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Abstract

Background—Exposure to pollution from motor vehicles in early life may increase 

susceptibility to common pediatric infections.

Methods—We estimated associations between residential exposure to primary fine particulate 

matter (PM2.5), nitrogen oxides (NOx), and carbon monoxide (CO) from traffic during the first 

year of life and incident pneumonia, bronchiolitis, and otitis media events by age two years in 

22,441 children from the Kaiser Air Pollution and Pediatric Asthma Study, a retrospective birth 

cohort of children born during 2000–2010 and insured by Kaiser Permanente Georgia. Time to 
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first clinical diagnosis of each outcome was defined using medical records. Exposure to traffic 

pollutants was based on observation-calibrated estimates from A Research LINE-source dispersion 

model for near surface releases (RLINE) and child residential histories. Associations were 

modeled using Cox proportional hazards models, with exposure as a continuous linear variable, a 

natural-log transformed continuous variable, and categorized by quintiles.

Results—During follow-up 2,181 children were diagnosed with pneumonia, 5,533 with 

bronchiolitis, and 14,373 with otitis media. We observed positive associations between early-life 

traffic exposures and all three outcomes; confidence intervals were widest for pneumonia as it was 

the least common outcome. For example, adjusted hazard ratios for a 1-unit increase in NOx on the 

natural log scale (a 2.7-fold increase) were 1.19 (95% CI 1.12, 1.27) for bronchiolitis, 1.17 (1.12, 

1.22) for otitis media, and 1.08 (0.97, 1.20) for pneumonia.

Conclusions—Our results provide evidence for modest, positive associations between exposure 

to traffic emissions and common pediatric infections during early childhood.
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Introduction

Pneumonia, bronchiolitis, and otitis media are common pediatric infections with a large 

economic burden. Pneumonia is the second leading cause of infant mortality globally and in 

2009 was the leading cause of pediatric hospitalization in the U.S. with associated medical 

costs amounting to almost $1 billion1, 2. In 2002, an estimated 149,000 children under the 

age of two in the U.S. were hospitalized for bronchiolitis resulting in $543 million in direct 

medical costs and $1.4 billion in hospital charges3. An estimated 8.7 million children are 

diagnosed with otitis media annually in the U.S., with an associated cost of $2.88 billion in 

health care utilization 4.

Due to their size, inhalation rates, incomplete development of the respiratory and immune 

systems, and time spent outdoors, children are more vulnerable to urban air pollutants than 

adults5. Recent epidemiologic evidence suggests traffic-related air pollution may be a risk 

factor for respiratory infections and related comorbidities in infants and children6–12. 

Secondary pollutants including ozone and particulate matter were found to be significantly 

associated with increased risk for bronchitis, pneumonia, and otitis media in a case crossover 

study of Georgia pediatric emergency department visits during 2002–200813. Jedrychowski 

and colleagues reported a dose-response relationship between recurrent bronchiolitis and 

pneumonia infections and PM2.5 at the child’s prenatal residence in Krakow, Poland14. In 

British Columbia, Canada, infants living within 50 meters of a highway had a 6% higher risk 

of bronchiolitis diagnosis, and infants living within 150 m of a highway had a 14% higher 

risk of hospitalization for respiratory syncytial virus (RSV) bronchiolitis infection; however, 

the confidence intervals for both estimates included the null15, 16. Another proximity study 

observed a statistically significant increased risk of bronchiolitis clinical encounters for 

infants living in areas of dense traffic, but found chronic PM2.5 exposure alone was not 

meaningfully associated with infant bronchiolitis17. A meta-analysis of 10 European birth 
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cohorts found elevated and statistically significant associations between NO2 and PM10 with 

pneumonia in early childhood, but not PM2.5
18. Reductions in traffic emissions over a 20-

year period [1993–2012] were associated with decreases in pediatric bronchitis diagnosis 

and hospitalizations in Southern California19. Modest, positive associations between NOx, 

PM2.5, and PM10 with otitis media among children have been reported in several 

studies18, 20, 21,22,23 but not others 11,24.

In this paper, we report estimated associations between fine particulate matter (PM2.5), 

carbon monoxide (CO), and nitrogen oxides (NOx) concentrations from traffic during the 

first year of life and childhood pneumonia, otitis media, and bronchiolitis by age two in a 

cohort of insured children in Atlanta, Georgia.

