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Abstract
UDP-glucuronosyltransferase (UGT) 1A1 glucuronidates bilirubin, estrogens, and xenobiotic
compounds. The UGT1A1*28 polymorphism results in lower promoter activity due to 7 thymine-
adenine (TA) repeats, rather than the more common 6 TA repeats. Previously, we showed that serum
bilirubin, a marker of UGT1A1 activity, was lower among individuals homozygous for the
UGT1A1*28 polymorphism (7/7) when randomized to a high fruit and vegetable (F&V) diet, whereas
no effect was seen in individuals with the wild-type (6/6) and heterozygous (6/7) genotypes. Our
objective here was to determine if we could detect genotype-diet interactions on bilirubin
concentrations in an observational study. Healthy non-smoking men (n=146) and women (n=147),
recruited from the Seattle area, provided blood samples for genotyping and bilirubin measurements.
We used multiple linear regression to assess the relationships between UGT1A1 genotype, bilirubin
concentrations and consumption of specific F&V [cruciferous vegetables, citrus fruits, and soy foods
(n=268)] based on FFQ, and F&V from 6 botanical families [Cruciferae, Rosaceae, Rutaceae,
Umbelliferae, Solanaceae and Leguminosae (n=261)] based on 3 d food records. We observed a
significant interaction of UGT1A1 genotype and citrus consumption among women. Women with
the 7/7 genotype who consumed 0.5 or more daily servings of citrus fruit or foods from the
Rutaceae botanical family had ~30% lower serum bilirubin than those with the same genotype who
consumed less, while 6/6 and 6/7 genotypes did not differ by consumption (P for interaction = 0.006
and 0.03 respectively). These results suggest that citrus consumption may increase UGT1A1 activity
among women with the 7/7 genotype.
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Introduction
UDP-glucuronosyltransferases6 (UGT) conjugate endogenous and exogenous compounds
with 5′-diphosphoglucuronic acid to form glucuronidated compounds that are more water-
soluble and easily excreted. Two families of human UGT—UGT1A and UGT2B—
glucuronidate a wide range of substrates. UGT1A enzymes conjugate estrogens, bilirubin, and
xenobiotic compounds, and UGT2B enzymes glucuronidate bile acids, androgens, and drugs;
however, there is overlapping substrate specificity among members of both families (1–5).
Here we focus on UGT1A1 which metabolizes dietary carcinogens, such as 2-amino-1-
methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 17β-estradiol, and is the primary UGT that
glucuronidates bilirubin (5–7).

Genetic polymorphisms that alter enzyme expression and/or activity and affect carcinogen
clearance have been identified in UGT (8–10). The UGT1A1*28 polymorphism, characterized
by 7 thymine-adenine (TA) repeats rather than the more common 6 TA repeats, results in lower
promoter activity and is the genetic basis for mild unconjugated hyperbilirubinemia associated
with reduced hepatic bilirubin glucuronidation (Gilbert syndrome) (11,12). Individuals
homozygous for the UGT1A1*28 variant alleles (7/7) have been shown to have higher
circulating concentrations of serum bilirubin (13,14), as well as reduced amounts of conjugated
metabolites of the carcinogens benzo(a)pyrene [benzo(a)pyrene-7,8-dihydrodiol(−); (13)] and
PhIP [N-hydroxy-PhIP (1)]. These data suggest that individuals with the UGT1A1*28 alleles
may be at increased risk of cancer due to higher or more prolonged carcinogen exposure.
Results from population-based case-control studies have shown that pre-menopausal women
with the UGT1A1*28 polymorphism have a higher risk of breast cancer than women with the
homozygous wild-type alleles (6/6) (15,16), perhaps due to higher circulating estradiol
concentrations associated with reduced UGT1A1 activity (17).

Many phytochemicals induce UGT (18–20). We showed previously, in observational (21) and
controlled feeding studies (22), that serum bilirubin concentrations were lower among
individuals with the 7/7 genotype when exposed to fruits and vegetables (F&V); whereas, no
effect was seen in individuals with the wild-type (6/6) and heterozygous (6/7) genotypes. In
the present cross-sectional study, we also use serum bilirubin as an endogenous marker of
UGT1A1 activity. Citrus fruit, cruciferous vegetables and soy (and/or phytochemicals
contained in these foods) induce UGT activity (23–29). Our objective was to determine whether
habitual consumption [as assessed by FFQ] of these foods and recent consumption [as
measured by 3 d food records (3DFR)] of foods from several botanical families that contain
phytochemicals that induce UGT (19) (Cruciferae, Rosaceae, Solanaceae, Leguminosae,
Rutaceae and Umbelliferae), are associated with serum bilirubin concentrations. We also tested
whether associations between diet and bilirubin differ by UGT1A1 genotype.

