
Joint Influence of SNPs and DNA Methylation on Lipids in 
African Americans From Hypertensive Sibships

Michelle L. Wright, PhD, RN1, Erin B. Ware, PhD, MPH2, Jennifer A. Smith, PhD, MPH3, 
Sharon L. R. Kardia, PhD4, and Jacquelyn Y. Taylor, PhD, PNP-BC, RN, FAHA, FAAN5

1Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA

2Institute for Social Research, University of Michigan, Ann Arbor, MI, USA

3School of Public Health and Institute for Social Research, University of Michigan, Ann Arbor, MI, 
USA

4School of Public Health, University of Michigan, Ann Arbor, MI, USA

5Rory Meyers College of Nursing, New York University, New York, NY, USA

Abstract

Introduction—Plasma concentrations of lipids (i.e., total cholesterol, high-density cholesterol, 

low-density cholesterol, and triglycerides) are amenable to therapeutic intervention and remain 

important factors for assessing risk of cardiovascular diseases. Some of the observed variability in 

serum lipid concentrations has been associated with genetic and epigenetic variants among cohorts 

with European ancestry (EA). Serum lipid levels have also been associated with genetic variants in 

multiethnic populations.

Methods—The purpose of this study was to determine whether single-nucleotide polymorphisms 

(SNPs) and DNA methylation (DNAm) differences contribute to lipid variation among African 

Americans ([AAs], N = 739) in the Genetic Epidemiology Network of Arteriopathy (GENOA) 

study.
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Results—Previous meta-analyses identified 161 SNPs that are associated with lipid traits in 

populations of EA. We evaluated these SNPs and 66 DNAm sites within the genes containing the 

SNPs in the GENOA cohort using linear mixed-effects modeling. We did not identify any 

significant associations of SNPs or DNAm with serum lipid levels. These results suggest that the 

SNPs identified as being significant for lipid levels through the EA genome-wide association 

studies may not be significant across AA populations.

Conclusions—Reductions in morbidity and mortality due to variation in lipids among AAs may 

be achieved through a better understanding of the genetic and epigenetic factors associated with 

serum lipid levels for early and appropriate screening. Further large-scale studies specifically 

within AA and other non-EA populations are warranted.
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In the United States, African Americans (AAs), or those of African ancestry, face significant 

disparities for multiple chronic health conditions. When compared to those of European 

ancestry (EA), AAs fare worse over many indices associated with cardiovascular disease 

including (1) highest incidence and prevalence of hypertension, obesity, and diabetes; (2) 

highest death rates from heart disease and stroke; and (3) shorter life expectancy (Meyer, 

Yoon, & Kaufmann, 2013). Individuals’ health outcomes and life expectancy are strongly 

influenced by the characteristics of their environment (Yoon, Bastian, Anderson, Collins, & 

Jaffe, 2014). Accordingly, health disparities among AAs have been associated with genomic 

underpinnings (Taylor, Sun, Hunt, & Kardia, 2010), social inequalities (Taylor et al., 2012), 

disproportionate burdens of pollution (Taylor, Wright, & Housman, 2016), and unequal 

access to quality health care (Hynes & Lopez, 2012).

Serum lipid levels (i.e., total cholesterol [cholesterol], low-density lipoprotein [LDL] 

cholesterol, high-density lipoprotein [HDL] cholesterol, and triglycerides) differ between 

AAs and their counterparts of EA (Wright, Housman, & Taylor, 2016). AA individuals tend 

to have lower levels of triglycerides and cholesterol and higher levels of HDL than EA 

individuals (de Ferranti et al., 2016; Mozaffarian et al., 2015). Variations in lipid levels 

between these groups may be attributed to genetic or epigenetic differences. Although a 

number of genome-wide association studies (GWAS) have identified independent effects of 

risk alleles for hypertension and other chronic diseases among AA populations, very few 

studies have used multiple omic methods together, such as single-nucleotide polymorphisms 

(SNPs) and DNA methylation (DNAm), to explore the contribution of both genetic and 

environmentally mediated (via DNAm) influences on phenotypic expression of disease 

(Taylor, Wright, Crusto, & Sun, 2016).

