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SUMMARY

Understanding infection dynamics in animal hosts is fundamental to managing spillover and 

emergence of zoonotic infections. Hendra virus is endemic in Australian pteropodid bat 

populations and can be lethal to horses and humans. However, we know little about the factors 

driving Hendra virus prevalence in resevoir bat populations, making spillover difficult to predict. 

We use Hendra virus prevalence data collected from 13 000 pooled bat urine samples across space 

and time to determine if pulses of prevalence are periodic and synchronized across sites. We also 

test whether site-specific precipitation and temperature affect the amplitude of the largest annual 

prevalence pulses. We found little evidence for a periodic signal in Hendra virus prevalence. 

Although the largest amplitude pulses tended to occur over winter, pulses could also occur in other 

seasons. We found that Hendra virus prevalence was weakly synchronized across sites over short 

distances, suggesting that prevalence is driven by local-scale effects. Finally, we found that drier 

conditions in previous seasons and the abundance of Pteropus alecto were positively correlated 

with the peak annual values of Hendra virus prevalence. Our results suggest that in addition to 

seasonal effects, bat density and local climatic conditions interact to drive Hendra virus infection 

dynamics.
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INTRODUCTION

Bats have increasingly been identified as reservoirs of pathogens that can spill over to 

humans. These pathogens include rabies, severe acute respiratory syndrome coronavirus, 

Ebola, Marburg, Nipah and Hendra virus [1–4]. To understand the conditions that enable 

pathogens to spill over from bats to other species, we need to understand the mechanisms 

driving pathogen dynamics within and among bat hosts. Pathogen spillover events are often 

associated with sharp increases, or pulses, in pathogen prevalence that vary in amplitude and 

timing [4–6], but the mechanisms driving these pulses are unknown. Therefore, 

characterizing pulse variation across space and time, and identifying biotic and climatic 

factors associated with these pulses, will enhance our ability to predict and manage spillover 

[1, 7, 8]. Longitudinal studies across time and space are necessary to identify such factors [9, 

10], but such studies for wildlife zoonoses are rare. We use a longitudinal dataset of Hendra 

virus prevalence obtained across Eastern Australia to quantify seasonal, climatic and bat 

density effects on pulse characteristics.

Hendra virus emerged in 1994, killing 20 horses and a horse trainer, which prompted a wide-

scale investigation into the source of the spillover [11]. Although pteropopid bats of 

Australia were eventually identified as the natural reservoir hosts of Hendra virus [12], 

spatiotemporal variation in Hendra virus prevalence and spillover has only recently been 

investigated. Recent studies suggest that Hendra virus prevalence peaks during winter 

months in subtropical Australia [6]; however, it has not been determined whether this occurs 

periodically over time. Moreover, the synchrony of Hendra virus fluctuations and the effects 

of local climatic conditions on prevalence are unknown. Such information is however 

needed to develop predictions of disease incidence and spillover risk [13–15].

Previous studies have also shown associations between bat species and Hendra virus 

prevalence. Most evidence suggests that variation in prevalence is explained by the relative 

abundances of spectacled (Pteropus conspicillatus) and black (Pteropus alecto) flying foxes 

[16–19]. However, P. alecto is of particular concern because this species is widely 

distributed in coastal North Eastern Australia, and often forages in urban and peri-urban 

areas [20, 21]. P. alecto is also expanding its range southwards and permanently occupying 

urban habitats [20, 22]. Changes in bat abundance over areas with different levels of human 

development is important for disease management because such changes are likely to affect 

the frequency of Hendra virus outbreaks and spillover events [23]. To better assess these 

risks, it is therefore important to quantify how Hendra virus prevalence changes with the 

abundance of flying foxes.

Previous studies have proposed several hypotheses to explain the temporally discrete pulses 

of Hendra virus prevalence [7]. First, such pulses may be driven by spatiotemporal variation 

in population density and contact rates, with birth or immigration providing an influx of 

susceptible individuals. Spatiotemporal data could provide support for this hypothesis if 

pulses of Hendra virus are associated with increased bat density. Second, pulses of Hendra 

virus prevalence may result from viral reactivation in chronically or persistently infected 

individuals [4, 7]. Environmental conditions that increase physiological stress, such as low 

food abundance [24] or extreme high or low temperatures [25] could favor viral reactivation 
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and could therefore be correlated with the timing or magnitude of pulses. These hypotheses 

are not mutually exclusive but such patterns of spatiotemporal variation may provide 

inferences to help decipher the drivers of Hendra virus prevalence.