Methods

Ambient air quality model

We modeled hourly concentrations of primary PM2.5 (μg/m3), CO (ppm), and NOx (ppb) 

contributed by mobile sources for 2002–2011 in metropolitan Atlanta at 250 meter 

resolution using A Research LINE-source dispersion model for near surface releases 

(RLINE)25. This model is designed to estimate air quality emissions from traffic in the direct 

vicinity of the roadway by numerically integrating point source emissions while also 

accounting for local meteorological conditions that affect dispersion patterns. Model inputs 

included emissions data for roadway segments based on 2010 traffic data from the Atlanta 

Regional Commission’s Atlanta Roadside Emissions Exposure Study and surface 

meteorology data for 2002–2010 from AERMET, the meteorological processors of 

AERMOD26,27. We created annual averages from the hourly estimates, and these averages 

were used in the epidemiologic analyses. The averages were calibrated using observational 

data from stationary air pollution monitors to adjust for overestimation of spatial gradients. 

Estimates of NOx and CO were calibrated directly to observations because an estimated 73% 

and 88% of these pollutants, respectively, are contributed by mobile sources28. A smaller 

proportion of PM2.5 is contributed by mobile sources, so primary PM2.5 was calibrated to 

source apportionment estimates based on monitoring data that were created using a chemical 

mass balance model with gas constraints29. Annual average pollutant concentrations were 

created for years 2002–2011. Because the spatial characteristics of the study area (number/

location of highways, traffic density, etc.) did not change meaningfully between 2000 and 

2002, we assigned the year 2002 estimates to the study years prior to 2002, i.e., 2000 and 

200128. RLINE does not include mechanisms forming secondary PM2.5, so only the 

associations with the primary portion of the PM2.5 are assessed here. Further details about 

the creation of these air pollution estimates are available28.

KAPPA cohort data

The Kaiser Air Pollution and Pediatric Asthma Study (KAPPA) is a retrospective birth 

cohort of children insured by Kaiser Permanente Georgia (KPGA) Health Maintenance 

Organization who were born between 2000 and 2010 in metropolitan Atlanta, Georgia. 

There were 24,608 children in the KAPPA cohort and 22,441 were included in this analysis. 

Children were excluded if they were not enrolled in KPGA at day 29 of life (the start of the 
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outcome period of interest) (n=489); were diagnosed with pneumonia, bronchiolitis, or otitis 

media in the first 28 days of life (n=223); had no residential history information in the first 

year of life (n=721); or had one or more residence during the exposure period outside the 

region for which pollutant concentrations were available (n=734).

The three health outcomes examined in this study were childhood pneumonia (ICD-9 codes 

480–486), otitis media (ICD-9 codes 382.XX), and acute bronchitis and bronchiolitis (ICD-9 

codes 466.XX). Because 80% of the events in the acute bronchitis and bronchiolitis outcome 

group were bronchiolitis (ICD-9 codes 466.1X), we refer to this outcome henceforth as 

“bronchiolitis.” For each outcome we followed children from day 29 of life (to exclude 

neonatal infections) until time of the first diagnosis, censorship (e.g., they ceased to be 

insured by the HMO), or the child’s second birthday. Ambient concentrations of primary 

PM2.5, CO, and NOx from traffic were assigned to each child based on residential location. 

We calculated separate estimates for each outcome using residences between the child’s 

birth date and date of diagnosis of the outcome of interest, censorship, or their first birthday 

(whichever came first). When a child moved during the exposure period we calculated a 

time-weighted average of the estimated concentrations at each location.

Description of covariates

We adjusted for neighborhood socioeconomic status (SES), city region, child race, child sex, 

maternal asthma, maternal education, maternal prenatal smoking, birth year and maternal 

age in the analyses. Because the RLINE estimates are for annual averages, there is no 

seasonality in exposure concentrations, and hence no confounding by season. Neighborhood 

SES was characterized at the census block group level by demographic clusters created by 

the Georgia Department of Public Health30. These clusters were created using 2010 U.S. 

Census data on 25 variables related to age, income, family structure, housing, education 

attainment and employment. Neighborhood SES was determined for each child based on 

residence at birth. City region described the location of the child’s residence in Atlanta: 

inside metropolitan Atlanta (defined as inside the I-285 highway that surrounds the city), 

less than or equal to 16 kilometers outside I-285, and more than 16 kilometers outside I-285. 

