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Abstract

Objective—Juvenile idiopathic arthritis (JIA) is comprised of seven heterogeneous categories of 

chronic childhood arthritides. About 5% of children with JIA have rheumatoid factor (RF) positive 

arthritis, which phenotypically resembles adult rheumatoid arthritis (RA). Our objective was to 

compare and contrast the genetics of RF-positive polyarticular JIA with RA, and selected other 

JIA categories, to more fully understand the pathophysiological relationships of inflammatory 

arthropathies.

Methods—RF-positive polyarticular JIA cases (n=340) and controls (n=14,412) were genotyped 

using the Immunochip array. Single nucleotide polymorphisms (SNPs) were tested for association 

using a logistic regression model adjusting for admixture proportions. Weighted genetic risk scores 

(wGRS) of published RA and JIA risk loci were calculated and their ability to predict RF-positive 

polyarticular JIA were compared.

Results—As expected, the HLA region was strongly associated with RF-positive polyarticular 

JIA (p=5.51×10−31). Nineteen of 44 RA risk loci and 6 of 27 oligoarticular/RF-negative 

polyarticular JIA risk loci were associated (p<0.05) with RF-positive polyarticular JIA. The RA 

wGRS predicted RF-positive polyarticular JIA (AUC=0.71) better than the oligoarticular/RF-

negative polyarticular JIA wGRS (AUC=0.56). RF-positive polyarticular JIA was also genetically 

more similar to RA patients with age at onset <30 years compared to RA onset >70 years.
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Conclusions—RF-positive polyarticular JIA is genetically more similar to adult RA than to the 

most common JIA categories and thus appears to be a childhood-onset presentation of 

autoantibody positive RA. These findings suggest common disease mechanisms, which could lead 

to novel therapeutic targets and shared treatment strategies.

Introduction

Juvenile idiopathic arthritis (JIA) is a heterogeneous collection of chronic arthropathies with 

distinct clinical and laboratory features, but all manifest with arthritis in one or more joints 

and present before the 16th birthday. The International League of Associations for 

Rheumatology (ILAR) criteria for JIA recognize seven JIA categories (1). There is robust 

evidence for genetic factors conferring susceptibility to all forms of JIA (2). Without a 

clearer understanding of the genetic similarities and distinctions, the clinically different 

categories must be studied separately. Unfortunately, this stratification results in smaller 

sample sizes and reduced power to detect association. Thus the JIA Consortium for 

Immunochip (JACI) was formed with the intent to bring together the large sample sizes 

required for investigation of the rarer JIA categories. The Immunochip is a custom 

microarray designed by the Immunochip Consortium to fine-map autoimmune disease-

associated loci from 11 autoimmune phenotypes including adult rheumatoid arthritis (RA) 

(3). The Immunochip assays 196,524 variants representing ~186 loci, including dense 

coverage of the major histocompatibility complex (MHC) region. Investigation of children 

with the most common categories of JIA, oligoarticular/RF-negative polyarticular JIA, 

which comprise approximately 70% of all cases in children of European descent, resulted in 

the identification of 17 loci associated with JIA at genome-wide levels of significance. In 

addition, 11 loci showed suggestive evidence of association (4).

About 5% of children with JIA demonstrate the presence of RF and antibodies directed 

against citrullinated peptides, such as anti-cyclic citrullinated peptide (CCP) antibodies, 

characteristic biomarkers observed in adults with seropositive RA. These children and young 

people tend to present at a later age-of-onset compared to oligoarticular/RF-negative 

polyarticular JIA, and often tend to have erosive disease with worse long-term outcomes. 

Thus, children with RF-positive polyarticular JIA phenotypically resemble adults with RA 

and could be considered to have childhood onset RA. In contrast to the robust genetic 

studies that include large cohorts in RA and oligoarticular/RF-negative polyarticular JIA, 

studies of children with RF-positive polyarticular JIA have been limited to small-scale 

candidate gene studies. These include investigations of association with the shared epitope 

encoding HLA-DRB1 alleles as well as several candidate loci associated with RA (5;6). To 

date, a systematic analysis of RF-positive polyarticular JIA genetic risk has not been 

completed, largely due to the lack of sufficiently sized cohorts.