Subjects and Methods
Subjects

293 healthy, non-smoking men (n=146) and women (n=147), aged 20–40 y, were recruited
from the Seattle area via advertisements in university newspapers, flyers displayed in campus
buildings, and targeted mailings of individuals identified from the Washington State
Department of Licensing. Participants completed an eligibility questionnaire and were
excluded based on the following criteria: 1) medical history of gastrointestinal, hepatic, or renal
disorders; 2) current or planned pregnancy or lactation; 3) major dietary and/or weight change

6Abbreviations used: AhR, aryl hydrocarbon receptor; ER, estrogen receptor; FHCRC, Fred Hutchinson Cancer Research Center; F&V,
fruit and vegetable; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; TA, thymine-adenine; UGT, UDP-
glucuronosyltransferase; UM-NCC, University of Minnesota Nutrition Coordinating Center; 3DFR, 3 d food record
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(>4.5 kg) in the past year; 4) antibiotic use within the past 3 mo; 5) BMI >30 or <18; 6) current
use of over-the-counter, recreational, and prescription drugs (including oral contraceptives);
7) regular exposure (including occupational) to passive smoke or organic solvents; 8) alcohol
intake >2 drinks/d (720 mL beer, 240 mL wine or 90 mL hard liquor); 9) no interest in
participating in the subsequent controlled feeding trial; 10) exercise regimens that require or
result in significant short-term dietary changes. Participants were asked to discontinue use of
all multivitamins and dietary supplements 1 wk prior to their participation in the study. The
study was approved by the Institutional Review Board at the Fred Hutchinson Cancer Research
Center (FHCRC) and informed written consent was obtained from all participants.

Data and sample collection
Participants completed a FFQ reporting on their dietary intake within the past 3 mo, food
records on 3 consecutive d and a health and demographics questionnaire. Body weight and
height were measured and a 12 h fasting blood sample was drawn from all participants to
provide peripheral leukocyte DNA for UGT genotyping and serum for bilirubin measurements.

FFQ
Dietary data were collected from 274 (94%) participants using a FFQ developed by the FHCRC
Nutrition Assessment Shared Resource. Completed FFQ were analyzed for daily servings of
specific foods and daily consumption of nutrients using the database from the University of
Minnesota Nutrition Coordinating Center (UM-NCC), Minneapolis, MN (19) and F&V (30).
Servings of all F&V were adjusted for serving size and usual frequency of consumption. Daily
servings (113 g) of cruciferous vegetables were calculated by summation of adjusted daily
servings (as described above) of broccoli, cabbage, cauliflower, Brussels sprouts and coleslaw.
Daily servings of citrus fruits were calculated by summation of adjusted daily servings of
orange (1 orange), grapefruit (1/2 grapefruit), orange juice (177 mL), and grapefruit juice (177
mL). Daily servings of soy products were calculated by summation of daily servings (adjusted
for serving size) of tofu (86 g), miso soup (237 mL), and soy milk (237 mL).

Food records
3DFR were collected from 289 (99%) participants and analyzed as previously described (31).
Participants were trained by a registered dietitian on how to keep food records. The 3DFR were
analyzed by trained nutritionists using the UM-NCC Nutrition Data System for Research that
incorporates a comprehensive food product list and nutrient database (32) to estimate daily
intake of total F&V (together and separately), as well as those defined by botanical family,
based on standard serving sizes (228 g raw, 113 g cooked or canned, 118 mL juice, etc.). We
focused on daily servings of plants from the Cruciferae, Rosaceae, Solanaceae,
Leguminosae, Rutaceae and Umbelliferae families because they include foods which contain
phytochemicals previously shown to induce UGT (20). Cruciferous vegetables (i.e.,
Cruciferae), such as broccoli and cabbage, are rich in sulfur-containing glucosinolates. Foods
in the Umbelliferae (e.g., carrots, parsley), Solanaceae (e.g., tomato, eggplant) and Rutaceae
(e.g., citrus fruits) families contain carotenoids and many flavonoids. Fruit, such as apples and
berries, in the Rosaceae family are also abundant in flavonoids, and legumes (i.e.,
Leguminosae), such as lentils and beans, are rich in lignans.

