects were each 

scanned over multiple visits, and subjects’ images at each visit were rigidly co-registered 

longitudinally and across sequences to a template space14.

All images are N4 bias-corrected, and FLAIR, T2, and PD volumes for each subject are 

interpolated and rigidly co-registered to the T1 volume in isotropic 1 mm3 space15. 

Extracerebral voxels were removed using the T1 volume via a skull-stripping procedure16, 

and intensity normalization17 of the volumes based on z-scoring was applied. Studies were 

manually quality controlled by a researcher with over five years’ experience with structural 

MRI, and studies with analysis-limiting motion or other artifacts were removed. Following 

preprocessing and quality control, automatic lesion segmentation was performed on co-

registered T1, T2, FLAIR, and PD volumes using the OASIS is Automated Statistical 

Inference for Segmentation (OASIS) model18 to produce a lesion probability map for each 

subject. A conservative threshold of 30% was applied to the probability maps to create 

binary lesion masks.

2.2.2 Reliability—To test reliability, also referred to as repeatability, data were analyzed 

from a 45-year-old man diagnosed with clinically stable relapsing-remitting MS. This 

patient was imaged at seven sites in the United States as part of a pilot study for the North 

American Imaging in Multiple Sclerosis (NAIMS) Cooperative. He was characterized as 

having mild-to-moderate physical disability, which was stable between the first and last 

visits, and had no clinical relapses nor radiological changes during the course of the study19.

Details of the image acquisition have been previously published19 and are briefly 

summarized in this section. Whole-brain 3D high-resolution FLAIR, T2, and T1-weighted 

volumes were acquired on seven 3T Siemens MRI scanners across the United States (4 

Skyra, 2 Tim Trio, 1 Verio). A standardized high-resolution scanning protocol was 

developed through a consensus agreement in the NAIMS Cooperative, and was used to the 

extent possible (allowing for different scanner types and software versions) for each scan. 
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The participant was scanned twice on the same day at each site, and was removed and 

repositioned between scan and rescan.

All images are N4 bias-corrected, and the subject’s images at each scan were rigidly co-

registered across sequences to the T1 volume in isotropic 1 mm3 space15. Extracerebral 

voxels were removed using the T1 volume via a skull-stripping procedure20(p2), and 

intensity normalization17 of the volumes based on z-scoring was applied. Following 

preprocessing, automatic lesion segmentation was performed on co-registered T1, T2, and 

FLAIR volumes using an extension of the OASIS model21 to produce a lesion probability 

map for each scan session. A conservative threshold of 30% was applied to the probability 

maps to create binary lesion masks.

2.3 Statistical analysis

2.3.1 Validation—Using the longitudinal nature of the data, a ‘gold-standard’ count of 

lesions that appeared during the course of the study was developed for validation. A state-of-

the-art technique for segmenting new lesions since a previous visit22 was applied at each 

visit after baseline, resulting in the number and location of new lesions at each visit for every 

patient. For the gold-standard count, segmented regions containing lesions that were 

separated in space or time were considered distinct. For example, if a large contiguous 

region at study’s end consisted of one lesion that appeared at the sixth visit and one lesion 

that appeared at the eighth visit, this would be considered two lesions in the gold-standard 

count.

The gold-standard count, henceforth referred to as CG, was compared to two counts obtained 

cross-sectionally at the final of observation for each patient. The first, CP, is the count based 

on the technique proposed in this study. CP was obtained by applying the algorithm 

described in Section 2.1 to the images obtained at each patient’s final visit, then restricting 

the count to the number of lesion centers contained in the lesion voxels determined to have 

appeared during the course of the study. Importantly, this restriction means that CP 

represents a subset of the total number of lesions in a subject’s scan, and is distinct from the 

full lesion count that is later described in the context of the clinical-radiological analysis. 

This limitation was implemented to make direct comparison between CP and CG possible, 

since a gold-standard count can only be obtained for lesions that appeared during the study.

