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Abstract

The rhythmic pyloric network of the lobster stomatogastric system approximately maintains phase
(that is, the burst durations and durations between the bursts of its neurons change proportionally)
when network cycle period is altered by current injection into the network pacemaker (Hooper,
1997a,b). When isolated from the network and driven by rhythmic hyperpolarizing current pulses,
the delay to firing after each pulse of at least one network neuron type (Pyloric, PY) varies in a phase-
maintaining manner when cycle period is varied (Hooper, 1998). These variations require PY neurons
to have intrinsic mechanisms that respond to changes in neuron activity on time scales at least as
long as two seconds. Slowly activating and deactivating conductances could provide such a
mechanism. We tested this possibility by building models containing various slow conductances.
This work showed that such conductances could indeed support intrinsic phase-maintenance and we
show here results for one such conductance, a slow potassium conductance. These conductances
supported phase maintenance because their mean activation level changed, hence altering neuron
post-inhibition firing delay, when the rhythmic input to the neuron changed. Switching the sign of
the dependence of slow conductance activation and deactivation on membrane potential resulted in
neuron delays switching to change in an anti-phase maintaining manner. These data suggest that slow
conductances or similar slow processes such as changes in intracellular Ca* concentration could
underlie phase maintenance in pyloric network neurons.
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Introduction

Rhythmic motor patterns are produced across a wide range of cycle periods. In some motor
patterns (e.g., walking) power phase duration primarily changes with cycle period (Grillner
and Wallén, 1985). Other motor patterns—Ileech (Pearce and Friesen, 1985) and lamprey
swimming (Grillner et al., 1987), lobster pyloric network (Hooper, 1997a,b), crab gill bailer
(DiCaprio et al., 1997)—maintain phase as cycle period varies. Phase maintenance requires
that motor pattern durations (action potential burst durations, interburst intervals) change
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proportionally with cycle period. These durations depend on synaptic and cellular dynamics.
For instance, in networks dominated by inhibitory synapses (most known motor networks),
many neurons fire due to intrinsic, inhibition-induced, excitatory responses (e.g., post-
inhibitory rebound). The duration between the end of an inhibiting neuron's burst, and the
beginning of the burst of the neuron it inhibits, thus depends both on how long the inhibition
lasts after the inhibiting neuron stops firing, and the dynamics of the inhibited neuron's
subsequent excitation. To maintain phase the durations of one or both of these processes must
change proportionally with cycle period.

We have been examining phase-maintenance of Pyloric (PY) neurons of the lobster pyloric
network (Hooper, 1997a,b). When rhythmic trains of hyperpolarizing pulses are injected into
PY neurons that have been isolated from the pyloric network, the neurons fire with a delay
after each pulse. Delay duration changes in a phase-maintaining manner when stimulus-train
cycle period is altered (Hooper, 1998). PY neuron phase maintenance therefore results in part
from mechanisms intrinsic to the neurons. Because the neurons cannot “know' the input's
temporal characteristics until at least one cycle is complete, these mechanisms must respond
on time scales equal to at least one cycle period, durations as great as 2 s in Hooper (1998).
One such mechanism could be slowly activating and/or deactivating voltage-dependent
membrane conductances. The mean activation level of such conductances would change as
neuron activity changed. If the conductances affected neuron rebound dynamics, these changes
could alter neuron delay to firing.

To test the feasibility of this hypothesis we repeated our work on isolated PY neurons and
measured not only steady-state PY firing delays but also the cycle-by-cycle delay changes that
occurred immediately after the driving input was changed, analyses not performed in our earlier
work (Hooper, 1998). Prior pyloric neuron models did not reproduce the observed shifts in PY
firing. Models containing slowly activating and deactivating conductances reproduced the PY
neuron activity, and as predicted, did so by slow changes in mean activation. To further test
this hypothesis we reversed in one model the voltage dependence of activation and deactivation
of the model's slow conductance and showed that this reversed the dependence of the model's
rebound delay on driving input temporal characteristics. Slow conductances or similar slow
processes such as changes in intracellular Ca* concentration could thus support phase
maintenance, and differing whole-cell responses to rhythmic input could be “engineered' by
modifying the voltage dependence of these processes.

Preliminary reports of these data have appeared in abstract form (Buchman et al., 2000).

Materials and Methods

Electrophysiology

P. interruptus were purchased from Don Tomlinson Commercial Fishing (San Diego) and
maintained in aquaria with 10-13°C circulating artificial seawater. Dissection was standard
(Selverston et al., 1976). Preparations were continuously perfused with 10-13°C P.
interruptus saline (in mM, 479 NaCl, 12.9 KCl, 13.7 CaCly, 3.9 NaySQy, 10 MgSQy, 10.9
dextrose, 11.1 Tris base, 5.1 maleic acid, pH 7.5-7.6; Sigma, St. Louis, MO, or Fisher Scientific,
Pittsburgh, PA). Neurons were identified by comparing intracellular recordings of spiking
activity (made with an Axoclamp 2A or 2B, Foster City, CA, and glass microelectrodes filled
with 0.55 M K550y, 0.02 M KClI, resistance 10-20 MQ) to extracellular recordings (made with
an A-M System differential amplifier, Everett, WA, and bipolar stainless steel electrodes
insulated from the bath with petroleum jelly) from nerves containing the pyloric motor neuron
axons. PY neurons were isolated from the network by filling cholinergic neurons presynaptic
to them (the Pyloric Dilator and Ventricular Dilator neurons) with Lucifer Yellow and
photoinactivating them with a helium-cadmium blue laser (Liconix, Flushing, NY) (Miller and
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Selverston, 1979) and blocking glutamatergic input from other network neurons with 10 M
picrotoxin (Bidaut, 1980).

