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Abstract

Recent findings from in-vivo imaging and human post-mortem tissue studies in schizophrenic 

psychosis (SzP), have demonstrated functional and molecular changes in hippocampal sub-fields 

that can be associated with hippocampal hyper-excitability. In this study, we used a subfield-

specific GluN1 knockout mouse with a disease-like molecular perturbation expressed only in 

hippocampal dentate gyrus (DG) and assessed its association with hippocampal physiology and 

psychosis-like behaviors. First, we used whole-cell patch clamp recordings to measure the 

physiological changes in hippocampal subfields and cFos immunohistochemistry to examine 

cellular excitability. DG-GluN1 KO mice show CA3 cellular hyperactivity, detected using two 

approaches: 1) increased excitatory glutamate transmission at mossy fibers (MF)-CA3 synapses, 

and 2) an increased number of cFos-activated pyramidal neurons in CA3, an outcome that appears 

to project downstream to CA1, and basolateral amygdala (BLA). Furthermore, we examined 

psychosis-like behaviors and pathological memory processing; these show an increase in fear 
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conditioning (FC), a reduction in prepulse inhibition (PPI) in the KO animal, along with a 

deterioration in memory accuracy with Morris Water Maze (MWM) and reduced social memory 

(SM). Moreover, with DREADD vectors, we demonstrate a remarkably similar behavioral profile 

when we induce CA3 hyperactivity. These hippocampal subfield changes could provide the basis 

for the observed increase in human hippocampal activity in SzP, based on the shared DG-specific 

GluN1 reduction. With further characterization, these animal model systems may serve as targets 

to test psychosis mechanisms related to hippocampus and assess potential hippocampus-directed 

treatments.

Introduction

Schizophrenia psychosis (SzP) is a chronic disabling brain disorder defined by its psychotic 

features and rich clinical phenomenology (1), with emerging biological clues pointing up 

potential brain mechanisms (2–9). Establishing the neural basis of disease in disorders like 

schizophrenia is necessary for authenticating disease definition and discovering molecular 

targets for successful treatment (10;11). Neural alterations have been identified across many 

brain regions in SzP, with findings that appear to associate dysfunction of the prefrontal 

cortex with cognitive impairments (6); and hyperactivity in hippocampus (2–5), with 

psychosis (2;12). Interestingly, SzP imaging studies demonstrate that hyperactivity in the 

hippocampus co-occurs with widespread neocortical hypoactivity (13). The hippocampal 

subfields which appear most involved with molecular and cellular changes in schizophrenia 

are the dentate gyrus (DG) and the cornu ammonis3 (CA3) (7); while the cornu ammonis1 

(CA1) appears to be associated most strongly with the expressed in vivo hyperactivity (3;4). 

In SzP, the DG exhibits several molecular alterations that indicate reduced efferent 

excitatory signaling to CA3, including decreased neurogenesis (14) and reduced GluN1 

expression (15–18). Most recently in SzP, we reported reduced GluN1 protein selectively in 

DG (23). Since the DG plays a crucial role in pattern separation, these molecular changes 

may be the biological substrates for impaired pattern separation performance already 

documented in humans with SzP (24). These new findings combined with reported 

alterations in hippocampus-mediated behavior (25), function (26;27), tissue pathology 

(22;28) and anatomy (29;30), are supportive of and consistent with the mounting interest in 

the hippocampus as a target for schizophrenia psychosis pathology.

Because of the distinctive unidirectional neural transmission within the trisynaptic pathway 

(31;32), activity changes in a proximal hippocampal subfield like DG would be expected to 

impact activity-dependent processes in downstream subfields, and especially in CA3. We 

have reported changes in activity-dependent molecular markers in human postmortem 

schizophrenia CA3 tissue (increased GluN2B-containing NMDA receptors and increased 

PSD95), some of which could represent adaptive changes to decreased afferent stimulation 

from the mossy fiber pathway (7). These molecular changes implicate increased synaptic 

remodeling associated with synaptic strengthening, and are consistent with the discovery of 

increased dendritic spines on CA3 pyramidal neuronal apical dendrites in SzP (7). These 

cellular and molecular changes in CA3 could underlie the hippocampal hyperactivity 

detected in in vivo imaging studies in schizophrenia, especially if transmitted downstream to 

CA1 (2–5). This SzP disease model system suggests that elevated neuronal activity in CA3 
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could cause mistakes of association and the generation of memories with psychotic 

constructs, defects which are transmitted to CA1 and consolidated within neocortical regions 

(33;34).