Here, we use the Hendra virus spatiotemporal data from Field et al. [6] to determine whether 

Hendra virus is characterized by seasonal fluctuations in prevalence and to quantify the 

population synchrony and spatial scale of these fluctuations. We then test whether site-

specific biotic and abiotic climatic conditions can help us explain the timing and amplitude 

of Hendra virus pulses. We therefore build on the work by Field et al. to contrast the 

different effects of seasonality, climate and bat abundance on Hendra virus prevalence.

MATERIALS AND METHODS

Hendra virus sampling

We use data of Hendra virus prevalence and bat abundance collected over 3·5 years (July 

2011 to November 2014) across a latitudinal gradient in Eastern Australia. To measure 

Hendra virus prevalence, Field et al. [6] collected urine from plastic sheets that were divided 

into quadrants and placed under bat roosts. Depending on roost size and accessibility, a 

variable number of sheets were utilized per roosts (see results). Urine was pooled from 

within each quadrant and quantitative PCR was used to determine the presence or absence of 

Hendra virus within each pooled sample. Thus, we define prevalence based on Hendra virus 

detection per pooled urine sample, rather than per individual bat. Pooled urine samples may 

have contained urine from up to four species of flying foxes. In the dataset, each pooled 

urine sample was thus associated with a roost location, a date, a sampling sheet and a 

quadrant within the sampling sheet [6]. The data also contain qualitative counts of bat 

species, P. alecto, Pteropus scapulatus, P. conspicillatus and Pteropus poliocephalus, roosting 

at the site. However, the effects of P. conspicillatus were not considered as this species 

occurs only in Northern Queensland and had small representations in the data (being present 

only in Cairns Central).

To describe abiotic factors at each roost, we acquired climate data at 5 km raster grids from 

the Australian Bureau of Meteorology. The climate data included minimum and maximum 

daily temperatures and total daily rainfall for 2011–2014. We processed these data into 

monthly minimum and maximum temperatures and monthly cumulative precipitation 

specific to each site [27]. We excluded Cairns Central due to a lack of information. The 

climate variables were further aggregated into annual quarterly intervals to summarize the 

average minimum and maximum temperature and average monthly rainfall for each season 

(i.e. winter, spring, summer; discussed further below).

Statistical modeling

Broad sources of variation in Hendra virus prevalence—We used data from the 11 

sites that had the best temporal representation such that each selected site had data for at 

least 50% of the total monthly samples (i.e. from January 2012 to November 2014). Sites 

spanned the latitudinal gradient of Hendra virus occurrence in Eastern Australia (Fig. 1). We 

excluded sites with fewer data because they were insufficient to quantify pulse periodicity 
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and synchrony. On the 11 sites with sufficient data, we fit a generalized mixed-effects model 

to quantify the effects of among-sheet, among-site and among-year variation, while taking 

into account the effect of bat abundance. Specifically, the natural log bat abundances were fit 

as fixed effects, whereas the sampling sheet, sampling site and the year of sampling were fit 

as random effects in a mixed-effects logistic regression model using the package 

MCMCglmm in R [28] (R code available in the online Supplementary Material).

The results from this model showed significant temporal and spatial effects on Hendra virus 

prevalence (see results below), which justified evaluating temporal characteristics of Hendra 

virus prevalence and spatial synchrony. However, due to logistical challenges in field 

sampling, site-specific time series had missing prevalence data. We therefore used a multiple 

imputation protocol that allowed us to predict missing values for the time series of the 11 

sites. Specifically, missing values were predicted by fitting a polynomial function of time 

that also considered the prevalence values of neighboring sites (when available) in the form 

of prior information [29]. These priors were thus built using the mean and variance in 

Hendra virus prevalence across sites, within 300 km (see Fig. 1). We used uninformative 

priors in cases where the variance in Hendra virus prevalence could not be calculated (i.e. 

when only one data point existed for a given date, or in cases where prevalence across all 

sites was 0). Our preliminary analyses showed that the prediction of numerous sequential 

missing values, such as those characteristic of 10 out of the 11 sites (the exception being 

Boonah) from July 2011 to January 2012, was poor (Fig. 1). Therefore, we only used 

predicted data over the time between January 2012 to November 2014.

Temporal and spatial variation—We used wavelet transforms to quantify the 

periodicity of Hendra virus prevalence. In contrast to other methods, no a priori assumptions 

are needed to quantify periodic signals using wavelet transforms [30]. Furthermore, wavelet 

transforms are useful to detect periodic signals that are localized in time [30]. We employed 

a Morlet mother wavelet to calculate a power spectrum for each time series and to find 

significant periodic signals across time [30–32]. Wavelet analyses were conducted using the 

biwavelet package [31] in R.