Square-wave current injections were made with two electrodes in the neuron somata, one to
inject current and the other to record neuron membrane potential response. Depending on the
neuron, square waves approximate the actual inhibitions that pyloric neurons receive with
varying degrees of accuracy. PY neuron slow-wave inhibition profiles (see Fig. 1) are actually
more triangular than square. However, the purpose of the present work was to examine the
extent to which models containing slow conductances could explain PY neuron activity. The
neurons and models were in all cases driven with identical square-wave inputs, and thus our
use of square-wave inputs should not affect the validity of the comparisons made here. Current
injection protocols were driven, and neuron response recorded, using a Cambridge Electronic
Design (Cambridge, UK) 1401 plus interface and Spike2 software and rebound delays
calculated with user-written Spike2 scripts.

Modeling was performed in Modelmaker version 4 (FamilyGenetix Ltd., formerly known as
Cherwell Scientific Publishing Ltd., Beaconsfield, UK) using Runge-Kutta variable time step
integration with an accuracy of 0.001. Rebound delays were calculated with programs written
in C. The equations for the standard pyloric model (Fig. 6) were exactly those in Buchholtz et
al. (1992). The equations for the slow potassium and reversed slow potassium model are
presented in the appendix.

Figure 1A shows a reduced version of the pyloric network (see Harris-Warrick and Marder,
1991; Harris-Warrick et al., 1992; Marder et al., 1993; Nusbaum and Beenhakker, 2002;
Hooper and DiCaprio, 2004; Marder and Bucher, 2007; Katz and Hooper, 2007 for reviews of
the network's connectivity and cellular properties). The Anterior Burster (AB) is an
endogenously rhythmic pacemaker neuron (Fig. 1B). The two Pyloric Dilator (PD) neurons
fire with the AB due to the electrical coupling among the three neurons (Fig. 1B). The PY
neurons are inhibited by the AB and PD neurons, and therefore fire out of phase with them
(Fig. 1B). That they fire at all is due to their containing hyperpolarization-activated,
depolarizing conductances (e.g., Iy, that result in the neurons showing post-inhibitory rebound.
These post-inhibitory rebounds activate other conductances that produce long-lasting
depolarized states (plateau potentials) that support the PY neuron bursts and which are ended
by the AB/PD burst that begins the next pyloric cycle.

Phase maintenance requires that burst duration and interburst interval change proportionally
with cycle period (Fig. 2). Pacemaker ensemble (AB and PD) activity approximately maintains
phase when network cycle period is altered by current injection into the AB neuron (Fig. 2,
top traces) (Hooper, 1997a,b). This phase maintenance results from changes in current flow
between the AB and PD neurons when current is injected into the AB (Abbott et al., 1991) and
does not concern us here. We study here instead the mechanisms that maintain PY neuron
phase relative to pacemaker activity (Fig. 2, bottom traces).

The PY neurons begin to fire hundreds of milliseconds after the end of the AB/PD burst (Figs.
1B, 2). When network cycle period is varied this delay increases as cycle period increases
(compare Fig. 2B to 2A) and decreases as cycle period decreases (compare Fig. 2B to 2C).
These changes do not perfectly maintain the phase of PY neuron burst beginnings—for perfect
phase maintenance the delays would be 665 ms in Fig. 2A and 333 ms in Fig. 2C. However,
they maintain phase much better than if the delay between the end of the AB/PD burst and the
beginning of the PY burst were constant. For instance, in the case at hand in the real data the
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phase of the PY burst beginning was 0.55 at rest (Fig. 2B), 0.5 when cycle period was increased
(Fig. 2A), and 0.67 when cycle was decreased (Fig. 2C). If the delay between the end of the
AB/PD neuron burst and the beginning of the PY neuron burst had remained a constant 500
ms as cycle period changed, the phase of the PY neuron burst beginning would have been 0.42
when cycle period was increased (Fig. 2A) and 0.83 when cycle period was decreased (Fig.
2C).