Using an animal model system that recapitulates human tissue schizophrenia findings could 

provide a pivotal resource for testing the functional outcomes of the tissue pathology and 

establishing causal relationships between identified tissue pathology and psychosis-related 

behaviors. Using a DG-specific GluN1-KO mouse as a disease-relevant model system (35), 

we tested cellular activity in DG and CA3, and analyzed specific animal behaviors relevant 

to psychosis. We hypothesized that reduced DG GluN1 protein in this KO would generate 

DG hypoactivity and CA3/CA1 hyperactivity, thereby leading to behavioral changes 

relevant to psychosis. A previous report has already shown that DG-specific GluN1-KO 

animals perform poorly on tasks that require pattern separation (35), a known cognitive 

characteristic in individuals with schizophrenia (24). We examined this genetically 

manipulated mouse by first demonstrating the presence of increased CA3 pyramidal cell 

activity associated with the DG-specific GluN1 depletion and then by demonstrating 

psychosis-like behaviors in the mice. To confirm causality, we show that an excitatory 

DREADD vector placed in CA3 pyramidal neurons generates similar psychosis-like 

behaviors in the mouse.

Methods

A. Animal Preparations

We generated DG-GluN1 KO mice by crossing POMC-Cre mice with floxed-GluN1 mice, 

as previously established (35). DG-GluN1 KO mice and littermate controls (cont) 11-24 wks 

old were used for behavioral studies and electrophysiology. DREADD studies utilized 6 to 8 

week old male C57BL/6J mice, purchased from the UTSW Wakeland Breeding facility; 

animals underwent behavioral testing at 8 to 10 weeks of age. All experiments followed 

institutional guidelines, approved by The Institutional Animal Care and Use Committee at 

UT Southwestern.

B. Electrophysiology

Transverse hippocampal slices (350 μm) from control (cont) and DG-GluN1 KO mice were 

cut tangentially to the longitudinal axis of the hippocampus. Slices were recovered in a 

holding chamber for at least 1 h before use. During slicing (0-2°C) and recordings (at 

24.5-25.5°C), slices were superfused with ACSF saturated with 95% O2/5% CO2 and 

containing (in mM): 119 NaCl, 2.5 KCl, 1.0 NaH2PO4, 4 MgSO4, 4 CaCl2, 26.2 NaHCO3, 

and 11glucose. Pyramidal cells in the CA3 field were visualized using infrared-differential 

interference contrast optics. Synaptically-evoked EPSCs were measured using a Multiclamp 

700B amplifier (Molecular Devices, Foster City, CA). Spontaneous EPSCs (>250 per cell) 

were collected and analyzed using Minianalysis software (Synaptosoft, Decatur, GA) and 

verified visually before calculating frequency and amplitude parameters.

Recording electrodes (3–5 MΩ) contained (in mM): 120 Cs-gluconate, 20 KCl, 10 HEPES, 

0.2 EGTA, 2 MgCl2, 4 MgATP, and 0.3 NaGTP. Afferents were stimulated at 0.05 Hz by a 
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glass monopolar microelectrode filled with ACSF that was always positioned in the granular 

cell layer of the DG or in the DG hilus. Data were filtered at 2 kHz, digitized at 10 kHz, and 

collected and analyzed using Clampex 10.3 software (Clampex 10.3.0.2, Molecular 

Devices). Membrane potentials of CA3 neurons ranged between −75 and −65 mV. Series 

resistances ranged from 10 to 20 MΩ and input resistances (Ri) were monitored on-line with 

a 40 pA/150 ms current injection given before every stimulus. Only cells with a stable Rs (Δ 

< 15%) for the duration of the recording were kept for analysis. For further details, see 

supplemental methods.

C. Immunohistochemistry

Usual immunohistochemical methods detected cFos and the placement of the DREADDS. 

Detailed methods, in the supplemental materials.

D. Animal Surgery/DREADDs

Usual surgical methodology was used to place the DREADD vector; details are included in 

the supplemental materials. CNO was given once 30 minutes prior to testing; for tests 

performed over a period of several days, CNO was given 30 min prior to testing on each test 

day.

E. Molecular Analyses

Western blotting was performed to quantify protein levels. Methodological details, in the 

supplemental materials.

F. Animal Behaviors

Mice were maintained with ad libitum food and water on a 12/12 light-dark cycle. All 

behaviors were conducted during the light phase. Each group contained 8-20 animals. All 

behavior raters were blind to the mouse genotypes. Additional methodological details, in the 

supplemental materials.

Prepulse Inhibition (PPI)—Startle was measured using a San Diego Instruments SR-Lab 

Startle Response System (San Diego, CA). Testing consisted of 40-startle stimuli (120 dB) 

preceded (100 ms) by a prepulse stimulus (20 ms). Prepulse intensities were 0, 2, 4, 8 or 

12dB above the background noise (70 dB) and presented with in a pseudorandom order with 

an average interstimulus interval of 15s (range 7-23s).