In addition to testing for periodic signals of Hendra virus prevalence, we formally tested the 

hypothesis that the largest amplitude pulses of Hendra virus occurred over winter (June to 

August in subtropical and temperate Australia). For this, we used the measured prevalence 

values (i.e. omitting the predicted values). For each site, we extracted both the timing and 

amplitude of the largest amplitude annual pulse (for this analysis, we also included the 

Boonah data collected in 2011). We then used a mixed-effects logistic regression to model 

the pulse amplitude as a function of the time in calendar months (i.e. 1–12) when the pulse 

occurred. We fit a quadratic effect of pulse timing to test whether the largest amplitudes 

occurred more often over winter (i.e. calendar months 6–8) and included the latitudinal 

coordinate of each site as a fixed effect to test for latitudinal gradients. This model 

accounted for the effects of sampling site and year by fitting these variables as random 

effects.

We explored patterns of spatial variation in Hendra virus prevalence by quantifying 

synchrony across the 11 sites using Pearson’s cross-correlations between the time series 
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[33]. We employed a non-parametric covariance function which fits a smoothing spline to 

estimate the change of cross-correlations with geographical distance [33]. We conducted 

these analyses on the ‘raw’ prevalence data and also on the first-differenced time series 

which allowed us to test for synchrony in the change in prevalence between successive 

values. Statistical inference was based on the 95th percentiles from 104 bootstraps which re-

sampled site-specific time series with replacement to re-calculate cross-correlations [33]. To 

ensure that the prediction of missing values described above did not increase the strength of 

the correlations between time series, we also conducted these analyses using data in which 

missing values were predicted without prior information. Removing priors had no effect on 

correlograms, so we only present the analyses conducted on time series containing predicted 

values.

Biotic and abiotic environmental variables—Nectar produced in Eucalyptus flowers 

is a primary food source for mobile populations of flying foxes, but budding and flower 

production depends on climatic conditions, such as temperature and precipitation, of 

preceding seasons [34]. To test the effects of temperature, precipitation and bat abundance 

on Hendra virus pulse amplitude and timing, we used generalized mixed-effects models. For 

each location, we used average values of precipitation, minimum temperatures and 

maximum temperatures at four different times: (i) at the time of the pulse to test if 

immediate effects of climate explain pulse amplitude and timing; (ii) over the previous 

summer (December–March), (iii) over the previous spring (September–November) and (iv) 

over the previous winter (June–August). We used these climatic factors measured at previous 

times to quantify delayed effects of climate on pulse amplitude and timing. At the time of 

the pulse (i.e. scenario (i)), we also examined whether bat species density had an effect on 

the amplitude and the timing of the pulse. In each scenario, we fit either the pulse amplitude 

or pulse timing as response variables, with average precipitation, minimum temperature, 

maximum temperature and the natural log of bat density as explanatory fixed effects, and 

site and year of sampling as random effects. Notice that for these analyses, we only used 

measured prevalence data (i.e. we omitted predicted values). We used z-tests for statistical 

inference when modeling pulse amplitudes, and t tests when modeling pulse timings [35]. 

Finally, because we conducted multiple comparisons on the response variables, we only 

consider an effect to be significant if a P-value adjustment to control for false discovery rate 

was <0·05 [36].

RESULTS

Over the 3·5 years of sampling conducted by Field et al. [6], 4435 sheets were placed under 

trees within bat colonies, collecting 13 637 samples with a mean of 3·1 samples per 

sampling sheet (sites with adequate temporal data corresponded to 8917 samples and 2895 

sheets).

Our mixed-effects model suggested that approximately 12% (highest posterior density 

credible interval, or HPD = 2, 22%) of the variation in Hendra virus prevalence was 

explained by variation across sites, 44% (HPD = 15, 54%) by variation across sampling 

sheets and 6% (HPD = 1·2, 66%) by among year variation. Bat abundance also had an effect 

on Hendra virus prevalence. We found that increasing P. alecto density by one unit on the 
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natural log scale, increased Hendra virus prevalence by 90% (HPD = 80, 96%). By contrast, 

increasing the abundance of P. scapulatus by one unit on the log scale decreased Hendra 

virus prevalence by 16% (HPD = 11, 24%). Our results, however, failed to detect a 

significant effect of P. poliocephalus density on Hendra virus prevalence [6].