These changes in the delay between the end of the AB/PD neuron burst and PY neuron burst
beginnings could arise in many ways. For instance, in addition to being inhibited by the AB
and PD neurons (Fig. 1), the PY neurons are also inhibited by another pyloric neuron, the
Lateral Pyloric (LP) neuron, which fires between the end of the AB/PD neuron burst and the
beginning of the PY neuron burst, and whose burst duration increases with increased cycle
period and decreases with decreased cycle period (Hooper, 1997a). The shifts in when the PY
neurons began to fire could thus theoretically have been due to changes in the amount of
inhibition received by the PY neurons from the LP due to these changes in LP burst duration.
However, LP neuron removal from the pyloric network by hyperpolarization does not alter PY
neuron firing delay shifts as cycle period changes, and LP inhibition thus apparently plays no
role in PY neuron phase maintenance, at least in control saline (Weaver and Hooper, 2003) (it
is for this reason that the LP neuron and its synapses were not included in Fig. 1A).

An alternative explanation for the changes in PY neuron firing delay is the PY neurons having
intrinsic phase-maintaining mechanisms, an explanation verified by experiments on PY
neurons that have been isolated from the network (Hooper, 1998). However, these PY neurons,
although isolated from other pyloric network neurons, are still electrically coupled to one
another (there are 6-8 PY neurons in the network). In theory, phase maintenance in them could
thus arise from current passing among them in a manner similar to the current-passing
mechanism mentioned above that underlies phase-maintenance in the AB/PD neuron
pacemaker group. This current-passing mechanism occurs because the AB neuron is an
endogenous oscillator, the electrical coupling between the AB and PD neurons is strong enough
that the neurons rhythmically oscillate in phase, and when the cycle period of the ensemble is
changed by current injection into the AB neuron the amplitude of the voltage oscillation of the
AB and PD neurons change to different degrees. This changes the amount of current flowing
between the AB and PD neurons in such a way that the burst duration of the ensemble maintains
phase as ensemble cycle period changes (Abbott et al., 1991).

Under the conditions used here, PY neurons do not typically oscillate when isolated from the
other pyloric network neurons, and recordings from PY neurons other than those into which
we were injecting current showed that the electrical coupling between these neurons was not
sufficient to induce large changes in the activity of the other PY neurons. Although this does
not prove that a current-passing mechanism plays no role in PY neuron phase maintenance, it
does suggest that PY neurons may have cell-autonomous intrinsic phase-maintaining
mechanisms. Our goal in the present research was to measure isolated PY neuron responses to
many types of rhythmic driving input and attempt to gain insight into how such cell-
autonomous mechanisms might function by building models that qualitatively reproduced
these responses. We always used trains of rhythmic hyperpolarizing current pulses as the
driving input (Fig. 3). Before the trains began the neurons typically fired tonically. In the
example shown here the neuron did not fire in the period in which no current was injected (the
first “uptime") following the first hyperpolarizing pulse (the first "downtime"). After the second
downtime the neuron again fired no spikes, but its membrane potential during the following
uptime was more depolarized than in the first uptime. In the third uptime the neuron fired one
spike, in the fourth it fired two, and in the fifth (and subsequent uptimes, data not shown) it
fired three. These data thus show two aspects of the neuron's response to the driving input, the
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neuron's changing response after pulse train beginning (the first 4 uptimes) and its response at
steady state (the fifth uptime).

Steady-state PY neuron firing delays (the time from the end of the hyperpolarizing pulse to the
first spike) depended on the temporal characteristics of the rhythmic pulse train. Rebound delay
increased when uptime was increased with a constant downtime (Fig. 4 left, downtime 350
ms) and decreased when downtime was increased with a constant uptime (Fig. 4 right, uptime
300 ms). Similar to the changes in rebound delay seen in the initial cycles in Fig. 3, it took
multiple cycles for new steady-state rebound delays to be established when the temporal
characteristics of the driving input were changed. Figure 5 shows how rebound delay changed
at a transition (A) from a pattern with a 0.25 s uptime and a 0.25 s downtime to a pattern with
a 0.25 s uptime and a 1.25 s downtime. Before the pattern change the neuron's rebound delay
had reached steady state (upper trace, B). The rebound delay in the first burst after the change
was longer than the previous rebound delay (middle trace, B, rightward slanting arrow shows
delay increase) and then progressively declined to a new steady-state value shorter than that
in the original pattern (bottom trace, B, leftward slanting arrow shows delay decrease). The
time course of the neuron's response to the pattern change was thus biphasic (C), with rebound
delay increasing immediately after the change in stimulation pattern and then slowly decreasing
to finally reach a new shorter steady-state value.

These observations—that PY neuron steady-state rebound delay changed the temporal patterns
of the stimulation pattern changed, and that the changes in PY rebound delay had characteristic
time courses when the pattern of stimulation was changed—suggested that driving real PY
neurons with a wide range of stimulation patterns and comparing their responses to the
responses of conductance-based neuron models would be a powerful method for comparing
the performance of different models. An important consideration here is what stimulation
patterns to use. Consideration of Fig. 2 shows that in the intact network PY neurons are inhibited
for approximately 75% of network cycle period, approximately the same percentage of cycle
period that the isolated PY neuron in Fig. 3 was inhibited. However, the percentage of cycle
period that downtime comprised in the data in Figs. 4 and 5 were often far from what PY
neurons would ever experience in the real network (for instance, downtime was 50% of cycle
period in the first trace in Fig. 4A1, 30% in the second trace of Fig. 4A1, 20% in the first trace
of Fig. 4B1, 62% in the second trace of Fig. 4B1, 50% in the left portion of the trace in Fig.
5A and 83% in the right portion of the trace in Fig. 5A).