Passive avoidance behavior (PA)—The mice were placed in a brightly lit side of a 

shuttle box (Med Associates, Inc, St. Albans, VT). When the door opened to the dark side 

and the animal entered the dark compartment, they received two 1s, 0.5 mA foot-shocks. 

Twenty-four hours later, the procedure was repeated without footshocks. The latency to enter 

the dark compartment was measured on both days.

Fear Conditioning (FC)—Fear Conditioning was measured in automated boxes (Med 

Associates, St. Albans, VT, USA). For testing with the DG-GluN1 KO mice, mice received 

five cue presentations (10s white noise, 80 dB, 30s inter-trial interval), which co-terminated 

with a foot shock (1s, 0.5 mA). For DREADD studies, mice were presented with three cue-
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shock pairings. Contextual fear was measured in the same chamber 24 hours later but 

without foot shock. Cued fear conditioning was measured 48 hours after training, in a 

modified chamber (plastic floor, “V-Ceiling”, vanilla scent). Tones were presented without 

shock and freezing measured during the tone. Freezing behavior was scored automatically 

using Med Associates software (36;37).

Morris Water Maze test (MWM)—Mice were trained to find a fixed submerged platform 

in a pool of opaque water (144 cm, diameter) with 4 training trials/day (1min swimming 

time, inter-trial interval of 30–45min) for 13 days. On the probe day, occupancy time (%) in 

the “target” quadrant was compared to all other quadrants and the platform crossings in the 

“target” quadrant were compared to a similar area in all other quadrants.

Locomotor activity (LA)—Individual mice were placed into clean home cages with a 

small amount of bedding. Locomotor activity was collected in 5-min bins in the dark (San 

Diego Instruments, San Diego, CA, USA) for 120 min.

Social Memory—Mice were placed into an empty cage for adaptation, after which a 4 

week old male C57BL/6J mouse was placed in the cage for 2 minutes; the time the resident 

mouse spent in contact/sniffing, following, nosing/grooming, or pawing/general inspection 

was measured. The procedure was repeated in 24h, introducing the same juvenile mouse to 

the same resident. The decrement in engagement time was taken to represent social memory. 

Social memory was tested in both the KO and the DREADD animal model systems.

F. Statistical Analysis

All statistical analyses used GraphPad Prism software (San Diego, CA, USA). Significance 

was set at p<0.05. Outcomes for locomotion were tested using two-way ANOVA (genotype 

× time) and an unpaired t-test. Two-way ANOVAs were also used to assess differences in 

PPI (decibel × genotype/group), FC (situation × genotype/group), cFos positive nuclei along 

the sequential coronal sections (Bregman coordinates × genotype), AMPA and NMDA 

receptor EPSCs (stimulus intensity × amplitude) and paired pulse ratio (PPR × interstimulus 

interval). Either an uncorrected Fisher least significant difference, Bonferroni’s multiple 

comparison or Sidak’s multiple comparisons post hoc test were performed when 

significance was found with ANOVAs. An upaired t test was used to test group differences 

(PA, MWM, social memory, western blots, total cFos and the 30 ms time point of the PPR). 

One-way ANOVAs were also used for electrophysiological analysis. Data are presented as 

mean ± standard error of the mean (SEM) in Table1 (supplement). Full statistical outcomes 

are specified in the Figure legends. Error bars in figures represent SEM.

Results

A. Dentate Gyrus Characteristics in the GluN1 KO Mouse

1. Molecular measures: Dentate Gyrus—Protein quantification showed a decrease in 

GluN1 protein in the KO mouse, confined to the DG compared with its littermate control 

(cont) (t=7.54, df1,12, p<0.0001) and not present in CA3 (t=0.84, df1,12, p=0.42) or CA1 

(t=0.21, df1,12, p=0.84), as previously reported (35). As well, the KO mouse tissue showed 
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decreased GluN2A (t=6.99, df1,12, p<0.0001) and GluN2B (t=8.65, df1,12, p<0.0001) 

subunits limited to DG. (Suppl.Table). POMC-Cre IHC showed that the POMC construct is 

limited to DG and hypothalamus in the KO animal (data not shown).