We found little evidence of a long-term periodic signal in Hendra virus prevalence across the 

11 sites. Wavelet analyses captured significant periodic signals over short periods 

(approximately 2–6 months) for most sites. At the intensively sampled Boonah roost, peaks 

in Hendra virus prevalence occurred with a 6-month period from Januuary 2013 to January 

2014 (Fig. 2). Power spectra that suggested periodic signals over longer time frames were 

also found for Bellingen, Nambucca Heads and Wingham. However, in these cases, 

statistically significant power spectra (as described by the white contour lines within the 

figures) were either very localized (e.g. for Bellingen) or fell outside the cone of significance 

that delimits power spectrum values that are sensitive to edge effects (e.g. Nambucca Heads 

and Wingham). These results thus show little statistical evidence for long-term periodic 

signals in Hendra virus prevalence. In the online Supplementary Material (S1), we present 

an additional approach based on spectral decomposition to estimate periodicity with 

qualitatively similar results.

When we tested the hypothesis that the highest annual Hendra virus pulses occurred in 

winter, we found that pulse timing had a significant quadratic effect on pulse amplitude 

(intercept = −3·53, z-value = −4·13, P-value <0·001; linear coefficient = 0·50, z-value = 2·1, 

P-value = 0·036; quadratic coefficient = −0·038, z-value = −2·09, P-value = 0·037), but only 

when we removed one outlier datum associated with a pulse measured in Boonah in January 

2012 (Fig. 3). Furthermore, the observed variability in pulse amplitudes and timings was not 

explained by a continuous effect of latitude (z-value = −0·31, P-value = 0·76). This result 

suggests that qualitative characteristics of pulses may be similar between sites, even if 

overall Hendra virus prevalence does differ between sites (see online Supplementary 

Material S2 and Field et al. [6]).

The analyses on population synchrony showed that weak synchrony in Hendra virus 

prevalence occurred across sites within approximately 500 km from each other. Cross-

correlation coefficients fell below the mean cross-correlation (i.e. 0·18 CI 0·06–0·31) at 

distances greater than approximately 486 km and fell to 0 at a distance of 1000 km (Fig. 4). 

This result did not depend on the informative priors used during the prediction of missing 

values because cross-correlation analyses conducted using uninformative priors yielded 

identical results. By contrast, cross-correlations based on the change of Hendra virus 

prevalence between successive prevalence values were not significant over any distance (Fig. 

4), suggesting that the autocorrelation structure within time series was partly responsible for 

the observed spatial synchrony [37].

Our mixed-effects modeling results suggested that bat abundance and climatic variables 

affected pulse amplitudes and timings (Fig. 5). First, the density of P. alecto, and P. 
poliocephalus, but not P. scapulatus (z-value = −1·08, adjusted (adj.) P-value = 0·37) had a 

significant effect on pulse amplitude. We found that as the abundance of P. alecto increased, 

pulse amplitude also increased (slope estimate in logit scale = 0·29, z-value = 3·38, adj.P-
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value = 0·004; Fig. 5). By contrast, we found that the abundance of P. poliocephalus had a 

quadratic effect on pulse amplitude (linear slope in logit scale = 0·43, z-value = −3·4, adj.P-

value = 0·0037; quadratic slope = −0·037, z-value = 3·18, P-value = 0·002). However, this 

result was greatly influenced by four prevalence data points occurring when the P. 
poliocephalus count = 0. When we removed these four data points (i.e. ensuring the analysis 

of prevalence data when this species was present at the site), we found a non-significant 

effect of P. poliocephalus density on pulse amplitudes (slope estimate in logit scale = −0·15, 

z-value = −1·72, P-value = 0·085).

Previous climatic conditions influenced both pulse amplitude and timing. Lower 

precipitation during the previous spring (slope estimate in logit scale = −0·41, z-value = 

−2·68, adj.P-value = 0·02) and the previous winter (slope estimate on magnitude in logit 

scale = −0·67, z-value = 3·88, adj.P-value = 0·001), were associated with increased pulse 

amplitudes (Fig. 5). Furthermore, precipitation in the previous spring was positively 

correlated with pulse timing (slope estimate = 1·0667, t-value = 2·24, P-value <0·05). Exact 

P-values could not be calculated for this result because of uncertainty in the calculation of 

degrees of freedom in mixed-effects models [38]. Nevertheless, these results suggested that 

dry winters and springs lead to increased pulse amplitudes and timings. We did not find any 

effects of temperature or precipitation on pulse amplitudes or timings during the previous 

summer or at the time of the pulse (all P-values >0·05).