Determination of UGT1A1 promoter genotypes and serum bilirubin measurements
Genotyping for the UGT1A1*28 polymorphism was performed as previously described (22).
Serum total and direct (conjugated) bilirubin concentrations were quantified using a Cobas
MIRA Plus centrifugal analyzer (Roche Diagnostic Systems). Indirect (unconjugated) bilirubin
was calculated as the difference between total and direct bilirubin.
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Statistical analysis
Four individuals (1%) did not provide any dietary information and were excluded from
analyses. Six (2%) additional participants were excluded because they had UGT1A1 genotypes
other than 6/6, 6/7, or 7/7. Of the remaining 283 study participants, 261 (92%) and 268 (95%)
completed 3DFR on 3 consecutive d within 1 wk prior to serum collection and FFQ,
respectively. Serum bilirubin concentrations were log-transformed prior to analysis to
normalize distributions. Daily servings of total F&V and total botanicals were divided into
three groups (<4, 4–5, and >5) and used as grouped linear variables in statistical models. Daily
servings of all other dietary variables were split dichotomously (<1/2 or 1/2+) for analysis.
Multiple linear regression analysis was used to determine whether demographic characteristics
[age (<30 or 30+ y), sex, race (Caucasian, Asian or other), and duration of physical activity
(≤6 or >6 h/wk)] and UGT1A1 genotype (used as a grouped linear variable to test for significant
linear trend) were associated with serum bilirubin concentrations. Differences in daily intake
of each food group by UGT1A1 genotype (used as a categorical variable—6/6, 6/7 or 7/7) were
assessed using linear regression.

Multiple linear regression analysis was also used to assess the association of F&V consumption
(independent variables; total F&V or botanicals and each F&V variable tested individually)
with each serum bilirubin measure. These analyses were adjusted a priori for UGT1A1
genotype, sex, and total F&V or energy (for total F&V and total botanicals) intake. The
following covariates were assessed as potential confounders or predictors in all regression
models: age (continuous), body wt (continuous), duration of physical activity (≤6 or >6 h/wk),
race/ethnicity (Caucasian, Asian or other), total energy intake (continuous), and season (winter,
spring, summer, or fall; for 3DFR variables only). Predictors were included in models if the
P-value for the test that the regression coefficient(s) for the variable term(s) was equal to zero
was significant (P<0.05). Confounders were included if their addition to the regression model
changed the main effect(s) estimate(s) by 10% or greater. To determine whether dietary effects
on bilirubin concentrations differed by genotype, interactions of each dietary variable (coded
as grouped linear) with UGT1A1 genotype (coded as grouped linear) was assessed by testing
the null hypothesis that the regression coefficient(s) for the interaction term(s) was equal to
zero. Statistical tests were two-sided and P<0.05 was considered statistically significant. All
statistical analyses were performed using Stata 9.0 (StataCorp).

Results
Sex, race, and UGT1A1 genotype were associated with total, direct, and indirect serum bilirubin
(Table 1). Men had statistically significantly higher serum bilirubin concentrations than women
(P ≤ 0.001). These measures were also statistically significantly higher among Asians than
Caucasians (P < 0.01); whereas, total and indirect bilirubin concentrations were significantly
lower among races other than Caucasian (P < 0.05). There was a statistically significant linear
trend of increasing total, direct, and indirect bilirubin (P < 0.001) with higher numbers of
UGT1A1*28 alleles. Age was not associated with total and indirect bilirubin; however,
individuals ≥ 30 y had slightly lower concentrations of direct (conjugated) bilirubin than those
who were <30 y (P = 0.02), after adjusting for all other covariates. Duration of physical activity
was not associated with any bilirubin measures. There were no statistically significant
differences in mean daily intake of each F&V group or botanical family by UGT1A1 genotype
(Supplemental Table 1).