Categorizations of other covariates were: child race (white, black, other, unknown), maternal 

asthma status (no, yes, missing), maternal education (less than 12th grade, high school of 

GED, at least some college, missing), maternal smoking during pregnancy from birth 

certificate data (no, yes, missing), birth year indicator variables (2000–2010), maternal age 

dichotomized at the mean, and child sex (male, female).

Statistical modeling

We used Cox proportional hazards (PH) regression to estimate associations between first 

year of life exposure to primary PM2.5, CO and NOx from traffic emissions and time to first 

diagnosis of pneumonia, bronchiolitis, or otitis media (up until age two). The PH assumption 

was evaluated using Kaplan Meier log-log curves, goodness of fit (GOF) tests using 

Schoenfeld residual p values, and extended Cox models to test each variable’s interaction 

with survival time. Variables satisfying the PH assumption according to (at least) 2 of these 

three approaches in univariate models were deemed to satisfy the PH assumption. Variables 

not satisfying the PH assumption were further evaluated in adjusted PH models. We used 

Kennedy et al. Page 4

Environ Epidemiol. Author manuscript; available in PMC 2018 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stratified Cox models to accommodate variables that did not satisfy the PH assumption. As 

expected, the pollutant exposure distributions were right skewed, which motivated an 

examination of modeling exposures as continuous linear variables (scaled to 1 μg/m3 PM2.5, 

20 ppb NOx, and 1 ppm CO), as natural log-transformed continuous variables, and by 

quintiles. Data were analyzed using SAS 9.4 (Cary, NC) allowing for non-independence due 

to sibling clustering via the robust sandwich estimator implemented by the 

“covs(aggregate)” statement in PROC PHREG.

Results

Annual average estimates for primary PM2.5, NOx, and CO from traffic are shown in Figure 

1, eFigure 1, and eFigure 2. Concentrations of the three examined air pollutants decreased 

over the course of the study period. Descriptive statistics on first year of life air pollution 

exposures from traffic are shown in Table 1. Pollutant concentrations were highly correlated 

because they were modeled using the same emissions data.

Cohort characteristics are shown in Table 2. The cohort was racially diverse, with 39.5% of 

children classified as white, 34.9% as black, and the remaining classified as unknown or 

other race. The majority of children were born to mothers who attended at least some college 

and lived in neighborhoods classified as high SES. Out of the three outcomes examined by 

the second birthday, otitis media was the most common; during follow-up 2,181 children 

(9.7%) were diagnosed with pneumonia, 5,533 children (24.7%) were diagnosed with 

bronchiolitis, and 14,374 children (64.1%) were diagnosed with otitis media. Males were 

more likely than females to be diagnosed with a respiratory or ear infection by age two. 

Examining differences by race, black children were more likely to be diagnosed with 

pneumonia, and white children were more likely to be diagnosed with bronchiolitis or otitis 

media. Seasonal variation in diagnosis was observed, with the highest proportion of 

diagnoses occurring in winter for all outcomes (38% of pneumonia cases, 44% of 

bronchiolitis cases, and 34% of otitis media cases).

Neighborhood SES violated the proportional hazards assumption for both bronchiolitis and 

otitis media, child race violated the PH assumption for bronchiolitis, and city region violated 

the PH assumption for otitis media. No variables violated the PH assumption for pneumonia. 

We therefore implemented stratified Cox models for the bronchiolitis and otitis media 

analyses.

Although the magnitude of the hazard ratios varied, overall conclusions were consistent 

from Cox models when exposure was modeled as a continuous linear variable (eTable 1) and 

as a natural log-transformed continuous variable (Table 3). For a log increase in exposure, 

unadjusted hazard ratios for all pollutants with pneumonia, bronchiolitis and otitis media 

ranged from 0.95 to 1.05 with confidence intervals including the null (HR=1.0) in all but one 

instance (Table 3). The association estimates were elevated after statistical adjustment for 

covariates. In the adjusted models for bronchiolitis, the hazard ratios ranged from 1.16 (95% 

CI 1.08, 1.25) for a 2.7-fold increase in CO (a 1-unit increase on the natural log scale), to 

1.23 (95% CI 1.15, 1.32) for a 2.7-fold increase in PM2.5. Adjusted hazard ratios were 

similar for otitis media. The adjusted HRs for pneumonia were also positive, but 95% 
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confidence intervals were wider because pneumonia was the least common outcome. For 

example, the adjusted HR for pneumonia for a 2.7-fold increase in log-transformed PM2.5 

was 1.08 (95% CI 0.97, 1.20).