2. Electrophysiological measures: Dentate Gyrus—In the GluN1 DG-KO mice, DG 

granule cells do not exhibit any NMDAR-mediated current (Fig.1). Specifically, we 

measured the NMDAR/AMPAR ratio (NAR) in DG granular cells at two time points during 

developmental, 80-90 and >120 days of age. Consistent with the literature (35), both 

biophysical and pharmacological approaches show that NMDAR-mediated current in 

granule cells of the DG-GluN1 KO mouse decreases during the first few months of 

development and is totally eliminated by four months of age (Fig. 1A,B). These observations 

are consistent with the loss of GluN1 protein in the DG granule cell over the same time 

period. To determine whether this genetic manipulation altered the capability for granule 

cells to convey information, we measured the responses to paired-pulse stimulation, a 

standard paradigm to test for changes in glutamate presynaptic release probability (pr). We 

show that granule cells from DG-GluN1 KO mice exhibit an enhanced paired-pulse ratio 

(PPR) at short inter-stimulus intervals (50 ms) (Fig. 1C), indicating a decrease in pr. Further 

investigation of different groups of animals confirmed these findings and showed that PPR is 

similarly increased at 30 ms interstimulus interval (Fig 1D). Furthermore, both amplitude 

and frequency of spontaneous activity-dependent release of glutamate at the MF-CA3 

synapses (sEPSCs) are enhanced in GluN1 DG-KO mice (Fig. 1E).

B. CA3 Hippocampal Characteristics in the GluN1 KO Mouse

1. Electrophysiological measures: CA3—Excitatory glutamate transmission in CA3 

of DG-selective GluN1 KO mice is enhanced compared to cont mice (Fig. 2). Using whole-

cell patch-clamp recordings, we first examined the contribution of excitatory glutamate 

receptors, AMPA and NMDA receptors, to synaptic transmission at the MF-CA3 pyramidal 

neuronal synapses. Using both biophysical and pharmacological approaches, we found no 

change in NMDAR/AMPAR ratio in DG-GluN1 KO mice when compared to cont mice 

(Fig. 2A, B). However, when both receptor-mediated currents were assessed separately, we 

found a significant increase in both AMPAR- and NMDAR-mediated postsynaptic 

excitatory currents (Fig. 2C, D). These data show that decreased DG granular cell GluN1 

protein in DG-GluN1 KO mice, loss of DG NMDAR-mediated current, and decreased pr at 

the mossy fiber-CA3 synapses are associated with increased glutamatergic synaptic strength 

at the MF-CA3 synapses. Moreover, we observed that this increased excitatory 

glutamatergic transmission in CA3 translates into hyper-excitability of CA3 pyramidal 

neurons in DG-GluN1 KO mice. In particular, increasing stimulus intensity triggered spikes 

and recruited late burst EPSCs more routinely and at a lower intensity in DG-GluN1 KO 

mice (12/16 cells: 75%) compared to wild-type control slices (2/10 cells: 20%, Fig. 2E). 

Since these observed alterations in synaptic activity can result from functional changes (i.e. 

altered subunit composition) in CA3 NMDARs and AMPARs, we examined the current-

voltage relationships for both receptors. Evoked AMPAR-mediated EPSCs measured from 

the dual component at 10 msec post-stimulus (Fig. 2F) and NMDAR mediated EPSCs (Fig. 

2G) were unchanged in DG-GluN1 mice compared to cont mice, indicating that the hyper-

excitability observed in CA3 is not due to changes in AMPARs and NMDARs function.
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2. Cellular Measures: CA3—To test whether the increase in AMPAR- and NMDAR-

mediated postsynaptic currents alters overall cellular activity in CA3, we analyzed cFos 

regionally in the DG-GluN1KO mice. We found increased total number of cFos-positive 

nuclei in the pyramidal layer in ventral hippocampal CA3 along the rostral-caudal axis in the 

KO compared with the cont mouse (Fig 3A). Further analyses show a similar pattern of 

increased number of cFos-positive neurons in CA1 (Fig 3B), but no detectable changes in 

granule cells in DG (data not shown). Curiously, increased cFos-containing neurons were 

also found in BLA, regionally clustered (Fig 3D) but not in basal ganglia.

Double-staining IHC experiments with excitatory vs inhibitory cell markers confirmed that 

the majority of cFos-positive nuclei in the CA3 pyramidal layer were localized to the 

CaMKII-positive excitatory neurons, and were not detected in GAD67-positive inhibitory 

interneurons (Fig 3D).

C. Behavioral Characteristics in the GluN1 KO and CA3 DREADD Mouse

We assessed several correlates of attention and cognitive deficits typically observed in 

humans with psychosis (PPI, MWM, SM) and explicit associative learning tasks (FC, PA), 

first in the DG-selective GluN1 KO.

Prepulse inhibition (PPI)—Similar to humans with psychosis, DG-GluN1 KO mice 

showed reduced PPI in comparison with cont mice (Fig.4A).