It might initially seem that driving the neurons with patterns unlike those they receive in the
intact network, being unphysiological, is an incorrect approach. However, if these patterns are
chosen to sample a larger range of stimulation parameters, doing so provides a much fuller
characterization of the neuron's response properties than would driving the neurons with the
smaller range present in the intact network. Models that can accurately reproduce the response
of the neurons across this wider range of stimulation patterns will also (provided the range
includes the physiological values) clearly be able to reproduce neuron responses to the smaller
range seen physiologically. With these considerations in mind we therefore chose to drive the
PY neurons with a wide range of input patterns.

Figure 6 shows the rebound delay response of one PY neuron to the chosen set of stimulation
patterns. Figure 6A shows neuron responses to a series of downtime changes with a constant
0.25 s uptime (as percentages of cycle period, the downtimes were 50% (0.25 s downtime),
75% (0.75 s downtime), and 83% (1.25 s downtime)). Figure 6B shows neuron responses to a
series of uptime changes with a constant 0.25 s downtime (as percentages of cycle period, the
downtimes were 50% (0.25 s uptime), 25% (0.75 s uptime), and 17% (1.25 s uptime)). All PY
neurons (N = 5 from 3 animals) showed qualitatively similar responses (including having
changes that induced biphasic responses—asterisks—and times after some transitions in which
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no neuron firing occurred—qrey rectangles) to these stimulation patterns, although the
responses of different PY neurons could differ quantitatively (e.g., have different average
rebound delays—a shift up or down of the entire curve—or different steady-state rebound delay
values for some of the individual stimulation patterns). This qualitative similarity across PY
neurons, but differences in quantitative detail, is consistent with earlier data showing that, when
PY neuron steady-state rebound delay is plotted against cycle period and duty cycle (burst
duration divided by cycle period), although best planar fits to the data always slope up in both
directions, plane slopes and offsets vary from PY neuron to PY neuron (Hooper, 1998). Also
shown in this figure are the responses of a model of the LP neuron (Buchholtz et al., 1992) to
the same pattern of current injections (black lines). The model did not replicate well the neuron
data with respect to steady-state rebound delay values, how quickly these values were reached,
the presence of biphasic responses, or the presence of times after some transitions in which no
neuron firing occurred.

We were unable to find, using a by-hand search, a set of maximum conductance values of the
Buchholtz et al. (1992) model that reproduced the data in Fig. 6. Consideration of these efforts
showed that a major difficulty was that model responses after stimulation pattern changes were
always more rapid than real neuron responses. This difficulty is not surprising, since, as noted
earlier, the LP neuron fires earlier after the AB/PD neuron inhibition than do the PY neurons,
and it is known that the PY neurons have intrinsic properties that delay their rebound after
inhibition (Hartline, 1979). This delayed response could result from the PY neurons having
slowly activating or inactivating conductances, and we therefore built models with such
conductances to test whether these models could better reproduce the data. Figure 7 shows the
responses of a model with a slowly activating and deactivating potassium current. Model
steady-state rebound delays were not perfect, particularly in the constant downtime
stimulations, but they were much closer to the real data than those of the original model.
Moreover, the model qualitatively reproduced real neuron responses. In particular, the model
captured all biphasic responses (the last one, from a 1.25 s to 0.25 s downtime in A, is not
visible because it perfectly reproduces the data) and well reproduced most of the slow time
courses with which the steady-state values were achieved. To compare further the response of
the two models, we also plotted rebound delay vs. cycle period for four stimulation patterns
with identical (0.5) duty cycles (C). The Buchholtz et al. (1991) model showed no change in
rebound delay with changes in cycle period. The slow model did not perfectly reproduce the
real data, but was much closer to doing so than was the original.