DISCUSSION

Our results suggest that Hendra virus prevalence can be explained by the interaction between 

preceding climatic conditions and current bat density. Although the largest annual pulse 

amplitudes tended to be clustered around winter months, the large variation in the timing of 

these pulses, and the lack of a recurring seasonal signal, suggest that seasonal factors (such 

as birth pulses, immigration and seasonal transmission) are not alone driving Hendra virus 

dynamics. We therefore suggest that variation in pulse amplitudes and timings occur because 

of combined effects of density-driven processes principally involving P. alecto, but also by 

density-independent factors. Low food availability, driven by climatic conditions that affect 

flowering, is a potential factor that could increase transmission or viral shedding via reduced 

immunocompetence. Alternatively, reduced rainfall could increase transmission by 

increasing contact rates between individuals aggregating around suitable habitats. Our 

analyses also showed that Hendra virus prevalence was only weakly correlated across sites 

and such correlations may be explained by the autocorrelation structure within the time 

series. Therefore, we suggest that site-specific prevalence values are determined by the 

climatic conditions and bat–virus dynamics occurring at small spatial scales.

We found that an important proportion of the variation in Hendra virus prevalence was 

explained by variation within bat roosts (i.e. among sampling sheets), suggesting that 

Hendra virus shedding is likely to be heterogeneously rather than uniformly distributed 

across the roost. This may result from transmission, or specific patterns of clustering (i.e. 

species or age groups) within roosting sites. Species clustering could explain variation 

among sheets because Hendra virus prevalence was positively associated with P. alecto 
density, but negatively related to the density of P. scapulatus. It is important to note that 
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while the protocol of collecting pooled urine excreted on sheets is logistically feasible and 

cost-effective, prevalence in pooled urine samples may be both clustered and overestimated 

if infected bats contribute to pooled urine multiple times. Nevertheless, increased P. alecto 
density was also associated with increased pulse amplitudes, suggesting that pulse 

characteristics are influenced by disease dynamics occurring in P. alecto populations. Field 

et al. [6] suggested that the negative association between P. scapulatus and Hendra virus 

prevalence was due to the dilution of positive samples by P. scapulatus urine, because 

Hendra virus has not been detected in the urine of this species. An additional hypothesis is 

that P. scapulatus density at a site indicates an increase in food availability because the 

presence of this species is also associated with flower blooms and nectar production [39]. 

Increased food availability may then reduce Hendra virus shedding by improving bat 

condition and immunocompetence. A third possibility is that prevalence in P. alecto may be 

reduced by high P. scapulatus abundance through a ‘dilution effect’ where higher bat species 

diversity lowers infection risk. [40]. However, more studies are required to understand such 

species-specific details of Hendra virus dynamics.

The previous work of Field et al. [6] suggested that pulses of Hendra virus prevalence occur 

in winter, particularly for South Eastern Queensland and North Eastern NSW. These 

conclusions were drawn from visual examination of fitted spline trends to the data. We have 

built on these results to specifically test whether high amplitude pulses are a winter-only 

phenomenon. We did not find statistical support for annual or seasonal periodic signals using 

wavelet analyses. However, we found some evidence suggesting that the highest annual 

Hendra virus pulses occur in winter [6], but this result only held after we removed one 

outlier datum (i.e. summer in Boonah, South East Queensland), which shows that there is 

variation both in the amplitude and the timing of Hendra virus pulses. This suggests that, 

although pulses may peak in winter, they can also peak in other seasons. This conclusion is 

partly supported by the recent spillover of Hendra virus in late November 2016 [41], 

associated with an acute food shortage for bats (however, we did not have prevalence data 

for this spillover event). Thus, monitoring climatic conditions (such as precipitation), nectar 

availability and patterns of bat movement (as discussed below), may be important for 

predicting Hendra virus spillover events.

Specific to spatial analyses, we found low but significant levels of population synchrony in 

Hendra virus prevalence. The mechanisms that drive synchrony in prevalence are difficult to 

discern because animal movement or shared environmental conditions can synchronize 

disease dynamics [42]. Our results, however, suggested that the observed synchrony was 

driven by autocorrelation within time series [37], because no significant synchrony was 

detected in correlograms based on the difference between successive values in the time 

series. We therefore suggest that Hendra virus dynamics are mostly driven by the biotic and 

abiotic conditions at relatively small spatial scales.

The association between climatic factors (i.e. rainfall in previous seasons) and Hendra virus 

pulses may be explained by the influence of climate on nectar-based food production [34, 

43–45]. Previous work suggested that many of the Eucalyptus species that bats rely on over 

winter yield nectar according to previous rainfall and drought conditions [34, 44, 46]. 

Moreover, for at least one bat species (P. poliocephalus), low nectar foraging intensity was 
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associated with reduced precipitation in previous months (JR Giles et al., unpublished 

observations). However, rainfall patterns and the distribution of Eucalypt forests vary greatly 

throughout the East Coast of Australia and we do not know whether the low rainfall levels in 

our study translated to nectar shortages. More site-specific data are therefore needed to 

quantify the interactions between rainfall, nectar availability and foraging behavior in bats.