To progress beyond this limitation in cohort size and also advance the understanding of RF-

positive polyarticular JIA, we have used the Immunochip to compare and contrast the 

genetics of RF-positive polyarticular JIA to other categories of JIA, and RA. This may 

provide a greater understanding of the genetic architecture of RF-positive polyarticular JIA.
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Patients and methods

All JIA cases had a diagnosis of polyarticular JIA by the ILAR classification criteria (1) and 

were positive for RF and/or anti-CCP antibodies. The ILAR criteria do not include any 

recommendation for CCP testing, hence, CCP is not routinely tested in pediatric 

rheumatology cohorts. We do have CCP data on 73 subjects (~20%). Of those tested, the 

prevalence of CCP positivity is 79%. Among cases who were RF positive, 78% were also 

positive for CCP, comparable to the ~59% of published reports of CCP positivity in RF-

positive polyarticular JIA in the literature (7). Cases were ascertained at institutions in the 

United States (US), United Kingdom (UK), Germany, Canada and Norway. Genotyping was 

performed using the Illumina Immunochip genotyping array. There were 421 RF-positive 

polyarticular JIA cases and 16,403 controls before quality control (QC). Standard SNP and 

sample QC was performed as previously described in the total JIA cohort (4;8). Details of 

cohorts can be found in the supplementary information.

For comparison with different age-at-onset groups of RA cases, UK RA cases genotyped on 

the Immunochip array were available from a cohort described previously (9). RA cases were 

selected if they fell into two age-at-onset categories, early-onset RA (age 16-29 years) 

n=370 and later-onset RA (age ≥ 70 years) n=259. In total, 8,675 controls from the RA 

cohort overlapped with the UK controls used for the JIA cohorts. To preserve independence, 

these controls were randomly split into two groups (Supplementary Table 1).

To test for SNP association with RF-positive polyarticular JIA, a logistic regression model 

was computed using Caucasian admixture proportions calculated by the program 

ADMIXTURE (10) as covariates. The additive genetic model was the primary analysis 

unless there was significant departure from additivity, upon which the most associated 

genetic model was used. For markers on the X chromosome, the logistic model was 

stratified by gender and inference was based on the resulting weighted inverse normal meta-

analysis. Imputation of SNP genotypes was completed using IMPUTE2 with the 1000 

Genomes Phase 1 integrated reference panel (11). To test for association with the imputed 

data, a logistic regression model with admixture adjustment was computed on the imputed 

allele dosage. Only SNPs that passed standard imputation QC and had information score 

>0.5 and confidence score >0.9 were considered for association analysis. For each region we 

reported the strongest associated genotyped SNP. If there was an imputed SNP that showed 

stronger association than the genotyped SNP, then both SNPs were reported; imputed SNPs 

required at least two SNPs in strong linkage disequilibrium to also exhibit association. 

Regional plots of association were computed using LocusZoom (12).

The 45 non-HLA risk loci associated with RA using the Immunochip (9) and the 27 

oligoarticular/RF-negative polyarticular JIA non-HLA risk loci (4) were assessed to 

determine if they were also associated with RF-positive polyarticular JIA in our cohort.

Two weighted genetic risk scores (wGRS) were calculated: the first used the RA risk loci (9) 

and the second used the oligoarticular/RF-negative polyarticular JIA risk loci (4). The RA 

wGRS analysis started with the 46 SNPS (including HLA) (p< 5 × 10−8) associated with RA 

as published by Eyre et al (9). However, no proxies (r2>0.8) were available for rs13397 at 
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IRAK1, rs2240336 at PADI4, rs39984 at GIN1 or rs10683701 at KIF5A, therefore the 

number of SNPs in the wGRS was 42 SNPs. The HLA region was captured through the 

HLA-DRB1 tag SNP rs660895 (13).

The JIA wGRS analysis started with the 28 SNPs (including HLA) (p< 1 × 10−6) associated 

with oligoarticular/RF-negative polyarticular JIA as reported by Hinks et al (4). However, no 

proxies were available for rs7909519 at IL2RA; rs2266959 at UBE2L3 and rs7069750 at 

FAS, so the final number of SNPs in the wGRS was 25 SNPs. The HLA association was 

captured using the top SNP (rs7775055) in the region.

To calculate the wGRS for an individual, the natural log of the reported odds ratio was 

multiplied by the number of risk alleles for each SNP and summed. Individuals with missing 

genotypes were assigned (imputed) a score based on the expectation from the allele 

frequency and assuming Hardy-Weinberg Equilibrium. Logistic regression was used to 

compare each wGRS between cases and controls. In addition, receiver operator 

characteristic (ROC) curves defined by the sensitivity and specificity of each wGRS were 

generated and the area under the curve (AUC) calculated. The GRS analysis did not include 

the imputed genotype data. Analysis was performed using STATA v13.1. We tested whether 

there was a difference between the areas under the two ROC curves using DeLong’s method 

as implemented in SAS.

Results

After QC there were 340 RF-positive polyarticular JIA cases (mean onset age: 10.2 ± 4.2 

years) and 14,412 controls (Table 1). For the X chromosome analysis, the breakdown by 

gender was 292 female cases and 8,002 female controls; 48 male cases and 6,410 male 

controls.