Total F&V consumption was not statistically significantly associated with any measure of
serum bilirubin (Supplemental Table 2). However, among the individual F&V groups, there
was a statistically significant interaction between UGT1A1 genotype and citrus fruit (P = 0.006;
Table 4) and Rutaceae (P = 0.03; Table 5) consumption associated with total and indirect
(data not shown) bilirubin among women but not men: women with the 7/7 genotype who

Saracino et al. Page 4

J Nutr. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consumed 0.5 or more daily servings of citrus fruit or Rutaceae had lower (~30%) total and
indirect bilirubin concentrations than those who consumed less. In contrast, bilirubin measures
did not differ by consumption of these food groups among men or women with the 6/6 and 6/7
genotypes. Multiple regression models that included citrus consumption, UGT1A1 genotype,
race, age, total F&V consumption, and the citrus -UGT1A1 genotype interaction terms
accounted for ~30% (R2 values) of the variation in total and indirect bilirubin, respectively.

Discussion
We observed a statistically significant interaction between UGT1A1 genotype and
consumption of citrus, which was associated with lower serum bilirubin among women with
the 7/7 genotype. These results are consistent with previous studies that showed bilirubin
concentrations were lower among individuals with the 7/7 genotype who were exposed to
cruciferous vegetables (21) or a combination of soy, citrus fruit, and cruciferous vegetables
(22).

Phytochemicals found in citrus fruits increase UGT activity (28,33–35). Small changes in UGT
activity may result from direct phytochemical binding to the enzyme’s active site; however,
the primary mechanism is hypothesized to be through induction of UGT gene expression
(19). Many phytochemicals can regulate multiple transcription factors. Quercetin, a flavonoid
found in citrus fruit, activates the nuclear factor-erythroid 2-related factor 2 transcription factor,
that binds to the antioxidant response element (36,37), and induces UGT1A1 expression (38,
39). Therefore, consumption of citrus fruit associated with greater bilirubin glucuronidation
may be a result of induced UGT1A1 expression/activity.

Previously, in a study in which participants were recruited on the basis of high and low F&V
consumption, we observed that Cruciferae intake was associated with lower bilirubin
concentrations among individuals with the 7/7 genotype (21); however, we did not observe
this relationship in the current study. Although the range of Cruciferae consumption among
participants with the 7/7 genotype in the current study is slightly wider than that among those
in the previous study [(0–1.0) versus (0.2–0.7), respectively], mean intake of Cruciferae was
~60% lower. This level of consumption in our current study was possibly too low to reliably
detect differences in total serum bilirubin concentrations among participants with the 7/7
genotype. In addition, among individuals with the 7/7 genotype, mean total bilirubin
concentration in the current study was ~30% lower than in the previous study, which may have
also affected our ability to detect differences.

As previously reported, women had lower serum bilirubin than men, independent of
UGT1A1 genotype (21,22,40,41), presumably due to estrogen- and/or progesterone-mediated
UGT1A1 transcription (42–44). Results from several studies suggest that estrogen receptor
(ER)-mediated increases in transcriptional activity of the arylhydrocarbon receptor (AhR)
affect UGT1A1 (45–47). Phytochemicals in citrus foods activate the AhR (48–51) to increase
UGT1A1 transcription (39). Thus, lower bilirubin concentrations among women may result
from increased UGT1A1 expression associated with ER/AhR cross-talk.

The mechanism for the effects of F&V consumption only among women with the 7/7 genotype
is unclear. Extra TA repeats associated with the UGT1A1*28 polymorphism result in low
promoter activity due to reduced binding of TATA-binding protein (11,52) and other
transcription factors, including the AhR (53). Recently, it was proposed that the AhR can serve
as a positive transcriptional co-regulator of the ER (54). Perhaps, increased AhR/ER cross-talk
among women who consume F&V can somewhat overcome the transcriptional defect
associated with the UGT1A1*28 polymorphism.
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The collection of detailed dietary and demographic and behavioral data from study participants
is the primary strength of this study. Changes in UGT expression/activity can be detected within
an h of phytochemical exposure (55,56); thus, recent consumption from 3DFR may be most
relevant for detecting associations between F&V intake and bilirubin concentrations. However,
because study participants tend to overestimate F&V consumption when reporting their usual
intake on FFQ (30), the FFQ may further separate the low- and high-consumers and this may
have increased our power to detect differences in bilirubin concentrations by citrus fruit
consumption compared to those associated with Rutaceae consumption. This may have
contributed to the stronger association with citrus fruit consumption.