In large-scale GWASs evaluating genetic variations that contribute to the heritability of 

serum lipid levels in populations of EA (N = 100,184; Teslovich et al., 2010) and mixed 

ancestry (N = 188,577; Willer et al., 2013), researchers identified 161 SNPs that are 

significantly associated with serum lipid levels. In their replication GWAS study, Willer et 

al. also identified significant associations between some of these 161 SNPs and various 

clinical outcomes including body mass index (BMI), blood pressure, and Type 2 diabetes. 
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Teslo- vich et al., however, in one of the original studies that assessed replicability among 

other populations, found that a lower proportion of these SNPs were associated with 

abnormal lipids in groups of AA compared to groups of South and East Asian ancestry 

groups. To date, no follow-up on the modest SNP replication from the most recent GWAS 

studies of serum lipid levels in AA cohorts has been published. These data are alarming as 

diseases associated with altered lipids (e.g., stroke, heart disease, obesity) disproportionately 

affect AAs, and lipids in AAs are less likely to be responsive to therapy than they are in their 

counterparts of EA (Goff, 2006). Given that plasma con-centrations of lipids are amenable to 

therapeutic intervention and remain among the most important factors for assessing risk of 

cardiovascular diseases, it is important to elucidate molecular mechanisms that may 

contribute to variation among AA cohorts (Teslovich et al., 2010; Willer et al., 2013).

Epigenetic differences may also be important risk factors for lipid variations that contribute 

to multiple disease processes. Cell types have unique epigenetic signatures that add further 

programming information with strong consequences for cellular activity with downstream 

effects such as which proteins will be produced (Jenuwein & Allis, 2001). Researchers 

conducting epigenome-wide association studies in AA cohorts have identitled DNAm 

differences associated with age (Smith et al., 2014), sex (Sun et al., 2010), BMI (Demerath 

et al., 2015), cigarette smoking (Joehanes et al., 2016; Klebaner et al., 2016; Sun, Smith, et 

al., 2013; Taylor, Schwander, et al., 2016), and inflammatory markers (Bomotti et al., 2013; 

Ligthart et al., 2016; Sun, Lazarus, et al., 2013). However, few studies have evaluated the 

relationships between DNAm and serum lipid levels among AAs. Of the studies that have 

been published, none were designed to evaluate DNAm related to lipids specifically within 

an AA cohort.

We hypothesized that interactions between genetic and epigenetic factors contribute to 

serum lipid variation among AAs. In this study, we (1) examined the influence of 161 

genetic loci previously identified as being associated with lipids among those of EA in an 

AA cohort from the Genetic Epidemiology Network of Arteriopathy (GENOA) study, (2) 

examined the influence of DNAm at the genes associated with those 161 loci on lipids, and 

(3) integrated findings from (1) and (2) into a multivariable model of the joint effects of lipid 

SNP variants, DNAm, and clinical outcomes associated with variation in serum lipid levels 

including evaluation of interactions.

Material and Method

Sample

We completed this secondary data analysis on a subset of participants from the GENOA 

study. The GENOA study had previously obtained institutional review board approval via 

the University of Mississippi Medical Center and University of Michigan. Data collection 

methods were completed in accordance with the approved guidelines. GENOA is a 

community-based prospective study that recruited participants from sibships with two or 

more siblings who were diagnosed with primary hypertension prior to age 60 and self-

identified as AA. All members of the sibship were invited to participate, regardless of 

hypertension status. In Phase I (1995–2000), 1,854 AA participants from 683 sibships from 

the Jackson, Mississippi, area were recruited. In Phase II (2000–2005), 1,482 of the initial 
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subjects returned. Study visits were made in the morning after an overnight fast. Each 

participant was interviewed by trained study personnel to collect demographic and medical 

history data as previously described (Daniels et al., 2004). A peripheral blood sample was 

also collected at Phase II, which was used to measure serum lipid and DNA methylation 

levels.

