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Abstract

Objective—HIV infection and aging are both associated with neurodegeneration. However, 

whether the aging process alone or other factors associated with advanced age account for the 

progression of neurodegeneration in the aging HIV-positive (HIV+) population remains unclear.

Methods—HIV+ (n=70) and HIV-negative (HIV−, n=34) participants underwent diffusion tensor 

imaging (DTI) and metrics of microstructural properties were extracted from regions of interest 

(ROIs). A support vector regression model was trained on two independent datasets of healthy 

adults across the adult life-span (n=765, Cam-CAN = 588; UiO = 177) to predict participant age 

from DTI metrics, and applied to the HIV dataset. Predicted brain age gap (BAG) was computed 

as the difference between predicted age and chronological age, and statistically compared between 

HIV groups. Regressions assessed the relationship between BAG and HIV severity/medical 

comorbidities. Finally, correlation analyses tested for associations between BAG and cognitive 

performance.

Results—BAG was significantly higher in the HIV+ group than the HIV− group F (1, 103) = 

12.408, p = 0.001). HIV RNA viral load was significantly associated with BAG, particularly in 

older HIV+ individuals (R2 = 0.29, F(7, 70) = 2.66, p = 0.021). Further, BAG was negatively 
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correlated with domain-level cognitive function (learning: r = −0.26, p = 0.008; memory: r = 

−0.21, p = 0.034).

Conclusions—HIV infection is associated with augmented white matter aging, and greater brain 

aging is associated with worse cognitive performance in multiple domains.
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INTRODUCTION

Advanced age is a major risk factor for cognitive decline and neurodegeneration, including 

deterioration of white matter (WM) throughout the brain1, 2, 3. Older adults with HIV 

infection are at increased risk for cognitive decline4, 5 and WM neurodegeneration6, 7,8. 

Importantly, the effects of age can be augmented by factors associated with severity of HIV 

infection and medical comorbidities which may influence the trajectory of HIV infection 

and cognitive and brain aging.

Neuroimaging-based estimates of the deviance between an individual’s chronological age 

and predicted brain age - termed brain age gap (BAG) - are sensitive to augmented and/or 

accelerated brain aging 9,10. While no current study has investigated BAG in WM 

microstructure using diffusion tensor imaging (DTI), recently, using brain volume, Cole and 

colleagues9 demonstrated that BAG in the volume of brain grey and white matter is greater 

in HIV-infected individuals than in HIV− controls. Although no significant relationships 

between BAG and nadir CD4+ or HIV disease duration were reported, the authors 

investigated white matter volume, rather than white matter microstructure (using DTI) and in 

a sample of HIV+ participants with undetectable viral loads. Thus, it is unclear to which 

degree findings of “attenuated brain aging” in HIV9, 11,12 may be mediated by primary or 

secondary processes related to the infection. It is also unclear what effects these processes 

may have on WM microstructure. Therefore, this study sought to expand on previous 

findings by investigating the predicted-BAG in WM microstructure using DTI metrics of 

white matter patency. This project also sought to further elucidate the effect of HIV severity 

indices and non-HIV-related medical comorbidities on accentuated WM aging.

Here, we used a machine learning approach to quantify brain aging based on DTI. A support 

vector machine model trained in a large and independent training-set of healthy controls was 

used to predict age in HIV+ and comparable HIV− individuals. We tested for group 

differences in BAG between HIV+ and HIV−, and for associations with cognitive function 

and HIV disease factors as well as medical comorbidities within the HIV+ group.

METHODS

PARTICIPANTS

Participants included a testing dataset of 104 (72 HIV+ (confirmed by serologic testing); 32 

HIV−) adults (Mage= 50.17; SD = 12.82) who were enrolled as part of a larger study (K23 

MH095661; PI: A.D.T.). All participants who had DTI imaging data available were included 
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in this study. All procedures were in accordance with the Declaration of Helsinki, reviewed 

and approved by the University of California, Los Angeles (UCLA) Institutional Review 

Board prior to enrollment and all participants provided written informed consent.