The second cross-sectional count, CC, refers to a count based on the standard connected 

components technique. CC was obtained by performing lesion segmentation on the images 

obtained at each patient’s final visit, thresholding at a probability of 30%, and labeling 

lesions as distinct if they were separated in space. CC was then restricted to the number of 

unique lesion labels contained in the lesion voxels known to have appeared during the course 

of the study, in order to facilitate comparison with CP and CG.

Comparison between CG, CC, and CP occurred in two ways. First, to compare the linear 

correspondence between the gold-standard and the different counting techniques, the 

correlation between CG and CP was compared to that of CG and CC. Then, to determine 

whether the counts themselves differ meaningfully from the gold-standard, paired t-tests 

were run for CG and CP, as well as CG and CC.
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2.3.2 Reliability—Determination of the reliability of the proposed counting method was 

based on the coefficient of variation (CV) of the counts obtained from the 14 repeated scans. 

Because the typical connected components technique for counting automatically or 

manually segmented lesions yields a stable but invalid estimate of the true count, there is no 

current gold-standard CV for a lesion count. Thus, the CV of the proposed count was 

compared to a commonly used outcome measure for MS: total cerebral lesion volume 

(“lesion load”).

This comparison took place in two contexts. The first represented a fully automated version 

of the proposed count, in which variation may arise from false negatives in the segmentation 

mask, false positives in the segmentation mask, thresholding of the segmentation mask, and 

changes in the Hessian structure of the segmentation mask. This coefficient was compared to 

the CV of automated lesion load, as determined by the segmentation method.

The second context represented a manually supplemented version of the count, where a 

mask of lesion tissue was provided by an expert rater19, and the count was obtained using 

the segmentation probability map within the manual lesion tissue mask. In this case, 

variation in the count arises solely due to changes in the Hessian structure of the 

segmentation mask and changes in the manual segmentation. This coefficient was compared 

to the CV of the manually obtained lesion load.

2.3.3 Clinical-radiological association—As the Expanded Disability Status Score 

(EDSS) is known to be noisy, a more stable measure of neurologic disability was created by 

averaging the EDSS scores over all visits for each subject in the NINDS longitudinal study, 

hereby referred to as EDSSavg. One subject had no EDSS information across all follow-ups, 

and was excluded from this analysis. Using OASIS lesion probability maps18, lesion load 

was obtained at the final visit for each subject using a probability threshold of 30%. Then, 

using the lesion count technique described in Section 2.1, a full count of white matter lesions 

at the final visit was obtained for each subject. Importantly, the counts obtained for the 

clinical-radiological analysis are distinct from the CP measure described in Section 2.3.1, as 

these counts represent the application of the proposed method to the entire brain, while CP 

represents the application of the proposed method to only lesion tissue that appeared during 

the course of the longitudinal study.

To determine the clinical relevance of the proposed lesion count independent of other 

potentially confounding variables, a linear regression model was created for EDSSavg with 

age, lesion load, and lesion count as predictors. The lesion count’s added statistical 

contribution was quantified using a Wald test, which is inferentially identical to a likelihood 

ratio test in this context, and its added clinical contribution was quantified by the increase in 

the model’s adjusted R2. Additionally, Pearson correlations with EDSSavg were calculated 

for lesion load and lesion count, as well as a new variable we refer to as average lesion size 

(defined as lesion load divided by lesion count).
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3. Results

3.1 Validation

The temporally informed gold-standard count of new lesions appearing over the course of 

study, CG, ranged from 0 to 75 among the 60 subjects, with a median of 4 (IQR = [1, 12]). 

The connected components count, CC, ranged from 0 to 14 with a median of 2 (IQR = [1, 

5]). The proposed count, CP, ranged from 0 to 60 with a median of 5 (IQR = [1, 15]). Figure 

2 provides a visual example of these counting techniques.

The correlation between CP and CG was .97, compared to the correlation of .67 between CC 

and CG. Figure 3 shows the scatterplots for the two linear associations, along with the line 

demonstrating a one-to-one relationship. The paired t-test comparing CC and CG yielded a 

highly significant result (t59 = 4.19, p < .001), with CG being 6.9 lesions larger than CC on 

average (95% CI: [3.6, 10.2]). The paired t-test comparing CP and CG did not find a 

significant difference between the counts (t59 = −.83, p = .41), with CP being 0.4 lesions 

larger than CG on average (95% CI: [−1.3, 0.5]).