Glucuronidated compounds are rapidly excreted. It is possible that changes in bilirubin
concentrations, used here as a surrogate for UGT activity, are diluted compared to those
occurring in relevant tissues, such as the liver and intestine, which are in direct contact with
phytochemicals released during F&V digestion. Perhaps the most significant limitation of this
study is the small sample size among strata of women and men with the rare 7/7 genotype,
which probably limited our ability to distinguish differences in bilirubin glucuronidation. Our
decision to categorize continuous F&V intake may have also decreased our power to detect
associations between bilirubin concentrations and F&V consumption; however, similar
associations were observed using continuous citrus fruit intake. Another potential issue is the
large number of comparisons performed during the statistical analysis, which increases the
likelihood of observing a significant association due to chance. A total of 33 statistical tests
were performed. With an α-significance level of 0.05, ~2 associations would have been
statistically significant by chance alone, and, thus, these results should be interpreted with
caution. However, our result for citrus fruit was at the P = 0.006 level, and that level of
significance among any one of 33 comparisons has a likelihood of occurrence by chance of
less than 20%.

UGT1A1 glucuronidates several compounds, such as estradiol and PhIP, that have been
associated with cancer; thus, changes in UGT1A1 expression/activity could affect cancer risk.
Several studies have suggested that individuals with the UGT1A1*28 polymorphism are at
increased risk of certain cancers (15,16,57,58) and toxicity from certain drugs and have a
reduced ability to clear potential carcinogens (1,8,13,59,60). The results of this study suggest
that women with the 7/7 genotype who consume F&V, particularly citrus fruit, may have higher
UGT1A1 activity than women with the 7/7 genotype who do not consume F&V. Our results
suggest that certain components in F&V may increase UGT1A1 activity among individuals
with this variant genotype and thus potentially improve clearance of certain carcinogens and
influence cancer susceptibility.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1
Concentrations of serum total, direct, and indirect bilirubin among study participants grouped by demographic
characteristics and UGT1A1 genotype

Distribution Total bilirubin1 Direct bilirubin1 Indirect bilirubin1

n (%) μmol/L

Total 283 (100.0)

Sex2

 Women 142 (50.2) 11.8 (11.1, 12.6) 1.7 (1.6, 1.8) 10.1 (9.5, 10.7)

 Men 141 (49.8) 15.3 (14.4, 16.3) 1.9 (1.8, 2.1) 13.3 (12.5, 14.2)

Age3, y

 <30 199 (70.3) 13.8 (13.1, 14.5) 1.9 (1.8, 2.0) 11.8 (11.2, 12.5)

 30+ 84 (2m9.7) 12.7 (11.8, 13.8) 1.7 (1.6, 1.8) 11.0 (10.1, 11.9)

Race2

 Caucasian 199 (70.3) 13.3 (12.6, 14.0) 1.8 (1.7, 1.9) 11.4 (10.8, 12.1)

 Asian 45 (15.9) 15.9 (14.2, 17.7) 2.1 (1.9, 2.3) 13.8 (12.3, 15.4)

 Other 33 (11.7) 11.4 (10.0, 13.0) 1.7 (1.5, 1.9) 9.7 (8.5, 11.1)

 Missing 6 (2.1)

Physical activity, h/wk

 ≤6 191 (67.5) 13.7 (13.0, 14.5) 1.8 (1.7, 1.9) 11.9 (11.2, 12.5)

 >6 81 (28.6) 12.8 (11.8, 13.9) 1.8 (1.7, 1.9) 11.0 (10.1, 11.9)

 Missing 11 (3.9)

UGT1A1 genotype4

 6/6 144 (50.9) 10.7 (10.1, 11.4) 1.5 (1.4, 1.6) 9.2 (8.6, 9.7)

 6/7 109 (38.5) 15.6 (14.9, 16.5) 2.0 (1.9, 2.1) 13.6 (12.9, 14.3)

 7/7 30 (10.6) 23.0 (20.7, 25.4) 2.6 (2.4, 2.9) 20.3 (18.2, 22.6)

1
Bilirubin data were transformed ln(x+1). Back-transformed means and 95% CI (in parentheses) are presented.

2
Significant associations with all bilirubin measures (P ≤ 0.01) after adjusting for all other variables in table using multiple linear regression

3
Significant association with direct bilirubin concentration (P = 0.02) after adjusting for all other variables in table using multiple linear regression

4
Significant linear associations with all bilirubin measures (P < 0.001) after adjusting for all other variables in table using multiple linear regression with

grouped linear UGT1A1 genotype
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