Measures

Demographic, anthropometric, and clinical measures—Complete clinical data for 

variables of interest in participants who had fasted for greater than 10 hr prior to peripheral 

blood sample collection were available for 1,243 participants from Phase II. Clinical 

variables included in this study were age, sex, prescription lipid/cholesterol medication use 

(yes/no), current cigarette smoker (yes/no), height (by wall stadiometer), weight (by 

electronic balance), serum cholesterol (mg/dl), serum HDL (mg/dl), serum LDL (mg/dl), 

and serum triglycerides (mg/dl). Serum cholesterol, HDL, and triglycerides were measured 

by standard enzymatic methods on a Hitachi 911 Chemistry Analyzer (Roche Diagnostics, 

Indianapolis, IN), and LDL cholesterol levels were calculated using the Friedewald formula 

(Friedewald, Levy, & Fredrickson, 1972).

Genotype measures—Of the 1,854 AA participants enrolled in Phase I, genotyping data 

were available for 1,599 participants. Participants were genotyped on the Affymetrix 

Genome-Wide Human SNP Array 6.0 or the Illumina Human 1M-Duo Bead-Chip. Samples 

were removed if they had a missing call rate ≥0.05 or a value ≥6 standard deviations from 

the mean of the first 10 genome-wide principal components (PCs) from the genotype data. 

SNPs with a missing call rate ≥0.05 were removed. Imputation for the Affymetrix-

genotyped and Illumina-genotyped samples was performed separately. For each, samples 

were prephased using the Segmented HAPlotype Estimation and Imputation Tool 

(SHAPEIT), Version v2.r, using HapMap Phase II b37. Imputation was performed using 

IMPUTE, Version 2. The imputation reference panels are from the 1,000 Genomes Project’s 

Phase I integrated variant set release (v3) in NCBI build 37 (hg19) coordinates (released in 

March 2012). Since the two genotyping platforms contain only a small number of 

overlapping SNPs (* 200,000), association analyses were performed using imputed data 

only. We used the aforementioned overlapping SNPs to calculate the genetic PCs instead of 

a limited number of ancestry informative markers. The top four genetic PCs were estimated 

and used in analyses to control for population stratification.

Methylation measures—Peripheral blood leukocytes were isolated from stored blood 

samples of 1,008 Phase II AA participants and used to measure DNAm levels. The EZ DNA 

Methylation Gold Kit (Zymo Research, Orange, CA) was used for bisulfite conversion. The 

methylation assay was performed at the Mayo Clinic Advanced Genomics Technology 

Center using Illumina® Infinium HumanMethylation27 BeadChips and Illumina BeadXpress 

reader. As a quality control, seven samples were excluded from analysis due to poor bisulfite 

conversion efficiency (intensity <4,000). An additional 28 samples were removed because of 

poor background signals, leaving a total of 973 samples. The lumi package (Du, Kibbe, & 

Lin, 2008) in R software was used for background adjustment, color balance adjustment, and 

quantile normalization. Thirty samples were removed because <95% of probes had a 
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detection p value <.01, and two were excluded because the predicted gender based on DNA 

methylation did not match with the reported gender, leaving a total of 941 samples. Analyses 

for this study were conducted on participants who had completed clinical, genotyping, and 

DNAm data (Figure 1, N = 739).

Gene Selection

We selected a total of 161 index SNPs that were significantly associated (p <5 × 10−8) with 

at least one lipid trait (total cholesterol, HDL, LDL, or triglycerides) from two large GWAS 

meta-analyses among EA cohorts (Teslovich et al., 2010; Willer et al., 2013). We then 

selected all DNAm sites that were within genes that contained an index SNP (i.e., SNP was 

within the gene or within 5 kB of the start or stop position of the gene), for a total of 66 

DNAm sites in 36 genes.

Statistical Methods

For all outcome and independent variables, we examined the distributions of continuous 

measures. The serum HDL and triglyceride levels were not normally distributed and were 

natural log transformed prior to analysis to reduce the skewness and kurtosis. GENOA SNP 

allele frequencies were compared to the previous allele frequencies reported in EA GWAS 

studies looking at lipids (Teslovich et al., 2010; Willer et al., 2013) and to the 1,000 

Genomes Project’s build 37 SNP allele frequencies for Americans of African descent (ASW, 

http://grch37.ensembl.org/Homo_sapiens/Info/Index, Supplementary Table 1).