Morris Water Maze (MWM)—On the Day 7 probe trial, only the control mice showed a 

significant preference for the target quadrant vs the mean of the other 3 quadrants. On the 

Day 13 probe trial, both the KO mice and their cont littermates spent significantly more time 

in the target quadrant (Fig.4B). Cont mice crossed the platform area significantly more times 

than parallel areas in other quadrants on the Day 13 probe test; while the KO mice did not 

show a significant increase in crossing over the target platform in either probe test (Fig.4B). 

However, while Cont mice also spent significantly more time in the platform area than in the 

parallel areas in the other quadrants on the second probe test, the KO mice did not (Fig.4B), 

suggesting a deficit in spatial memory.

Passive avoidance (PA)—In the acquisition trial of the passive avoidance test, there was 

no difference between the KO and cont mice in the latency to enter the dark compartment 

(t=0.15, df1,37, p=0.44). But on the test day, the KO mice showed increased latency to enter 

the dark compartment where they had previously been shocked (t=2.63, df1,37, p=0.01) (data 

not shown).

Fear conditioning (FC)—Before training, there was no difference in percent freezing 

between the KO mice and cont littermates. Twenty four hrs after training, the KO mice 

display increased freezing in the training context (contextual fear) and to the tone compared 

to cont (Fig.4D).

Social Memory—The DG-selective GluN1 KO mice and cont littermates displayed similar 

levels of social engagement when introduced to a juvenile intruder mouse. However, upon 
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re-exposure 24 hours later, cont but not KO littermates exhibit a decrease in social 

interaction time, which indicates impaired social recognition in KO mice (Fig. 4C).

Locomotor Activity—No difference in locomotor activity was observed between the DG 

GluN1 KO mice and cont over 120 minutes (t=0.64, df1,36, p=0.53) (data not shown).

Behavioral outcomes with CA3 DREADD—Here, we set out to establish causality 

between CA3 hyperactivity and behavioral outcomes. We expressed a Gq-coupled 

DREADD vector virally in pyramidal neurons in dorsal or ventral CA3 hippocampus and 

examined PPI, FC, and social cognition. We found no significant change in PPI with a single 

CNO administration, even though a quantitative reduction (Fig 5A). However, DREADD 

activation of ventral (not dorsal) hippocampus increased FC (Fig 5B); whereas that same 

activation of dorsal hippocampus (not ventral) impaired social memory (Fig 5C). These 

behavioral outcomes demonstrate the behavioral phenotype associated with CA3 

hyperactivity in both FC and social memory; and show that modulation of psychosis-like 

behaviors will vary regionally within CA3 activation. Anatomic placement of the DREADD 

constructs were verified in all animals used for data analysis (Fig 5D).

Discussion

The literature contains several different SzP model systems based on GluN1 KO mice, one 

where the GluN1 KO is brain-wide (7;38) and another where the KO is selective for 

inhibitory interneurons (39;40). Here, we examined the characteristics of a DG-selective 

GluN1 KO mouse as a model for maladaptive neuroadaptations, based on back-translation 

from disease pathology derived from human SzP brain tissue. Whole-cell recording of 

granule cells, an approach that provides high neuronal specificity, shows that NMDAR-

mediated current is entirely eliminated in recorded DG cells when the DG-GluN1 KO mouse 

is fully developed. Because NMDA receptors function as heteromeric receptors with an 

essential GluN1 subunit (41;42), it is likely that the depletion of GluN1 attenuates NMDA 

receptor formation (supported by the reduction in DG of GluN2A and GluN2B in the KO) 

and, therefore, is associated with a decreased efferent excitatory activity from DG, consistent 

with our findings in this study. This genetic manipulation is associated with enhanced 

NMDA- and AMPA-mediated currents in CA3. The enhanced excitatory postsynaptic 

excitability at the MF-CA3 synapses translates into elevated pyramidal cell activity in CA3 

as shown by enhanced cFos-positive pyramidal cell nuclei in the KO mouse CA3 and its 

downstream target, CA1. Curiously, we observed related clusters of cFos-activated neurons 

not only in CA3, CA1 but also in BLA showing downstream hyperactivity in the KO mice, 

suggesting a forward pathway which could mediate extended effects of hippocampal 

hyperactivity. These characteristics parallel and extend the findings reported from human 

SzP tissue, suggesting the plausibility of reduced DG granule cell activity generating 

increased CA3 pyramidal cell activity, leading to overall hippocampal hyperactivity. With 

these data, the speculative link between hippocampal hyperactivity and psychosis (2–5) 

becomes a more plausible scenario, where sustained hippocampal hyperactivity causes 

mistakes of association and a vulnerability for generating memories with psychotic content, 

accounting in part for positive symptoms in schizophrenia (33). However, because DG 

granular cells in DG-GluN1 KO mouse exhibit a decreased pr, we speculate that decreased 
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granular cells activity triggers a network-wide homeostatic adaptation, albeit pathological, 

that aims to re-normalize transmission in the MF-CA3 excitatory transmission (reviewed in 

(33)). While many necessary experiments remain to test this model, these data do positively 

align the cellular physiology of hippocampal circuitry with schizophrenia-related pathology.