Nevertheless, when nectar availability is low, P. alecto feeds on alternative lower quality 

food sources, such as native and exotic fruits [20, 45, 47], potentially affecting nutritional 

status. Spring also coincides with the birth pulse and lactation for P. alecto, providing a 

potential additive source of physiological stress [17, 24, 48]. An alternative hypothesis to the 

effects of weather on food availability, and subsequent physiological stress, is that food 

shortages may aggregate animals around scarce resources, increasing contact and 

transmission among bats. Further empirical work is thus required to discern between the 

multiple mechanisms that relate weather with Hendra virus prevalence.

A future challenge in the study of bat–Hendra virus dynamics is to determine how 

Eucalyptus phenology, bat movement, temperature, and nutritional status interact to affect 

Hendra virus prevalence and the risk of spillover. In addition to hotter and drier conditions, 

climate change is predicted to increase the frequency of extreme weather events such as heat 

waves and tropical cyclones, which have been linked to increased bat mortality and high 

seroprevalence, respectively [24, 25]. Effective management of Hendra virus will therefore 

require quantifying the effects of density-dependent and density-independent conditions on 

transmission dynamics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank Craig Smith for comments on their results. Data was collected through the National Hendra Virus 
Research Program commissioned project: Hendra virus infection and transmission dynamics and is by courtesy of 
the State of Queensland, Australia through the Department of Agriculture and Fisheries, and the State of New South 
Wales through the Department of Primary Industries. AP was supported by a Queensland Government Accelerate 
Fellowship grant and HF received support from EcoHealth Alliance under the USAID Emerging Pandemic Threats 
(PREDICT) project. This research was supported by the State of Queensland, the State of New South Wales and the 
Commonwealth of Australia under the National Hendra Virus Research Program. Additional funding to RP was 
from National Institute of General Medical Sciences of the National Institutes of Health IDeA Program grants 
P20GM103474 and P30GM110732, Montana University System Research Initiative: 51040-MUSRI2015-03, and a 
Defense Advanced Research Projects Agency (DARPA) Young Faculty Award.

References

1. Hayman DTS, et al. Ecology of zoonotic infectious diseases in bats: current knowledge and future 
directions. Zoonoses and Public Health. 2013; 60:2–21. [PubMed: 22958281] 

2. Calisher CH, et al. Bats: important reservoir hosts of emerging viruses. Clinical Microbiology 
Reviews. 2006; 19:531–545. [PubMed: 16847084] 

3. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife–threats to 
biodiversity and human health. Science. 2000; 287:443–449. [PubMed: 10642539] 

4. Plowright RK, et al. Ecological dynamics of emerging bat virus spillover. Proceedings of the Royal 
Society of London B: Biological Sciences. 2015; 282:20142124.

PÁEZ et al. Page 9

Epidemiol Infect. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Amman BR, et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus 
bats coincide with periods of increased risk of human infection. PLoS Pathogens. 2012; 10:1–11.

6. Field H, et al. Spatiotemporal aspects of Hendra virus infection in pteropid bats (flying-foxes) in 
Eastern Australia. PLoS ONE. 2015; 12:1–14.

7. Plowright RK, et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in 
reservoir–host populations. PLoS Neglected Tropical Diseases. 2016; 10:1–21.

8. Plowright RK, et al. Pathways to zoonotic spillover. Nature Reviews Microbiology. 2017; 15:502–
510. [PubMed: 28555073] 

9. Begon M, et al. Seasonal host dynamics drive the timing of recurrent epidemics in a wildlife 
population. Proceedings of the Royal Society of London Series B. 2009; 276:1603–1610. [PubMed: 
19203924] 

10. Brownstein JS, Holford TR, Fish D. A climate-based model predicts the spatial distribution of the 
Lyme disease vector Ixodes scapularis in the United States. Environmental Health Perspectives. 
2003; 111:1152–1157. [PubMed: 12842766] 

11. Murray K, et al. A morbillivirus that caused fatal disease in horses and humans. Science. 1995; 
268:94–97. [PubMed: 7701348] 

12. Young PL, et al. Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to 
equine morbillivirus. Emerging Infectious Diseases. 1996; 2:239–240. [PubMed: 8903239] 

13. Grenfell BT, Bjornstad ON, Kappey J. Travelling waves and spatial hierarchies in measles 
epidemics. Nature. 2001; 414:716–723. [PubMed: 11742391] 

14. Cazelles B, et al. Nonstationary influence of El Nino on the synchronous dengue epidemics in 
Thailand. PLoS Medicine. 2005; 2:313–318.