Then, we examined the 161 SNPs from previous lipid GWAS studies completed in 

individuals with EA to determine whether the findings were replicated in this AA cohort. We 

completed a series of linear mixed-effects models for the four outcome variables: total 

cholesterol, serum LDL, serum HDL, and triglycerides. We analyzed minimal-(Model 1) 

and full-adjustment (Model 2) models. Model 1 included age, sex, and the top four genetic 

PCs to control for population stratification and also included sibship modeled as a random 

effect. Model 2 also included BMI and lipid medication use. SNP genotypes were dummy 

coded to represent the additive and dominance deviation of each variation (i.e., for 

genotypes BB, Bb, and bb, we created two dummy variables X1 and X2, where X1 = 1,0, − 1 

and X2 = 0, −1, 0; Falconer & Mackay, 1996) and were tested for association with each lipid 

measure separately.

We also examined the association between each of the 66 DNAm sites and lipids 

(Supplementary Table 2). M values, calculated as the log2 ratio of the intensities of 

methylated probe versus unmethylated probe, were calculated for each DNAm site. Positive 

M values mean that more molecules are methylated than unmethylated, while negative M 

values mean the opposite (Du et al., 2010). We used the M value of DNA methylation levels 

because the b value has a bounded range from 0 to 1 that violates the Gaussian distribution 

assumption (Du et al., 2010). We first adjusted each DNAm site for peripheral blood cell 

heterogeneity using the Houseman correction method and technical covariates (i.e., DNAm 

chip and position; Houseman et al., 2012; Houseman, Molitor, & Marsit, 2014). We then 

used linear mixed effect models to analyze each adjusted DNAm site, using Models 1 and 2 

as outlined above but also controlling for smoking status in both models.
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To assess interaction effects, we carried forward SNP and DNAm sites with p values <. 1. 

We chose, a priori, to carryforward sites with a less stringent p value because if there is a 

statistical interaction, a marginally significant main effect would be expected. Second, we 

suspected we would not have a high number of sites reaching significance with a false 

discovery rate (FDR) <0.05 because our sample size is small relative to previous GWAS 

studies. For genes that had both an SNP and a DNAm value of p < .1, we evaluated 

interaction effects using Model 2. All analyses were completed using R statistical computing 

environment (https://www.r-project.org/). To control for multiple comparisons, we 

determined significance using an FDR of <0.05 (Benjamini & Hochberg, 1995).

Results

The sample was comprised of self-identified AA men and women. Demographic data are 

listed in Table 1. Participants were predominately female, older, obese, and had lipid levels 

consistent with those previously described among AAs (Meyer et al., 2013). Although there 

were statistically significant differences in total cholesterol and HDL levels by sex, the 

differences were not of clinical significance (i.e., trait levels were not pathologic in one 

group vs. nonpathologic in the other), nor were there differences in SNP or DNAm findings 

(data not shown) when analyses were run separately by sex. Results presented here include 

both males and females within the same cohort, controlling for sex statistically as a 

covariate, per models described above. We did not identify any significant associations 

between the 161 SNPs and any of the four serum lipid levels, nor between DNAm and serum 

lipid levels after controlling for multiple comparisons (Table 2). Three SNP with 

corresponding DNAm sites had nominal p values of <. 1 within the same gene (two with 

serum HDL and one with serum LDL) and were carried forward for interaction analyses. We 

detected no significant interaction effects among these SNPs and DNAm sites (Table 3).