The behavioral characteristics observed here in the DG-GluN1 KO mouse focus the KO 

behavioral profile onto psychosis and CA3 function. The impaired PPI and MWM 

performance along with a deficit in SM are characteristics of mouse models of psychosis 

reflecting cognitive impairments also observed in SzP (29). In addition, the animals show an 

increase in FC and PA behavior, with locomotor activity intact, reflecting CA3 neuronal 

hyperactivity. The CA3 DREADD mouse also shows a deficit in SM as well as increased 

FC, which are differentially affected by activation of the dorsal and ventral CA3. The 

increase in fear learning suggests that where learning is driven by fear or anxiety, as we find 

here, a persistent psychotic memory could occur. The early findings from these animal 

model systems are consistent with the general model of psychosis as a learning and memory 

disorder with deficient DG function and increased CA3 associative function (33;43). The 

data so far support the further testing of the DG-GluN1 KO and hippocampal DREADD 

vectors as animal systems informative about psychosis pathophysiology.

These outcomes establish the association of reduced excitatory signaling in the DG and 

increased pyramidal cell activity in CA3 and CA1, and in BLA. These may explain the 

overall hippocampal and CA1 hyperactivity in SzP, pathophysiology which has gained 

support from studies carried out in SzP tissue and in vivo imaging (44). Future experiments 

will test whether reduced DG activity is causally related to CA3 hyperactivity using an 

inhibitory DREADD in DG. Moreover, in order to demonstrate relevance to human 

psychosis, we will assess the action of known antipsychotic drugs on these molecular, 

cellular and electrophysiological outcomes. If further studies continue to supports its 

relevance, the availability of an animal preparation reflective of the human hippocampal 

dysfunction in SzP (45;46) will be a significant advantage for studying psychosis in 

schizophrenia.
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Figure 1. 
(A) Left panel, NMDAR/AMPAR ratio in cont and DG-GluN1 KO. AMPAR- and NMDAR-

EPSC amplitudes are extracted from the dual component obtained at +40 mV, at 10 and 50 

ms post-stimulus respectively. Biophysical analysis of the dual component at +40 mV 

showed that NMDAR-mediated current in DG granular cells (dash line on the right panel) is 

absent in DG-GluN1 KO (4-5 months-old). Note that the NAR decrease observed at 80-90 

days is driven by 3/8 cells that were not exhibiting any NMDAR mediated current (measured 

at 50 ms, dash line). Hash marks on left panel indicate group means ± SEM. (One-way 

ANOVA: F (2,19) = 18.41: ****p < 0.0001; posthoc test: *p < 0.05; **p < 0.01). 

Calibration: 50 ms, 20 pA. (B) D-APV at 50 μM did not have any effect on evoked EPSC in 

DG-GluN1 KO (dual component obtained at +40 mV), indicating that NMDAR-mediated 

current is not present. AMPAR blockade with CNQX 10 μM) almost totally eliminated 

evoked EPSC. Calibration: 50 ms, 20 pA. (C) Mean paired-pulse ratio values in CA3 

pyramidal neurons from DG-GluN1 KO mice (n = 15 cells, 4 mice) is increased at an 

Segev et al. Page 13

Mol Psychiatry. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interstimulus interval of 50 ms compared to cont (n = 17 cells, 4 mice) (two-way ANOVA, 

Interaction PPR X interstimulus interval: F(4,120)=6.328, p=0.0001; post hoc test at 50 ms: 

***p < 0.01). (D) Mean paired-pulse ratio values in CA3 pyramidal neurons from DG-

GluN1 KO mice (n = 8 cells, 3 mice) is also increased at 30 ms interstimulus intervals 

compared with neurons from cont (n = 8 cells, 3 mice) (t(14)=2.294, *p < 0.05). (E) Top 
panel, Sample traces of sEPSCs from neurons in cont and DG-GluN1 KO (KO) groups. 