Models containing other slow currents, including, in particular, a slowly activating and
deactivating calcium current, could also qualitatively reproduce the neuron data (data not
shown). We interpreted these results as indicating that the fundamental requirement was not
which ion the conductance transmitted, but instead the conductance's activation and
deactivation dynamics. This interpretation was further supported by work in individual models
examining the effect on model performance of changing slow conductance activation and
deactivation dynamics. This dependence on conductance dynamics suggested that the slow
conductances were acting as low-pass filters of neuron activity, their mean activation levels
were hence shifting as neuron activity shifted, and this shift in mean activation level was
altering rebound delay. The manner in which low-pass filtering could result in such shifts in
mean activation level is exactly analogous to work we have performed explaining how slow
muscles in the pyloric system respond to their comparatively rapid motor neuron burst input
(Morris and Hooper, 1997; 2001;Morris et al., 2000;Hooper and Weaver, 2000; Thuma et al.,
2003), and similar work one of the authors has performed in the Blischges lab at the University
of Cologne on slow muscles in the walking system of the stick insect, Carausius morosus
(Hooper et al., 2006;2007a,b) (mathematical treatments of this issue are included in Morris
and Hooper, 1997; 2001 and Hooper et al., 2007b).
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In brief, consider a slow conductance that activates with depolarization and deactivates with
hyperpolarization. If the neuron is rhythmically hyperpolarized, during each downtime the
conductance's activation level would decrease and during each uptime it would increase. If the
decreases in the conductance’s activation during the initial downtimes are of larger amplitude
than the increases during the intervening uptimes, the conductance's activation level would
temporally summate (staircase) downward (become less activated). In general the rates at
which a conductance's activation change depend not only on membrane potential, but also on
the absolute value of the conductance's activation. Thus, as the staircasing occurred the amount
of activation during each uptime, and of deactivation during each downtime, would change as
the conductance's mean activation level shifted. This process would continue until the
conductance's mean activation reached a level at which the conductance activated the same
amount during each uptime as it deactivated during each downtime, at which point the
conductance's mean activation, averaged across a cycle period, would stop changing. If the
durations of the uptimes or downtimes were then shifted, the amplitudes of activation and
deactivation during the new uptimes and downtimes would then again be unequal, and hence
anew staircasing would occur until a new mean activation level was achieved at which uptime
activation equaled downtime deactivation. Importantly, for this process to work, the rate of
change of the conductance activation must be so slow that the activation never reaches its
steady-state value (the value it would achieve if the neuron were held at either the rest or
hyperpolarized voltages for a long time) during either the up or down times. Mean activation
levels of conductances whose activation rates are slow in comparison to the durations present
in a neuron's activity changes can thus change in response to changes in those durations, and
hence alter neuron activity.

To test if the process outlined above was the basis for the success of our slow conductance
models in reproducing PY neuron responses to changing stimulation patterns, we therefore
examined slow current activation and deactivation (in the slow potassium model) in greater
detail. Figure 8 shows the slow potassium conductance's response to a step depolarization (top
two traces). The conductance slowly activated during the step and very slowly deactivated after
it. Comparing the time course of the conductance's activation with PY neuron activity in the
intact network (bottom two traces, note change in time calibration bar) emphasizes how slowly
the conductance activated and deactivated compared to pyloric cycle period. Figure 9 shows
the activity of the model before, during, and after a change in stimulation protocol (this
transition corresponds to the last—from {1.25 s uptime, 0.25 s downtime} to {0.25 s uptime,
0.25 s downtime}—transition in Figs. 6B and 7B). The top two traces on the left and the right
show on an expanded time scale model activity at steady state (first trace) and current injection
pattern (second trace) in the two stimulation protocols. The third trace and the plot (bottom)
show on a slow time scale model activity and conductance activation in the two stimulation
protocols and during the transition. In the first stimulation pattern the conductance's steady-
state activation had a mean of about 0.13 and showed small spike-by-spike alterations that
temporally summated during each burst, and declined from the start of each hyperpolarization
until the beginning of the next burst.

In the first stimulation pattern model rebound delay varied between 0.47 and 0.54 s. This
variation was due to model firing having a long-term pattern in which every third burst had
four, rather than three, spikes. This long-term pattern occurred because with only three spikes
the activation level slowly declined burst-to-burst (arrow in bottom plot). As a result of this
slowly declining activation level, spike delay decreased burst-to-burst until it became short
enough that four spikes could fit in one uptime. This fourth spike resulted in a re-setting of the
current's activation to a new higher level, with a consequently longer rebound delay, a delay
long enough that only three spikes could occur in the following uptime. At this point the
activation level again began to decrease burst-by-burst until rebound delay was short enough
for four spikes to occur in the uptime, at which point the process recurred. Put another way,
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the steady-state firing pattern would have been 3 and 1/3 spikes per burst, but because partial
spikes cannot occur, the system instead showed a slow variation between 3 and 4 spikes that
resulted in this value being achieved on average.

This observation raises the question of whether similar long-term resetting patterns occur in
real PY neurons. In both intact and isolated PY neurons cycle-by-cycle variations in spike
number do occur. For instance, in Fig. 1B the first PY burst had 6 spikes and the second 5, in
Fig. 2B the first PY burst had 7 spikes and the second 6, and in Fig. 2C the first two bursts had
3 and the third 2. Similarly, in the isolated neuron shown in Fig. 4, in the top trace of Fig.
4A1 the first burst had 6 spikes and the other three 5, and in the top trace of Fig. 4B1 the first
five bursts had 5 spikes and the sixth 4. We hesitate, however, to ascribe these variations to
the same mechanism as that explaining the variation in spike number seen in Fig. 9 because in
both the intact network (Fig. 1) and isolated neuron (Fig. 4) cases, modulatory inputs and inputs
from other, non-pyloric, stomatogastric networks are still present, either of which could be
responsible for these changes in spike number. Moreover, our stimulation trains were not long
enough in most cases to establish whether long-term repeat patterns were occurring in the
neurons, and given the likelihood of slow changes in neuron properties occurring over time
under in vitro conditions, it is unclear that increasing train length could unambiguously resolve
this issue. As such, although the mechanisms underlying the long-term pattern seen in Fig. 9
could be a possible mechanism for long-term repeating variation in real pyloric neuron spike
numbers, the presence of other possible explanations in the real system prevent this idea at
present from being more than an interesting speculation.