Discussion

It is well known that ancestry contributes to genetic risk of disease. However, most studies 

evaluating genetic and epigenetic risk of disease are primarily completed using cohorts with 

EA. Similar to a study conducted by Deo and colleagues (2009), who did not find any strong 

contribution to lipid levels among AAs of genetic variants found to be associated with lipid 

levels in EA cohorts, we did not identify any significant associations between the 161 SNPs 

significant to lipid levels among the EA cohorts in our AA cohort. Deo and colleagues 

suggest that additional fine mapping is necessary, specifically within AA cohorts, because 

both global and local ancestries may alter how strongly SNPs contribute to phenotypic 

variation. For example, they found that ancestry did have a significant association with 

serum levels of triglycerides and LDL, but they could not identify any genes with strong 

associations to explain the variation. They postulate that gene-gene epistatic effects could 

explain some of the difficulty associating specific genetic variants with variation in lipid 

levels between ancestry groups. Conversely, Dumitrescu and colleagues (2011) determined 

that approximately half of the SNPs identified in earlier studies among EA individuals could 

be generalized to an AA population. However, similar to Deo et al.’s findings, Dumitrescu et 

al. conceded that the SNPs identified and indexed in EA studies may only represent tagging 

SNPs among individuals with EA and may not be functional variants for lipids. If the SNPs 

Wright et al. Page 6

Biol Res Nurs. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.r-project.org/


identified in previous EA studies are not of functional relevance, it could also explain some 

of the limited replicability of these findings observed in genetic studies among AA cohorts. 

The differing patterns of linkage disequilibrium that exist between ancestry backgrounds add 

credence to the argument that additional genetic studies must be completed specifically 

within non-EA cohorts.

Similar to our SNP findings, we did not detect any significant association between DNAm 

and lipid levels within our cohort. In a recent study using an EA cohort, Hedman et al. 

(2017) observed associations of 33 DNAm sites with serum lipid levels. In their initial 

analysis of DNAm data produced using the Illumina 450 K array, the authors discovered an 

association with lipid levels at 193 DNAm sites. The number of DNAm sites that remained 

significant after controlling for BMI decreased to 80, nine of which were unique to the BMI-

adjusted analysis. Hedman and colleagues repeated the analyses in three separate EA cohorts 

and determined that 33 DNAm sites replicated across all cohorts. Similar to the studies 

analyzing SNPs related to lipids, these researchers also found that 15% of the DNAm sites 

were associated with expression changes in genes adjacent to where the differential 

methylation occurred. They also noted that these results suggest that there are underlying 

linkages between the genes and methylation networks that contribute to lipid levels as 

opposed to a single variant altering expression alone. The large sample size of the study 

allowed for the team to capture some variants within SNP and DNAm linked networks (i.e., 

cis-meQTL SNPs); however, the study was not designed to evaluate these findings among 

diverse populations. The results from our study suggest that DNAm that may be associated 

with lipids among AA cohorts may differ from that identified in studies of populations with 

EA.

We sought to identify potential explanations for the lack of reproducibility between the EA 

GWAS studies and our AA cohort. First, our cohort of 739 individuals may not have been 

large enough to detect significant contributions of SNP or DNAm variation to serum lipid 

variability. However, we did not take a genome-wide approach to either the SNP or DNAm 

analysis, greatly reducing the number of independent tests. Nonetheless, even using a 

targeted approach, we did not observe significant contributions to serum lipid levels by the 

selected set of SNPs or corresponding DNAm sites. Second, our minor allele frequencies 

differed from those of the original studies, as would be expected. Of note, 20% (33/161 

SNPs) of the alleles significantly associated with lipid levels among EA cohorts are not the 

same alleles among AAs in the 1,000 Genomes Project or our GENOA cohort; meaning that 

the minor allele in the EA population is the major allele in the AA population or vice versa. 

Additionally, 12% (20/161 SNPs) of the alleles associated with lipid levels in the EA 

population are present in less than 5% of AAs in our GENOA cohort, which would make it 

difficult to detect an association in a small cohort of 739 individuals (see Supplementary 

Table 1 for detailed information of allele frequencies among EA and AA cohorts). Lastly, 

our data set contains DNAm array data from the 27 K array, which interrogates a fraction of 

the sites found on the more recent Illumina 450 K and EPIC arrays. The sites associated with 

lipid levels in the more recent study may not have been included on the 27 K array or 

associated with the SNP sites we evaluated.
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Conclusions

Although the results in this study were not statistically significant among the loci examined, 

they do provide a platform for future work in this important area of inquiry among AAs 

disproportionately affected by health disparities associated with lipids. The approach we 

applied in this study may be used to evaluate omic variation that contributes to 

cardiovascular disease via different mechanisms, such as angiotensinogen expression. In 

fact, scientists conducting work in health disparities have noted the emergent need for 

increased testing and screening among AAs for serum lipid levels (Wright et al., 2016). 