3.2 Reliability

For the fully automated count, the coefficient of variation was .19, compared to a CV of .22 

for the automated lesion load. Using the manual segmentation as a mask, the CV for the 

lesion count was reduced to .12, compared to a CV of .10 for the manual lesion load. In one 

case, automated lesion segmentation was discovered to have failed, creating a probability 

map with a drastically different Hessian structure and large regions of false positive 

segmentation. With this scan removed the CV of the fully automated lesion count remained 

at .19 and the CV of the manual segmentation-based lesion count dropped to less than .06, 

suggesting that the proposed count has equivalent or lower variability than the current 

clinical standard of lesion load.

3.3 Clinical-radiological association

Accounting for lesion load and age, the proposed lesion count was negatively associated 

with EDSSavg (t58 = −2.73, p < .01), suggesting that for a given lesion load and age, a higher 

count is associated with lower disease severity. The inclusion of lesion count in the model 

explains an additional 10% of the variance in EDSSavg compared to a model with only age 

and lesion load, providing support to the hypothesis that the proposed count contains disease 

information independent of other commonly used measures.

The Pearson correlation between lesion load and EDSSavg was small and did not reach 

significance (r = .10, p = .44), nor did the correlation between lesion count and EDSSavg (r = 

−.12, p = .36). However, average lesion size was significantly correlated with EDSSavg (r = .

35, p < .01), indicating that larger lesions were associated with higher disability.

4. Discussion

In this paper, we introduce a novel technique for obtaining cross-sectional counts of 

pathologically distinct lesions, and demonstrate it to be a valid, reliable, and clinically 

meaningful biomarker for MS disease status. Utilizing information contained in the Hessian 
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structure of lesion probability maps produced by automated segmentation methods, this 

technique counts distinct lesions by identifying regions that resemble the physiological traits 

of distinct lesion centers.

Validity of this measure was established by comparing counts obtained at a single time point 

to gold-standard counts that incorporated temporal information on lesion development. The 

proposed count had a correlation of .97 with the gold-standard count, indicating very strong 

validity of this measure. A count obtained using the connected components method had only 

a .67 correlation with the gold-standard, and appeared to strongly underestimate the number 

of lesions in individuals who developed more than one or two lesions per year over the 

course of the study. This underestimation manifested in a highly significant difference 

between the connected components counts and the gold-standard counts in a paired t-test, 

whereas no difference was found between the proposed counts and the gold-standard counts. 

These findings demonstrate that the proposed technique yields a count that is consistent with 

the natural history of lesion formation.

Reliability was considered using a rich set of data from the NAIMS Cooperative. In that 

study, a clinically and radiologically stable subject was scanned two times at each of seven 

different sites across the United States. To judge the reliability of the proposed measure, the 

lesion count was obtained for all 14 scans of this subject, and the coefficient of variation of 

the counts was compared to that of lesion load in two contexts. In the fully automated 

comparison, lesion count had a slightly lower CV than lesion load. This indicates that across 

repeated scans of the same brain, automated lesion count is a less variable measure than 

automated lesion load. In the manually supplemented comparison, lesion count had a 

slightly higher CV than lesion load, implying that manually obtained lesion load is a slightly 

less variable measure than semi-automated lesion count. Upon inspection there appeared to 

be one scan where automated lesion segmentation failed, producing an abnormal Hessian 

structure within the manually segmented lesion mask. With this scan removed, the CV of 

semi-automated lesion count dropped to slightly more than half that of manual lesion load. 

This suggests that when automated lesion segmentation methods perform as expected, semi-

automated lesion count is appreciably more reliable than manual lesion load, a widely used 

measure of disease severity.