Turning now to the larger question of the response of the model to changes in stimulation
pattern, for six cycles after the stimulation pattern was changed (at approximately 16.5 s)
conductance activation was too large to allow any spiking to occur during the new, shorter
uptime (i.e., model rebound delay was greater than uptime duration). The model's mean
membrane potential was therefore more negative than it was in the original stimulation pattern,
and conductance activation therefore continuously declined, eventually reaching a level near
0.11. This lower activation level resulted in less potassium (hyperpolarizing) current being
present during the uptimes, and thus a shorter (0.2 s) rebound delay, one short enough that the
model could again fire (note decreased rebound delay in first right trace).

The shifts in model rebound delay thus occur because stimulation changes that make model
mean membrane potential more negative decrease potassium conductance activation and hence
decrease rebound delay, and changes that make model mean membrane potential more positive
increase conductance mean activation and hence increase rebound delay. This logic suggested
that if the dependence of conductance activation on membrane potential were reversed (so it
increased with hyperpolarization and decreased with depolarization), the effects on rebound
delay should reverse. We therefore altered the slow potassium current (Appendix) so its
activation changed in this manner. It was also necessary in the reversed model to delete Iy,
(because its effect on model rebound delay opposed the effects of the reversed slow potassium
current, instead of assisting these effects as in the original model), alter the dynamics of calcium
sequestration (because, since calcium channels open with depolarization and [Ca2*] thus
increases with depolarization, the reversed slow potassium conductance activation had to be

1
switched to depending on LCT instead of [Ca?*] as in the original slow potassium
conductance), and make minor changes in lxq and Iy, to maintain neuron firing. Under these
conditions (Fig. 10, all figure conventions exactly as in Fig. 9) the same change in stimulation
pattern increased (instead of decreased) slow potassium conductance activation, and hence
increased (instead of decreased) rebound delay.
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Figure 11 compares the rebound delays of the two models to multiple stimulation patterns.
Panel A shows the response of the models to stimulation protocols with a constant downtime
and varying uptime. The original model responded with an increasing delay, but in the reversed
conductance model delay first decreased and then became nearly constant for uptimes greater
than 0.8 (because for these uptimes with this downtime conductance activation became very
close to zero). Panel B shows model responses to stimulation protocols with a constant uptime
and varying downtime. The original model responded with a decreasing delay, but in the
reversed conductance model delay continuously increased.

Discussion

The goals of this research were to measure isolated PY neuron rebound delays in response to
a wide range of rhythmic stimulation protocols and to develop models that reproduced these
data. The neuron data showed that neuron responses to stimulation pattern changes occurred
over several to many cycle periods. Modeling work with models lacking slow conductances
did not reproduce either these several-cycle dynamics or the biphasic responses observed for
certain stimulation protocol changes. Models with slowly activating and deactivating
conductances, alternatively, qualitatively reproduced both aspects of real neuron data. These
models worked because slow temporal filtering of model activity changed mean conductance
activation and consequently shifted model rebound delay. These data suggested that reversing
the voltage dependence of slow conductance activation and deactivation should reverse the
sign of model response to changes in stimulation protocol, a suggestion confirmed by making
these changes in one of the slow conductance models. These data suggest that slow
conductances or similar slow processes may play a role in phase maintenance in the pyloric
network and other systems that maintain phase as cycle period is altered.

Experimental and modeling concerns

All experimental techniques used here are standard for the stomatogastric system and the results
obtained are consistent with prior work measuring isolated PYY neuron responses to stimulation
with rhythmic pulse trains (see below). The modeling is similarly standard in every respect.

Comparison with prior work on the functional roles of slow conductances and neurons with
slow responses

Consideration of the response properties of isolated PY neurons to temporally-varying
stimulation patterns acted as a springboard for two theoretical papers of ours suggesting that
neurons containing slow conductances could measure temporal durations and identify beat
patterns such as those occurring in speech, Morse code, and music (Hooper, 1998; Hooper et
al., 2002). However, neither of these works compared slow-conductance containing models to
real PY neurons, considered the role that such conductances might play in phase-maintenance,
or examined in detail the time course of PY or model responses to changes in stimulation pattern
changes, a key feature of the present work (indeed, an important component of the argument
made in one of these works (Hooper, 1998), was that, with the stimulation pattern changes
used in it, these changes occurred relatively rapidly). As such, although this earlier work
suggesting that neurons containing slow conductances could play a role in analyzing long-
time-scale characteristics of sensory inputs is consistent with the data presented here, it
distinctly differs from the present work both experimentally and conceptually.