Inclusivity approaches with diverse populations and future multi-omic work is critical for 

understanding the physiological and environmental factors influencing health disparities 

among AAs and other non-EA groups. Once the key omic and environmental factors are 

identified, health providers will be better equipped to develop and implement interventions 

that are based on individuals’ unique needs. Nurses and nurse scientists are well trained to 

examine health disparities using omic approaches to improve health (Starkweather et al., 

2017; Taylor, Wright, Hickey, & Housman, 2017). Their unique skills in clinical 

translational science would be well utilized in omics-based care for reductions in health 

disparities. Future multi-omic studies that take into account environmental and omic data 

will help to identify variants in additional pathways that could contribute to differences in 

disease risk among different racial and ethnic groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Data inclusion process. The analyses for this study were conducted on individuals who had 

complete clinical, single-nucleotide polymorphism (SNP), and DNA methylation (DNAm) 

data. GENOA = Genetic Epidemiology Network of Arteriopathy study.
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Table 1

Participant Characteristics.

Variable M (SD)

Age, years 66.95 (7.34)

BMI, kg/m2 31.44 (6.46)

Total cholesterol, mg/dl 204.90 (41.44)

LDL, mg/dl 122.85 (38.63)

HDL, mg/dl   58.66 (18.22)

Triglycerides, mg/dl 116.95 (55.80)

n (%)

Sex, female   536 (72.5)

Smoker, yes   77 (10.4)

Lipid medication, yes 155 (21.0)

Clinically significant lipid levels

 Total cholesterol > 240 mg/dl 138 (18.7)

 LDL > 160 mg/dl 121 (16.4)

 HDL < 40 mg/dl   98 (13.3)

 Triglycerides > 150 mg/dl 154 (20.8)

Note. N = 739. BMI = body mass index; HDL = serum high-density lipoprotein; LDL = serum low-density lipoprotein.
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Table 2

Number of Significant SNPs and DNAm Sites in Sample by Outcome.a

Number of SNPs (%)

Outcome p < .1 p < .05 p < .01

Total cholesterol

 Model 1b 21 (13) 13 (8) 2 (1)

 Model 2c 23 (14) 14 (9) 3 (2)

HDL

 Model 1 14 (9)   7 (4) 2 (1)

 Model 2 14 (9)   6 (4) 3 (2)

LDL

 Model 1 17 (11) 11 (7) 1 (1)

 Model 2 17 (11) 10 (6) 1 (1)

Triglycerides

 Model 1 18 (11)   7 (4) 0 (0)

 Model 2 16 (10)   8 (5) 0 (0)

Number of DNAm sites (%)d

Total cholesterol

 Model 1   7 (11) 4 (6) 0 (0)

 Model 2   8 (12) 4 (6) 1 (2)

HDL

 Model 1 11 (17) 8 (12) 1 (2)

 Model 2 11 (17) 6 (9) 2 (3)

LDL

 Model 1   9 (14) 5 (8) 0 (0)

 Model 2 10 (15) 6 (9) 0 (0)

Triglycerides

 Model 1   3 (5) 1 (2) 0 (0)

 Model 2   3 (5) 1 (2) 0 (0)

Note. DNAm = DNA methylation; HDL = high-density lipoprotein; LDL = low-density lipoprotein; SNP = single-nucleotide polymorphism.

a
None of the associations were significant when controlling for multiple testing (false discovery rate [FDR] < 0.05).

b
Model 1 controls for age, sex, sibship, and genetic principal components.

c
Model 2 controls for Model 1 covariates and body mass index, lipid medication, and smoking.

d
DNAm sites were adjusted for peripheral blood cell heterogeneity using the Houseman correction method and technical covariates (DNAm chip 

and position).
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