The training set used for the age prediction model comprised 765 healthy community 

dwelling individuals aged 20–78 years sampled from two different cohorts, including the 

ongoing STROKEMRI study at the University of Oslo (UiO; n=177, Mage= 57.59; SD = 

15.05, 60 % female, PI: L.W.) and the Cambridge Centre for Ageing and Neuroscience 13 

(Cam-CAN) (n=588, Mage= 52.31; SD = 17.38, 50 % female) from the Cambridge Center 

for Ageing and Neuroscience 14 (CamCAN). Data used in the preparation of this work were 

obtained from the CamCAN repository (available at http://www.mrc-cbu.cam.ac.uk/datasets/

camcan/) 13, 14. All procedures were in accordance with relevant IRBs.

PSYCHIATRIC ASSESSMENT—In the test sample, the Structured Clinical Interview 

(SCID) for DSM-IV 15, and structured questionnaires were used to screen for neurological, 

psychiatric, and medical confounds including: history of seizure disorder or other neurologic 

disorder; history of concussion or traumatic brain injury sufficient to warrant medical 

attention; history of Axis I psychiatric disorder or current substance use disorder (SCID-IV 

diagnostic criteria); current prescriptions for psychotropic medication, except for anxiolytics 

and antidepressants; current substance dependence or stimulant use, comorbid infection (e.g. 

Hepatitis C), HIV-associated CNS opportunistic infection (e.g. CNS toxoplasmosis) or CNS 

neoplasm. Participants were also screened for contraindications to MRI.

COGNITIVE ASSESSMENTS—In the test sample, participants completed a 

comprehensive neuropsychological test battery used in prior studies16, which assessed 

neurocognitive function at both the global and domain level. Six cognitive domains were 

measured: (1) Processing Speed - Wechsler Adult Intelligence Scale—Fourth Edition 

(WAIS-IV) Digit Symbol and Symbol Search subtests17, Trail Making Test—Part A18, and 

Stroop—Color Naming and Word Reading19; (2) Learning - Hopkins Verbal Learning Test

—Revised20 and Brief Visuospatial Memory Test—Revised21; (3) Memory - Hopkins 

Verbal Learning Test—Revised20 and Brief Visuospatial Memory Test—Revised20, 21 

(delayed recall); (4) Language/Verbal Fluency - Controlled Oral Word Association Test22 

(FAS and Animals); (5) Executive Function - WAIS-IV Letter-Number Sequencing 

subtest17, Trail Making Test—Part B18, and Stroop-Color-Word Interference Test19; and (6) 

Motor Speed - Grooved Pegboard test 23 (dominant and non-dominant hands).

We converted raw test scores into within-sample z scores and then averaged them to create 

neurocognitive domain z scores. We calculated the global neurocognition score by averaging 

the z scores from all of the neuropsychological test variables. Given that the relationship 

between age and neurocognitive performance in HIV is a primary aim of this study, within-

sample z scores were computed instead of demographically-adjusted T scores.

IMMUNE STATUS ASSESSMENT—In the testing dataset, HIV+ participants self-

reported nadir CD4+ and lifetime highest viral load were used to assess past immune status. 

Participants also underwent venipuncture to test current CD4+ and HIV viral load. HIV 

duration was calculated as the number of years since the participant’s self-reported HIV 
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diagnosis. Next, participants were classified as either ‘pre-HAART’ (highly active 

antiretroviral therapy) or ‘post-HAART’ based on whether their initial HIV diagnosis was 

before or after 199624. Further, a “medical comorbidity burden’ index score was computed 

from the medical history taken during the routine interview all participants completed during 

data collection. Participants were assigned a ‘1’ if they endorsed a history of each of the 

following medical conditions: cerebrovascular risk factors including hypertension, heart 

failure, COPD, anemia, diabetes; endocrine dysfunction including thyroid disease, 

testosterone therapy, estrogen therapy; kidney disease. Participants were assigned a ‘0’ for 

all medical conditions they did not endorse. The ‘medical comorbidity burden’ score was 

then computed as a sum of these conditions, resulting in a scale ranging from 0 (no medical 

comorbidities) to 9 (endorsed all medical comorbidities identified).