Despite the modest sample size, association with the HLA region was identified, the most 

significant association was at rs3129769, near HLA-DRB1 (p=5.51×10−31), a SNP in strong 

linkage disequilibrium (LD) (r2=0.88) with the HLA-DRB1 SNP reported in RA (rs660895, 

p=2.14×10−29). These SNPs are tagging the HLA-DRB1*0401 classical allele (14). There 

was no significant association of the most associated SNP in the HLA region reported in the 

oligoarticular/RF-negative polyarticular JIA Immunochip study, rs7775055 (p=0.08).

The most significantly associated loci identified in the oligoarticular/RF-negative 

polyarticular JIA and RA Immunochip study were assessed for association with RF-positive 

polyarticular JIA. Of the 27 non-HLA SNPs most strongly associated with 

oligoarticular/RF-negative polyarticular JIA (4), six showed evidence for association with 

RF-positive polyarticular JIA (p<0.05) (Supplementary Table 2). Of the 44 SNPs (not 

including HLA and KIF5A region, the latter is a deletion polymorphism and not analyzed in 

this study) most strongly associated with RA (9), 19 showed evidence for association with 

RF-positive polyarticular JIA (p<0.05) (Supplementary Table 3).

The wGRS generated using the top RA loci was compared with the wGRS generated using 

the top oligoarticular/RF-negative polyarticular JIA loci to see which best predicted RF-

positive polyarticular JIA cases compared to controls. The wGRS generated using the top 
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RA loci from Eyre et al (9), showed statistically significant improved prediction of RF-

positive polyarticular JIA cases than that generated using the top oligoarticular/RF-negative 

polyarticular JIA loci (AUC=0.71 versus AUC=0.58, respectively; p=8.26 × 10−33; Figure 

1). The RA wGRS showed comparable prediction of RF-positive polyarticular JIA and 

early-onset RA cases (AUC=0.75) (Figure 2a; p=0.25) but was less effective in predicting 

later-onset RA (AUC=0.62) compared to RF-positive polyarticular JIA (Figure 2b; p=1.65 × 

10−5). This suggests that the RF-positive polyarticular JIA genetic profile looks more similar 

to younger RA cases than older.

Outside the HLA region, no other region reached genome-wide significance, however there 

was suggestive association for 13 regions (p<1×10−4) Imputed SNP results are included 

when the imputed SNP had a better imputed P value than the most significant directly 

genotyped SNP in the region (Supplementary Table 4, Supplementary Figures 1 and 2). 

Supplementary Table 4 denotes imputed SNPs with a “b” superscript. Of the 13 regions 

most strongly associated with RF-positive polyarticular JIA, 5 contained SNPs (or SNPs in 

LD, r2>0.8) with some previous evidence for association with RA (9).

Discussion

This represents the largest genetic study for RF-positive polyarticular JIA to date. We 

provide evidence that this uncommon category of JIA, which is phenotypically similar to 

adult seropositive RA, is also genetically more similar to adult RA than to the most common 

JIA categories, which lack the characteristic biomarkers (RF and anti-CCP). The results of 

the wGRS analysis generated from the top RA associated loci better predicted RF-positive 

polyarticular JIA case-control status than the wGRS generated from the oligoarticular/RF-

negative polyarticular JIA top hits.

We investigated whether any of the previously associated RA (9) or oligoarticular/RF-

negative polyarticular JIA loci (4) showed evidence for association with RF-positive 

polyarticular JIA. Nineteen of the 44 SNPs reaching genome-wide significance thresholds 

with RA show evidence for association with RF-positive polyarticular JIA (p<0.05). There 

appears to be less overlap with the oligoarticular/RF-negative polyarticular JIA loci since 

only six of the 27 oligoarticular/RF-negative polyarticular JIA SNPs show evidence for 

association with RF-positive polyarticular JIA. Formal testing for a difference in the two 

proportions using the likelihood ratio test was suggestive but not statistically significant 

(p=0.0676).

As might be expected, the most significant association was within the HLA region, and the 

SNP is in strong LD (r2=0.88) with the most associated HLA SNP in RA. We have 

previously reported the HLA associations for all the categories of JIA (8) and found that RF-

positive polyarticular JIA has distinct HLA associations compared to the other categories of 

JIA. The HLA-DRB1 amino acid position 13, is most strongly associated with RF-positive 

polyarticular JIA, with a histidine residue driving the association. This is the same HLA 

association as found in RA (8;13). A glycine residue at this same amino acid position drives 

the association in oligoarticular/RF-negative polyarticular JIA. This supports separation of 
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RF-positive polyarticular JIA from the other JIA categories and confirms that RF-positive 

polyarticular JIA is more similar to RA than to other JIA categories (8).