When exposure was modeled using quintiles, we observed a general trend where the 

association estimates between primary PM2.5, NOx, and CO from traffic and bronchiolitis 

and otitis media by age 2 tended to increase as the exposure quintiles increased (Figure 2). 

This pattern was not evident for pneumonia. For bronchiolitis and otitis media, the shape of 

the exposure-response relationship across quintiles varied slightly, with the HRs increasing 

more rapidly for bronchiolitis than for otitis media.

Discussion

These results provide evidence for modest, positive associations between exposure to traffic 

emissions and bronchiolitis and otitis media diagnoses in the first two years of life. The 

estimated associations with pneumonia were positive but less elevated, and the confidence 

intervals were wider. Our findings add to evidence from earlier studies suggesting that early 

life exposures to traffic may increase susceptibility to childhood infections.

Misclassification of residential location in the KAPPA study is likely a small concern 

because the Kaiser Permanente Georgia HMO retains information on previous addresses, 

which enabled us to create time-weighted air pollution metrics. Although there is 

imprecision in the date of address change, simulations performed using KAPPA data to 

investigate the consequences of exposure measurement error due to residential mobility 

suggest that in this cohort this source of error likely causes only a small (2–10%) bias 

towards the null31. The calibrated RLINE estimates were shown in Zhai et al. (2016) to have 

good accuracy and precision; the calibration reduced normalized mean bias for all pollutants 

when compared to raw RLINE estimates (29% to 0.3% for PM2.5, 22% to −1% for CO, and 

303% to 43% for NOx). A limitation of this model is that traffic emissions data were only 

available for 2010. Although we used the network of regulatory monitors to calibrate the 

pollutant concentrations for the earlier years of the study, our air quality model would not 

have captured meaningful variability in traffic dynamics or intensity in the early years of our 

study period (2002–2009). However, we do not expect large changes in the spatial 

distribution of emissions to have occurred during or prior to this period as there were no 

major changes in freeways or major highways (calibration captures temporal changes, 

including impacts from the recession and emission controls). Additionally, due to the high 

correlation between estimates of PM2.5, NOx, and CO, we were unable to isolate their 

individual impacts. Our epidemiologic results are indicative of associations between traffic 

exposure and early life outcomes in this cohort rather than of the specific pollutants.

The outcomes of interest in this study were defined using ICD-9 codes from clinical 

diagnosis instead of parental self-report, which lessens the potential for recall bias and 

outcome misclassification. This is a strength of our study; much of the prior literature has 

relied either on parental self-report 6, 24, 32, 33, 34, 35 or on emergency department visits and 

hospitalizations11,15, 20, 23, 36, 37 which do not capture the less-severe morbidities that are 

treated in pediatric care offices. Even with these clinical records, however, it is very likely 
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that some children had one or more of the outcomes but were never seen by a doctor 

particularly due to the similar symptoms that these conditions can have to cold or flu. As 

such, the true incidence of these pediatric conditions is likely somewhat higher than what 

was captured by the medical records.

We used Cox proportional hazards regression to analyze the data, wherein we considered 

children to be at risk for illness until the date of their illness diagnosis or censorship (which 

occurred when a child reached age two or when they were no longer insured by Kaiser 

Permanente Georgia). Due to skewed exposure distributions, we modeled exposure as an un-

transformed continuous variable, transformed by the natural log, and by quintile to allow for 

a potential linear or non-linear relationship between exposure and outcome. Results from all 

modeling techniques led to similar conclusions.

The KAPPA cohort is not a random sample of children, as membership was limited to 

children with health insurance through Kaiser Permanente Georgia HMO. Broadly, the 

KAPPA children tended to be of higher SES than the general population, with 59% of 

mothers having at least some college education and 62% of children residing in 

neighborhoods classified as having the highest of the four SES categories (Table 2). We do 

not know if the estimated associations with traffic pollutants would have been different had 

our cohort consisted of a more socioeconomically diverse group of children. However, it is 

probable that certain factors that could plausibly lessen the exposure effects in this cohort, 

e.g., air conditioning use and good nutrition, were likely more common among KAPPA 

cohort children. One advantage of a relatively uniformly high socioeconomic cohort is that 

risk of bias from residual confounding by socioeconomic factors might be lower than if the 

cohort consisted of a more diverse sample of Atlanta children.