15. Koelle K, Pascual M. Disentangling extrinsic from intrinsic factors in disease dynamics: a 
nonlinear time series approach with an application to cholera. The American Naturalist. 2004; 
163:901–913.

16. Goldspink LK, et al. Natural Hendra virus infection in flying-foxes – tissue tropism and risk 
factors. PLoS ONE. 2015; 10:1–10.

17. Edson D, et al. Flying-fox roost disturbance and Hendra virus spillover risk. PLoS ONE. 2015; 
10:1–16.

18. Smith C, et al. Flying-fox species density – a spatial risk factor for Hendra virus infection in horses 
in Eastern Australia. PLoS ONE. 2014; 9:1–7.

19. Field H, et al. Hendra virus infection dynamics in Australian fruit bats. PLoS ONE. 2011; 6:1–6.

20. Markus N, Hall L. Foraging behaviour of the black flying-fox (Pteropus alecto) in the urban 
landscape of Brisbane, Queensland. Wildlife Research. 2004; 31:345–355.

21. Parry-Jones K, Augee M. Factors affecting the occupation of a colony site in Sydney, New South 
Wales by the Grey-headed Flying-fox Pteropus poliocephalus (Pteropodidae). Austral Ecology. 
2001; 26:47–55.

22. Roberts BJ, et al. Latitudinal range shifts in Australian flying-foxes: a re-evaluation. Austral 
Ecology. 2012; 37:12–22.

23. Plowright RK, et al. Urban habituation, ecological connectivity and epidemic dampening: the 
emergence of Hendra virus from flying foxes (Pteropus spp.). Proceedings of the Royal Society of 
London B: Biological Sciences. 2011; 278:3703–3712.

24. Plowright RK, et al. Reproduction and nutritional stress are risk factors for Hendra virus infection 
in little red flying foxes (Pteropus scapulatus). Proceedings of the Royal Society of London B: 
Biological Sciences. 2008; 275:861–869.

25. Welbergen JA, et al. Climate change and the effects of temperature extremes on Australian flying-
foxes. Proceedings of the Royal Society of London B: Biological Sciences. 2008; 275:419–425.

26. McMichael L, et al. Physiological stress and Hendra virus in flying-foxes (Pteropus spp.), 
Australia. PloS ONE. 2017; 12:e0182171. [PubMed: 28767708] 

27. Giles JR, et al. Models of eucalypt phenology predict bat population flux. Ecology and Evolution. 
2016; 6:7230–7245. [PubMed: 27891217] 

28. Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the 
MCMCglmm R package. Journal of Statistical Software. 2010; 33:1–22. [PubMed: 20808728] 

PÁEZ et al. Page 10

Epidemiol Infect. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Honaker J, King G, Blackwell M. Amelia II: a program for missing data. Journal of Statistical 
Software. 2011; 45:1–47.

30. Cazelles B, et al. Wavelet analysis of ecological time series. Oecologia. 2008; 156:287–304. 
[PubMed: 18322705] 

31. Gouhier, T. Biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. 2014. (Version 0.17.4). 
Available from http://github.com//tgouhier/biwavelet

32. Torrence C, Compo GP. A practical guide to wavelet analysis. Bulletin of the American 
Meteorological Society. 1998; 79:61–78.

33. Bjørnstad ON, Ims RA, Lambin X. Spatial population dynamics: analyzing patterns and processes 
of population synchrony. Trends in Ecology & Evolution. 1999; 14:427–432. [PubMed: 10511718] 

34. Law B, et al. Flowering phenology of myrtaceous trees and their relation to climatic, environmental 
and disturbance variables in northern New South Wales. Austral Ecology. 2000; 25:160–178.

35. Bolker BM, et al. Generalized linear mixed models: a practical guide for ecology and evolution. 
Trends in Ecology & Evolution. 2009; 24:127–135. [PubMed: 19185386] 

36. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach 
to multiple testing. Journal of the royal statistical society Series B (Methodological). 1995; 
57:289–300.

37. Pyper BJ, Peterman RM. Comparison of methods to account for autocorrelation in correlation 
analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences. 1998; 55:2127–2140.

38. Bates D, et al. Fitting linear mixed-effects models using lme4. Journal of statistical software. 2014; 
67:1–48.

39. Birt, P. (PhD). The University of Queensland; Queensland, Australia: 2005. Mutualistic 
Interactions Between the Nectar-Feeding Little Red Flying Fox Pteropus Scapulatus (Chiroptera: 
Pteropodidae) and Eucalypts: Habitat Utilisation and Pollination. 