Clinically, the lesion count measure appears to be a potentially important addition to 

commonly used radiological biomarkers for MS. In a model accounting for lesion load and 

age, lesion count was highly significantly associated with EDSS. Interestingly, this 

association was negative, indicating that for subjects who have similar lesion load, better 

outcomes are associated with more (and smaller) lesions rather than fewer (and larger) 

lesions. This lends support to the idea that neither the number of lesions nor the amount of 

tissue damage alone captures all relevant clinical information, and instead suggests they 

should be considered together. One way to conceptualize the combination of these metrics is 

average lesion size, which taps into the degree to which the brain is capable of halting the 

growth of lesions and encouraging lesional recovery13,23,24 after incidence.

To investigate this concept more directly, a measure of average lesion size was created by 

dividing lesion load by lesion count. Pearson correlations with EDSS were then compared 
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for the three biomarkers of lesion load, lesion count, and average lesion size. These findings 

provided further support for the combined importance of lesion load and lesion count, with 

both showing small and nonsignificant associations with EDSS. However, average lesion 

size showed a significant positive association with EDSS, consistent with the notion that the 

brain’s ability to slow or stop lesion growth is clinically relevant. These findings point to the 

importance of considering lesion count in MS research, and provide further evidence of the 

validity of the proposed counting technique.

A limitation of the current study is the possibility of alternate explanations of confluence 

that are not accounted for in the design of the proposed count. It has been hypothesized that 

confluent lesions may occasionally occur as a result of the growth of older lesions, or the 

expansion of pathological processes. Future research should consider the degree to which 

this technique does or does not characterize these types of confluence as pathologically 

distinct lesions. Additionally, the current analyses do not account for the possibility of 

vascular comorbidity, which is a common and notable occurence in MS patients. Future 

work should investigate the performance of this algorithm in the presence of vascular 

lesions.

The lesion count method presented in this paper has several appealing features, including its 

low computational burden and its easy and flexible implementation. Computationally, the 

counting algorithm takes less than a minute to run once probability maps are obtained. The 

speed of the full technique varies depending on the lesion segmentation method used, but 

took approximately 25 minutes per subject as presented in this study. In terms of 

implementation, this method can be quickly and easily coded in any program capable of 

calculating the Hessian structure of a 3D image, a feature included in most image processing 

packages. It can also be used with any lesion segmentation method that yields a probability 

map, allowing it be added to almost any pipeline regardless of preferred segmentation 

algorithm.

5. Conclusion

This paper introduces a novel and reliable fully automated method for counting 

pathologically distinct lesions using images obtained at a single time point, allowing for an 

accurate reconstruction of the natural history of lesion formation without longitudinal data. 

Lesion count was found to be significantly associated with EDSS, independent of potential 

confounders such as lesion load and age, and the results suggest that individuals with more 

small lesions may have better clinical outcomes than those with fewer large lesions. This 

study also demonstrates the importance of obtaining both lesion count and lesion load by 

using them to construct a new MS biomarker, average lesion size, and showing that average 

lesion size has a significantly larger association with EDSS than both lesion load and lesion 

count. With further study, this technique and the findings it produces could set the stage for 

new lesion-level considerations in research and treatment of MS.
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Figure 1. 
Visualization of the performance of the proposed count. (A) Example of region with 

confluent lesion tissue. (B) Connected components method finds one confluent lesion in the 

highlighted region. (C) Proposed method finds six distinct lesion centers in the highlighted 

region on the visualized axial slice. (D–F) Maps of the three Hessian eigenvalues used to 

quantify lesion texture and find distinct lesion centers (red represents positive eigenvalues, 

blue represents negative eigenvalues).
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Figure 2. 
Example of the lesion counts in a region with four apparently distinct lesions, two of which 

develop with observable temporal separation. Panels A–D show development of two new 

and temporally distinct lesions. Panels E and F show the performance of a connected 

components count and the proposed count, respectively. The connected components method 

finds one confluent lesion in the visualized space (connected in an adjacent plane), and the 

proposed method finds four distinct lesion centers. Days from scan in panel A: (B) 28 days; 

(C) 91 days; (D–F) 252 days.
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Figure 3. 
Scatterplot for the comparison between the gold-standard count and the connected 

components count and the comparison between the gold-standard count and the proposed 

count. Diagonal line represents a one-to-one relationship, red points represent the connected 

components count, and blue points represent the proposed count.
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