Calibration: 1 sec, 20 pA. Bottom panel, Spontaneous EPSCs amplitude and frequency are 

increased in DG-GluN1 mice (n = 23 cells, 5 mice) compared with cont (n = 21 cells, 6 

mice). Amplitude: t(42)=2.819, **p = 0.007; Frequency: t(42)=2.194, *p = 0.034.
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Figure 2. 
(A-B) NMDAR/AMPAR ratio values from neurons in cont (grey circles; n = 8 cells, 5 mice) 

and DG-GluN1 KO mice (orange circles; n = 7 cells, 6 mice). Hash marks indicate mean 

values ratio in cont and DG-GluN1 KO. Both biophysical (A) and pharmacological (B) 

approaches showed that NMDAR/AMPAR ratio in cont is similar to that of found in DG-

GluN1 KO mice (p > 0.05). For biophysical approach, AMPAR- and NMDAR-EPSC 

amplitudes are extracted from the dual component obtained at +40 mV, at 10 and 50 ms 

post-stimulus respectively. For pharmacological approach: D-APV at 50 μM was used to 
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extract AMPAR-mediated current. Calibration: 50 ms, 20 pA. (C-D) Both AMPAR- (C) and 

NMDAR-mediated transmission (D) at MF-CA3 synapses are increased. AMPAR-mediated 

transmission was assessed at −70 mV, and NMDAR-mediated current was elicited at +40 

mV. Right panels for B and C: Example of AMPAR- (Calibration: 10 ms, 50 pA) and 

NMDAR-EPSCs traces (Calibration: 50 ms, 20 pA) from a cont and a DG-GluN1 KO 

neuron over the stimulus range 0, 20, 40, 60, 80, and 100 μA. cont, n = 10 cells, 4 mice; DG-

GluN1 KO, n = 16 cells, 4 mice. Two-way ANOVA: genotype and genotype X stimulation 

interaction effects for both AMPAR- (Genotype effect: F(1, 24) = 4.312, *p = 0.048, and 

interaction effect: F(4, 96)= 3.850, **p = 0.006) and NMDAR-EPSCs (Genotype effect: F(1, 

17) = 5.336, *p = 0.033, and interaction effect: F(8,136) = 6.160, ***p < 0.0001). (E) Left 
panel, Percentage of cells demonstrating eplileptiform activity indicated by more frequent 

late burst EPSC recruitment achieved at lower stimulus intensities was significantly higher at 

DG-GluN1 KO mice (12/16 cells) compared with cont (2/10 cells). Right panel, Sample 

traces from CA3 pyramidal neurons from DG-GluN1 KO mice. Calibration in left: 20 ms, 

50 pA; calibration in right: 100 ms, 1 nA. (F) Left, Examples of evoked dual EPSCs at 

membrane potentials from −80 mV to +40 mV. Calibration: 10 ms, 50 pA. Right, I–V 
relationship for AMPAR EPSCs (measured by extracting the AMPAR current from the dual-

component at 10 msec post-stimulus) in cont and DG-GluN1 KO mice (n = 8-10 cells, 5 

mice in each group). The lines represent the linear regression (r = 0.99 for each group). (G) 

Left, Examples of evoked NMDAR-mediated EPSCs at membrane potentials from −80 mV 

to +40 mV. Calibration: 50 ms, 20 pA. Right, I–V relationship for NMDAR-mediated 

EPSCs in cont and DG-GluN1 KO mice (n = 5-11 cells, 3-4 mice in each group). Holding 

potentials were not corrected for liquid junction potential. Data are represented as means ± 

SEM.
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Figure 3. 
(A) Increased number of cFos-positive nuclei in hippocampal CA3. Left panel, 
representative images in cont and DG-GluN1 KO brains. Middle panel, the total number of 

cFos-positive nuclei was significantly increased in CA3 (t(8)=2.665, * p=0.02). Right panel, 
the number of cFos-positive nuclei over the rostral (dorsal)-caudal (ventral) axis of CA3 of 

the hippocampus (−1.46 to −2.92 mm from Bregma). 2-Way ANOVA analyses show 

significant genotype, hippocampal rostral-caudal axis and genotype X hippocampal rostral-

caudal axis interaction in CA3 (Genotype effect: F(6, 56)=4.635, *** p=0.0007; 

hippocampal rostral-caudal axis effect: F(1, 56)=24.53, **** p<0.0001; and interaction 

effect: F(6, 56)=2.634, * p=0.0254). Post-hoc comparison further demonstrates significant 
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increased cFos-positive nuclei in the caudal (ventral) CA3 (* p=0.01 at −2.70mm from 

Bregma, **** p<0.0001 at −2.92mm from Bregma).

(B) Increased cFos-positive nuclei in hippocampal CA1. Left panel, representative images. 

Middle panel, increased total number of cFos-positive nuclei in CA1 (t(8)=2.614, * p=0.03). 