40. Ostfeld RS, Keesing F. Effects of host diversity on infectious disease. Annual Review of Ecology, 
Evolution, and Systematics. 2012; 43:157–182.

41. ProMED-mail Hendra virus, equine-Australia: (New South Walses). ProMED-mail. 2016 Dec 23. 
p. 20161223-4720721.(http://www.promedmail.org). Accessed 13 March 2016

42. Cattadori IM, Haydon DT, Hudson PJ. Parasites and climate synchronize red grouse populations. 
Nature. 2005; 433:737–741. [PubMed: 15716952] 

43. Rawal DS, et al. Herbarium records identify sensitivity of flowering phenology of eucalypts to 
climate: implications for species response to climate change. Austral Ecology. 2015; 40:117–125.

44. Eby P, et al. The distribution, abundance and vulnerability to population reduction of a nomadic 
nectarivore, the Grey-headed Flying-fox Pteropus poliocephalus in New South Wales, during a 
period of resource concentration. Australian Zoologist. 1999; 31:240–253.

45. Parry-Jones K, Augee ML. Food selection by grey-headed flying foxes (Pteropus poliocephalus) 
occupying a summer colony site near Gosford, New South Wales. Wildlife Research. 1991; 
18:111–124.

46. Law BS, Chidel M. Canopy nectar production and the impact of logging and climate in Grey 
Ironbark Eucalyptus paniculata (Smith) forests. Pacific Conservation Biology. 2009; 15:287–303.

47. Eby P. An analysis of diet specialization in frugivorous/textit Pteropus poliocephalus 
(Megachiroptera) in Australian subtropical rainforest. Australian Journal of Ecology. 1998; 
23:443–456.

48. Warburton EM, Pearl CA, Vonhof MJ. Relationships between host body condition and 
immunocompetence, not host sex, best predict parasite burden in a bat-helminth system. 
Parasitology Research. 2016; 115:2155–2164. [PubMed: 26898834] 

PÁEZ et al. Page 11

Epidemiol Infect. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com//tgouhier/biwavelet
http://www.promedmail.org


Fig. 1. 
Spatial and temporal variation in Hendra virus prevalence in Eastern Australia. The map 

(left) shows average prevalence across sites: bigger dots are higher prevalence and the light-

dark blue gradient represents low–high sampling intensity. The panel (right) shows the 

temporal variation in Hendra virus prevalence for 11 sites marked with ‘*’ in the map, 

chosen because of their large temporal representation. Sites are ordered from north (top) to 

south (bottom) and dot size is proportional to prevalence magnitude (green coloring are 

sampled data, whereas cream coloring are predicted prevalence values from a Bayesian 

imputation procedure described in the methods). The smallest dots are instances when 

Hendra virus prevalence = 0. Models estimating periodicity and synchrony employ data 

from January 2012 onwards. We show data starting from 2011 to emphasize the high 

prevalence observed in Boonah.

PÁEZ et al. Page 12

Epidemiol Infect. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Wavelet analyses of Hendra virus prevalence across sites. Top panels show periodicity in 

months as a function of time. Warmer areas show the wavelet power spectrum concentrating 

around the periodicities of high support. The white lines encircle areas with high confidence 

in the periodicity of Hendra virus prevalence. The shaded area outside the cone delimits 

times that may suffer from edge effects in the calculation of the wavelet power spectrum and 

we therefore do not interpret the results from these areas. Bottom panels show prevalence as 

a function of time (red dots indicate predicted values).
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Fig. 3. 
Amplitude of the highest annual pulse as a function of its timing. Hendra virus peaks are 

mostly clustered around 5–7 months (May–July; the austral winter) as suggested by the best 

fit quadratic line. However, including the point marked by the white asterix results in a non-

significant relationship between peak magnitude and timing. Gray shading shows different 

years.
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Fig. 4. 
Synchrony of Hendra virus prevalence across sites. Top figure shows pairwise correlation 

coefficients between time series of Hendra virus prevalence as a function of geographical 

distance, whereas the bottom figure shows pairwise correlations of the change in Hendra 

virus prevalence. Solid line is fit from a spline regression model with 95% confidence 

intervals delineated by the dotted lines and obtained from a bootstraping procedure.
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Fig. 5. 
Effect of climatic and biotic variables on the amplitude of the highest annual pulse of 

Hendra virus prevalence. Top left shows the effect of the mean natural logarithm of Pteropus 
alecto counts (abundance) on pulse magnitude over the month when the pulse occurred. Top 

right and bottom panels show the effect of previous precipitation on pulse timing and pulse 

amplitude. In all panels, the solid line was obtained from the model fit.
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