Comparison with prior phase maintenance work

The data in Fig. 4, left, may initially seem contradictory to those in Fig. 2 and in Hooper

(1998). In Fig. 4, left, rebound delay decreased when downtime was increased with a constant
uptime, which increased cycle period, but in Fig. 2 and Hooper (1998) rebound delay increased
with increasing cycle period. However, in Fig. 2 and Hooper (1998) the duty cycle (inhibition
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duration/cycle period) of the inhibition was approximately constant as cycle period increased,
whereas the duty cycle of the inhibition in Fig. 4, left, increased with increased cycle period.
When the data in Fig. 4 were sorted into classes with similar duty cycles and replotted against
cycle period, rebound delay again increased with cycle period in each duty cycle class (not
shown for all duty cycles, but see Fig. 7C). As such, these data show that PY neurons, and the
models built here of them, maintain phase when driven (as are the neurons in the intact network)
by inputs that themselves maintain phase.

Biological relevance of extremely slow currents such as those used here

The original slow potassium conductance used here is a depolarization- and calcium-activated
conductance with very slow dynamics (Fig. 8). The reversed potassium conductance is a
depolarization- and calcium-inactivated conductance, again with very slow dynamics (not
shown, but see Appendix). These conductances are ad hoc modifications of existing more
rapidly activating and deactivating voltage and calcium-dependent potassium currents
(inspired by Yamada et al., 1989;Buchholtz et al., 1992;Golowasch et al., 1992) and to our
knowledge no real current has the precise dynamics and voltage dependencies of these
equations. An objection could thus be raised that these conductances are not biologically
relevant. However, such objections would miss the point of this work, which was to test whether
slow processes could underlie observed pyloric neuron responses. The ability not only of the
potassium model data presented here, but also of a model containing a slow calcium
conductance, to reproduce qualitatively the real neuron data constitutes strong support that
slow processes indeed could be the basis for the pyloric neuron responses.

The relevant question thus becomes not whether these precise conductances are present in real
neurons, but whether slow conductances are. A review of the literature shows multiple slow
(time constants in the multiple second to minute range or current traces that take similar times
to reach steady state when activated or to recover following inactivation) potassium (Adams
etal., 1980; Dubois, 1981; Czternasty et al., 1989; Kumamoto and Shinnick-Gallagher,
1990; Zittlau and Walther, 1991; Sah and McLachlan, 1992; Marom and Abbott, 1994;
Pedarzani and Storm, 1995; Kilic et al., 1996; Ma and Koester, 1996; Sah, 1996; Marom,
1998) (including a hyperpolarization-activated conductance qualitatively similar to our
reversed potassium current) (Zittlau and Walther, 1991), sodium (Butera et al., 1999;
Fleidervish and Gutnick, 1996; Fleidervish et al., 1996; Kumamoto and Shinnick-Gallagher,
1990; Marom, 1998; Toib et al., 1998),, and calcium (Adams et al., 1980; Kuo and Yang,
2001) conductances in both vertebrates and invertebrates. As such, although the precise slow
conductances used here may not be present in real neurons, conductances with similar
activation dynamics undoubtedly are.

Greater relevance

Thiswork is part of a larger body of research examining the functional roles that slow processes
play in nervous system activity. This research has suggested that slow intrinsic properties could
play a role in learning and memory (Marom and Abbott, 1994; Marder et al., 1996, 1997;
Turrigiano et al., 1996), specification of neuron properties (LeMasson et al., 1993; Siegel et
al., 1994; Turrigiano et al., 1994), identification of frequency and duty cycle in rhythmic
sensory input such as music beat lines (Hooper, 1998), and duration measurement (Hooper et
al., 2002). The data presented here suggest that slow processes may also play a role in
maintaining phase relationships in rhythmic motor patterns. As such, these data provide
additional support for the hypotheses that 1) the ability of nervous systems to generate and
process information resides not only in the complexities of neuron synaptic interconnectivity,
but also in the complex intrinsic properties of individual neurons, and 2) that, similar to how
we could switch phase maintenance by switching conductance activation and deactivation
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voltage dependence, the great variation observed in slow conductance properties (see slow
conductance references above) may exist in part to “tune' neurons to perform different tasks.
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Appendix
Appendix

Many of the equations in the slow conductance model were identical to those in Buchholtz et
al., 1992. We note below the cases in which the equations were altered or new conductances
added. In all equations V is in mV, I in nA, rate constants in s, and [Ca2*] in uM.
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1
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1
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Figure 1.

Reduced pyloric network (A) and spontaneous rhythmic activity (B) of the pacemaker
ensemble (AB and PD neurons) and one follower (PY) neuron. Note the long delay between
the end of the pacemaker bursts and the beginning of the PY burst. Resistor symbol: electrical
coupling; small circles: inhibitory chemical synapses.
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Figure 2.

The interval between the end of pacemaker activity (here monitored by a PD recording) and
the beginning of PY neuron activity increased (A) and decreased (C) as pyloric cycle period
was increased and decreased from rest (B). Scale bars apply to all panels.