Right panel, the number of cFos-positive nuclei over the rostral-caudal axis of CA1 of the 

hippocampus (−1.46 to −2.92 mm from Bregma). 2-Way ANOVA analyses show significant 

genotype, hippocampal rostral-caudal axis and genotype X hippocampal rostral-caudal axis 

interaction in CA1 (Genotype effect: F(6, 56)=8.286, **** p<0.0001; hippocampal rostral-

caudal axis effect: F(1, 56)=18.34, **** p<0.0001; and interaction effect: F(6, 56)=3.374, ** 

p=0.0066). Post-hoc comparison further demonstrates significant increased cFos-positive 

nuclei in the caudal CA1 (*** p=0.0007 at −2.70mm from Bregma, *** p=0.0005 at 

−2.92mm from Bregma).

(C) Increased number of cFos-positive nuclei in basolateral amygdala (BLA, −0.70 to −2.30 

mm from Bregma, t(8)=2.709, * p=0.02). Left panel, representative images.

(D) The majority of cFos-positive nuclei in hippocampal pyramidal layer in CA3 subfield 

were located within CaMKII-positive excitatory neurons, but not within GAD-67-positive 

inhibitory neurons.

Segev et al. Page 18

Mol Psychiatry. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(A) Prepulse inhibition (PPI) was reduced in DG-GluN1 KO mice compared with cont 
littermates. Two way ANOVA (genotype × dB level): F(3,108)=3.299, * p=0.0232. Decible 

level: F(3, 108)=55.15, p<0.0001; Genotype: F(3,108) 2.127, p=0.1534. Post hoc test at 78 

dB, *p=0.039 and a trend for significance at 76 dB, p=0.066.

(B) Morris water maze. Number of crossings of the target quadrant (left) vs the mean of the 

other non-target quadrants (right) on Day 13 probe test. The cont mice (left, white) 

remembered where the platform was located (target quadrant relative to average of the other 

quadrants: t=9.715, df1,38, p<0.0001 or platform area relative to average of the parallel areas 

in the other quadrants: t=3.792, df1,38, p=0.0005); whereas, DG-GLuN1 KO mice (right, 

black) failed to remember accurately where the target was located (target quadrant relative to 

average of the other quadrants: t=4.370, df1,34, p<0.0001; platform area relative to average 

of the corresponding areas in the other quadrants: t=1.831, df1,34, p=0.0758). Platform vs 

other.

(C) Social memory (SM). In contrast to cont mice (t=2.81, df1,24, p=0.02), DG-GluN1 KO 

mice showed no decrease in interaction time upon re-exposure to a juvenile mouse 24 hours 

following initial exposure (t=0.62, df1,24, p=0.79). (D) Fear conditioning: The unconditioned 

DG-GluN1 KO mice did not show elevated freezing in a new context (t=1.37, df1,28, 

p=0.18). However, when analyzing genotype × situation with 2-way ANOVA, there was a 
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significant effect of situation (F(2,28)=34.43, p<0.0001) and genotype (F(1,14)=20, 

p=0.0005) (interaction genotype × situation: F(2,28)=0.4838, p=0.6215). Post hoc tests 

showed a significant increase in freezing in the same context (p=0.0160) and in the cued 

context (p=0.0147) without difference in the new context (p=0.1792).
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Figure 5. 
Behavioral analysis after DREADD-induced excitation of CA3. (A) Prepulse inhibition. 2-

way ANOVA revealed a main effect of prepulse intensity (F(3,81)=42.08, p<0.0001) and a 

prepulse × group interaction (F(6,81)=2.224, p=0.049). However, post-hoc analysis shows 

no difference between any group at any specific prepulse intensity.

(B) Fear conditioning. There is a significant main effect of region (F(2,103)=4.887, 

p=0.0094), and post-hoc analysis revealed a significant increase in contextual fear 

conditioning after activation of the ventral CA3 (p=0.0016). Activation of this region did not 

affect baseline freezing or cued fear, and activation of the dorsal CA3 did not alter any fear-

related behavioral measure.

(C) Social memory. Normal social recognition is demonstrated by a significant decrease in 

interaction time between the first and second tests and was present in control animals 

(t=4.237, df1,54, p<0.001). Ventral CA3-activated DREADD mice significantly decreased 

interaction time (t=2.994, df1,54, p<0.01), whereas activation of the dorsal CA3 with the 
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excitatory DREADD impaired this recognition, resulting in no decrease in interaction time 

between the two tests (t=0.3649, df1,54, p=0.717).

(D) Verification of DREADD placement based on mCherry staining. DAB signaling was 

enhanced by the addition of nickel sulfate to give the mCherry staining a black color, 

distinguishing the specific mCherry signal from background gliosis present as a result of the 

AAV infusion. Images represent the ventral (left) and dorsal (right) CA3 at 4× (top) and 20× 

(bottom). **, *** represents p<0.01, 0.001, respectively.
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