In this large urban birth cohort, we observed positive associations between concentrations of 

primary PM2.5, NOx, and CO from traffic emissions and childhood bronchiolitis and otitis 

media diagnoses. Associations with pneumonia were also positive, although the effect 

estimates were of relatively smaller magnitude, and the confidence intervals were wider. Our 

study, which integrates calibrated RLINE outputs with a rich dataset of pediatric clinical 

encounters from Kaiser Permanente Georgia, provides further evidence regarding the 

associations between traffic pollution and pediatric respiratory disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
2002–2011 Primary PM2.5 (μg/m3) concentrations contributed by mobile sources.
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Figure 2. 
Adjusted hazard ratios and 95% confidence intervals per quintile of primary PM2.5, NOx 

and CO from traffic and pneumonia, bronchiolitis, and otitis media by age 2 (using quintile 

1 as the reference group). Numeric results for this figure are available in eTable 2.
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Table 1

First year of life exposure to primary PM2.5, NOx and CO from traffic (N=22,441)

Pollutant Minimum Median (IQR) Maximum

PM2.5 (μg/m3) 0.06 1.41 (0.93) 13.76

NOx (ppm) 0.01 0.06 (0.04) 0.59

CO (ppm) 0.10 0.59 (0.38) 5.13

Exposures were estimated separately for each outcome, but were extremely similar across outcomes. To avoid unnecessary repetition only 
exposures calculated for pneumonia are displayed.
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Table 2

Descriptive statistics for children born between 2000–2010 and enrolled in Kaiser Permanente in the Atlanta, 

Georgia metropolitan area (n=22,441)

Characteristic (n, %) Pneumonia (%) Bronchiolitis (%) Otitis Media (%)

% Diagnosed 9.7 24.7 64.1

Child Sex

Male (11,409, 50.8%) 10.6 27.8 66.0

Female (11,032, 49.2%) 8.9 21.4 62.0

Neighborhood SES1

Highest SES (14,012, 62.4%) 9.6 25.9 65.6

Urban/Suburban (2,225, 9.9%) 10.1 20.6 57.9

Rural, average to low SES (1,087, 4.8%) 11.8 24.9 63.8

Lowest SES (5,114, 22.8%) 9.4 23.0 62.6

Child Race

White (8,857, 39.5%) 9.6 27.4 68.2

Black (7,833, 34.9%) 10.7 25.1 63.7

Other2 (2,720, 12.1%) 8.2 17.8 58.7

Unknown (3,031, 13.5%) 8.9 21.8 57.7

Maternal Asthma Status

No (17,736, 79.0%) 9.5 24.2 63.7

Yes (2,450, 10.9%) 11.8 30.8 71.2

Missing (2,255, 10.0%) 9.4 21.7 58.5

Maternal Education

At least some college (13,270, 59.1%) 9.6 25.3 65.6

Less than 12th grade (280, 1.2%) 14.3 22.9 66.8

High School or equivalent (2,564, 11.4%) 9.6 25.8 62.3

Missing (6,327, 28.2%) 9.9 22.9 61.4

Prenatal Smoking Status

No (17,636, 78.6%) 9.8 24.9 64.8

Yes (450, 2.0%) 12.0 27.8 64.2

Missing (4,355, 19.4%) 9.3 23.5 61.2

City Region3

Metro Atlanta (2,348, 10.5%) 9.5 20.4 60.6

≤16 km from metro Atlanta (9,629, 42.9%) 9.8 23.0 62.7

>16 km from metro Atlanta (10,464, 46.6%) 9.7 27.2 66.1

Maternal Age

Less than 28, or missing (6,963, 31.0%) 10.0 23.1 60.9

Between 28 and 31 (4,435, 19.8%) 9.6 26.5 65.3

Between 31 and 35 (5,922, 26.4%) 9.3 26.2 66.5

Greater than 35 (5,121, 22.8%) 9.9 23.4 64.4

1
Neighborhood SES classified using demographic clusters created by Georgia Department of Public Health.
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2
Includes Asian, American Indian, Alaska Native, Native Hawaiian or other Pacific Islander, and children identifying with more than one racial 

group.

3
Metro Atlanta defined as inside the I-285 perimeter that encircles Atlanta.
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