J Neurosci. Author manuscript; available in PMC 2009 August 21.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hooper et al. Page 22

Uptime Downtime : Cycle :
(no current  (hyperpolarizing I Period :
injection)  current injection) I |
i |
| |
1% I | |
(I I | |
| I | |
|
|
I |
| I | |
10 mV
4 nA
0.5s

Figure 3.

Definition of stimulation pattern and slow establishment of steady-state rebound delay. PY
neurons were stimulated with rhythmic trains of hyperpolarizing pulses (downtime,
hyperpolarization duration; uptime, duration without current injection; cycle period =
downtime + uptime). Before stimulation the neuron fired tonically. After stimulation began
the neuron initially did not fire (first two cycles) and then fired 1, 2, and finally 3 spikes, with
continually decreasing rebound delay (cycles 3, 4, and 5).
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Figure 4.

Steady-state rebound delay varied with the temporal characteristics of the stimulating pattern.
A, downtime was a constant 350 ms and uptime varied from 250 ms to 1250 ms, rebound delay
increased with uptime duration. B, uptime was a constant 300 ms and downtime varied from
150 ms to 925 ms, rebound delay decreased with downtime duration. A1 and B1, raw data for
the two patterns marked with open circles in A2 and B2. A2 and B2, mean summary data. Lines
are linear best fits.
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Figure 5.

It took many cycles for rebound delay to stabilize when the stimulating pattern was changed,
and the response could be biphasic. A, raw data for one pattern change. B, Expanded time scale
traces of rebound delay at steady state for the first stimulation pattern (dashed line) before the
pattern change (top trace), in the first uptime after the change (middle trace), and at steady state
after the change (bottom trace). Note that rebound delay initially increased and then at steady
state reached a shorter value (arrows). C, Complete time course of rebound delay change
associated with stimulation pattern change (occurring at dashed line).
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Figure 6.

Response of a PY neuron to a series of stimulation patterns (uptime and downtime values
shown in panel titles and values written above each colored portion of trace) and of a pyloric
neuron model (black lines). A, responses with a constant uptime and varying downtime; B,
responses with a constant downtime and varying uptime. Asterisks mark cases in which the
neuron response was biphasic. Grey rectangles mark times in which the neuron did not fire
spikes. Note that the original model did not correctly reproduce steady-state rebound times,
biphasic responses, or periods without neuron firing.
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Figure 7.

A, B, Response of the same PY neuron as in Fig. 6, and of a pyloric neuron model with a slowly
activating and deactivating potassium current, to the same series of stimulation patterns as in
Fig. 6. All figure labeling conventions the same as Fig. 6. The slow potassium model much
better reproduced neuron activity. C, Summary of model and neuron steady-state rebound
delays for stimulation patterns in A and B with a 50:50 duty cycle. The original model (black)
showed no change in rebound delay, but in both the real neuron (red) and the slow potassium
model (green), steady-state rebound delay increased with cycle period.
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The slow potassium current dynamics were much slower than PY neuron cycle period, and
thus would be expected to act as a slow temporal filter of PY neuron activity. First trace, step
voltage change. Second trace, resulting change in slow potassium current activation. Third and
fourth traces: change in slow potassium conductance activation level at the beginning of the
voltage step change and PY neuron bursting activity in the intact network, both at an expanded
time scale. “Activation level' refers to the value of parameter “a' in the equation for Ik (see
Appendix).
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Figure 9.

Changes of mean slow potassium current activation explain changes in slow potassium model
activity when stimulation pattern changes. Top two traces: model activity and stimulation
pattern at steady state before (left) and after (right) stimulation pattern change on an expanded
time scale. Third trace: model activity at a slow time scale (plot x axis). Plot: slow potassium
conductance activation level on same time scale as third trace. Stimulation pattern change
occurred (approximate time 16.5 s) when neuron stopped firing (third trace) and activation
level began large decline (plot). When the stimulation pattern had a long uptime and short
downtime, the activation of the slow potassium current was high, and model rebound delay
was therefore long (left). For explanation of long-term variation in burst spike number (arrow)
see Results. When uptime was decreased, the slow potassium current's activation level
decreased to a lower steady-state level at which model rebound delay was shorter (right).
Immediately after the pattern change the model could not fire because rebound delay was longer
than uptime. “Activation level' refers to the value of parameter “a' in the equation for Ik (see
Appendix), which can vary from 0 (no activation) to 1 (full activation).
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Figure 10.

When the dependence of the slow potassium conductance's activation on voltage was switched
so that it increased (instead of decreased) with the same change as that done in Fig. 9, the model
responded with a decreased (instead of increased) rebound delay (compare left and right first
traces in this figure to those in Fig. 9). All figure conventions same as Fig. 9.
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Figure 11.

Summary data comparing responses of the original slow potassium model and the reversed
potassium model to changing uptime with a constant downtime (A) and changing downtime
with a constant uptime (B). In each case the response of the two models to the changes in
stimulation pattern were opposite. The rebound delay of the reversed potassium model stopped
changing for uptimes greater than 0.8 in A because its activation level was close to zero for all
these patterns. To facilitate comparison, scale axes and plot dimensions are identical to those
in Fig. 4A2 and 4B2.
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