Other than the HLA region we were unable to identify novel loci meeting genome-wide 

levels of significance. This may be expected, as despite being the largest genetic study to 

date for RF-positive polyarticular JIA, our study is still relatively underpowered to detect 

odds ratios of ~1.1-1.2, as are often observed in autoimmune diseases. We have identified 13 

regions which have a p-value of < 1×10−4, which will need validation in an independent 

cohort to confirm. The strongest non-HLA association for RF-positive polyarticular JIA was 

rs9610687 which lies upstream of the RAC2 gene. Mutations with RAC2 are associated with 

neutrophil immunodeficiency syndrome. Polymorphisms within the IL2RB gene, close to 

RAC2, have previously been associated with oligoarticular/RF-negative polyarticular JIA (4) 

and with RA (9). However the oligoarticular/RF-negative polyarticular JIA-associated SNP 

(rs2284033) is ~500kb from the RF-positive polyarticular JIA-associated SNP. The 

oligoarticular/RF-negative polyarticular JIA-associated SNP in IL2RB was not significantly 

associated with RF-positive polyarticular JIA (p=0.70). In RA the most associated SNP 

(rs3218251) in this region again lies in the IL2RB gene, and this SNP is not in LD with the 

oligoarticular/RF-negative polyarticular JIA-associated SNP.

Although this study has numerous important findings, there are some important limitations. 

Firstly, the RA cases included in the wGRS analysis are a mixture of both seronegative and 

seropositive RA (though the biggest proportion are seropositive (68% CCP positive)), 

potentially diluting or masking effect sizes.

Secondly, the RA UK cases and controls included in these analyses are part of the Eyre et al 

RA Immunochip study(9), and this lack of independence could artificially inflate the 

predictive scores of the wGRS. A more recent genetic study in RA published by Okada et al 
(15), identified 101 genetic regions associated with RA. Many of these regions were not 

covered on the Immunochip array and so it was not possible to use these in the wGRS 

analysis (9).

The current ILAR classification criteria (1) are based on clinical features and family history, 

and it is not always straightforward to assign children to a category. In addition, there still 

remains heterogeneity, especially in terms of prognosis, between and within the categories of 

JIA. In time, clear delineation of the genetics of JIA categories may contribute to a more 

refined classification system. Whilst it has been recognized for many years that RF-positive 

polyarticular JIA is clinically and serologically similar to adult RA, there have been no 

systematic investigations of possible genetic overlap between these phenotypes of 

inflammatory arthritis. One reason for this is that several JIA categories are rare, and large-

scale international collaborations such as this, and the one established for systemic onset 

JIA, another rare category (16), are necessary to build up sample sizes for genetic studies of 

these phenotypes.

We have now shown that RF-positive polyarticular JIA is genetically more similar to adult 

RA than to the oligoarticular/RF-negative polyarticular JIA categories. Demonstrating that 

RF-positive polyarticular JIA genetically appears to be a childhood-onset presentation of RA 
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supports further investigation of this phenotype, and the factors influencing an early onset 

presentation. Broadly, our results suggest that genetic profiling might enhance our ability to 

classify and understand the different phenotypes of inflammatory arthritis. Our results also 

provide a rationale for studying both diseases together and for translating therapeutic trials 

of successful pharmacological agents from adult RA to RF-positive polyarticular JIA and 

vice-versa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of wGRS models calculated using RA wGRS or oligoarticular/RF-negative 
polyarticular JIA wGRS in RF-positive polyarticular JIA
JIA, Juvenile idiopathic arthritis (oligoarticular/RF-negative polyarticular JIA); RA, 

rheumatoid arthritis; ROC, receiver operator characteristic; wGRS, weighted genetic risk 

score; AUC, area under the curve.
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Figure 2. (a) Comparison of wGRS models calculated using RA wGRS in RF-positive 
polyarticular JIA to that with early-onset (16-29 yrs) (b) Comparison of wGRS models 
calculated using RA wGRS in RF-positive polyarticular JIA to that with later-onset (≥70 yrs) RA
JIA, Juvenile idiopathic arthritis (oligoarticular/RF-negative polyarticular JIA); RA, 

rheumatoid arthritis; ROC, receiver operator characteristic; wGRS, weighted genetic risk 

score; AUC, area under the curve.
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Table 1

Breakdown of RF-positive polyarticular JIA case and control cohort by population before and after quality 

control (QC)

Population Pre QC
Cases

Pre QC
Controls

Post QC
Cases

Post QC
Controls

US 272 5985 222 4408

UK 104 8940 94 8579

Germany 15 489 1 480

Norway 14 989 13 945

Canada 16 – 10 –

Total 421 16403 340 14412
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