MRI ACQUISITION AND ANALYSIS

Diffusion weighted imaging (DWI) scans were collected from HIV+ individuals and 

demographically-matched HIV-seronegative controls at the University of California, Los 

Angeles, all of whom comprised the testing dataset. This MR data was collected using a 3T 

Siemens Trio scanner (Siemens, Germany) at the UCLA Center for Cognitive Neuroscience 

(CCN). 64 diffusion-weighted volumes (b=1,000 s/mm2) and 6 non-diffusion-weighted 

volumes were obtained using a single shot spin-echo echo planar imaging (EPI) sequence 

with 60 × 2.0 mm axial slices (no gap), flip angle = 90, TR = 9000 ms, TE = 93 ms, voxel 

size = 2.0 × 2.0 × 2.0 mm, b-shells = 0, 1000, scan time 576 s.

Training data including MRI data from UiO and Cam-CAN. UiO MRI data were collected 

on a General Electric 750 3T scanner (General Electric, United States) at Oslo University 

Hospital. 60 diffusion-weighted volumes (b=1,000 s/mm2) and 5 non-diffusion-weighted 

volumes were obtained using a single shot spin-echo EPI sequence with 67 × 2.0 mm axial 

slices (no gap), flip angle = 90, TR = 8150 ms, TE = 83.1 ms, voxel size = 2.0 × 2.0 × 2.0 

mm, b-shells = 0, 1000, 60 directions, scan time 530 s. The Cam-CAN DWI images were 

collected on a Siemens TIM Trio 3T scanner (Siemens, Germany) at the Medical Research 

Counsel (UK) Cognition and Brain Sciences Unit (MRC-CBSU). 60 diffusion-weighted 

volumes (30 with b=1,000 s/mm2 and 30 with b=2,000 s/mm2) and 3 non-diffusion-

weighted volumes were obtained using a twice refocused spin-EPI with 66 × 2.0mm axial 

slices (no gap), TR = 9100 ms, TE = 104 ms, voxel size = 2.0 × 2.0 × 2.0 mm, scan time 573 

s. Only the b=0 and b=1000 shells were used for DTI analysis in the present study. All DWI 

images were quality controlled and visually inspected prior to being preprocessed and 

analyzed.

DWI scans from UCLA, UiO and Cam-CAN were processed simultaneously through the 

same pipeline to harmonize imaging methods across sites. All imaging data were processed 

using FMRIB software Library25 (FSL, www.fmrib.ox.ac.uk.fsl). DWI data was motion and 

eddy current corrected using EDDY26, skull stripped using BET27, and then diffusion 

tensors were fit to the data using dtifit in FSL. Tract-Based Spatial Statistics28 (TBSS) was 

used to generate a WM skeleton comprised of WM voxels shared by all participants. This 

WM skeleton was applied to each participant’s individual DTI maps and mean Fractional 

anisotropy (FA), axial (AD), radial (L1) and mean diffusivity (MD) were extracted from 
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various regions-of–interest (ROIs) based on the intersection between the TBSS skeleton and 

labels defined in probabilistic anatomical atlases29, 30, 31 in addition to a global average 

across the skeleton. The full list of ROIs from which these DTI metrics were extracted 

follows: anterior, posterior and superior corona radiata; anterior, posterior and retrolenticular 

portions of the internal capsule; anterior and posterior thalamic radiation; sagittal stratum; 

external capsule; WM underlying the cingulate bundle; WM underling the hippocampus; 

inferior, middle and superior cerebellar peduncles; cerebral peduncle; pontine; fornix; stria 

terminalis; corticospinal tract; medial lemniscus; inferior and superior longitudinal 

fasciculus; superior fronto-occipital fasciculus; uncinate fasciculus; genu, body, tapetum and 

splenium of the corpus callosum.

STATISTICAL ANALYSIS

GROUP DEMOGRAPHICS—Participant characteristics (e.g. age, education, past drug 

use) between HIV+ and HIV− groups were compared using one-way analysis of variance 

(ANOVA). Group differences in dichotomous factors (e.g. sex, ethnicity, urinalysis results) 

were assessed using chi-square analyses. We used p< .05 as our cutoff for statistical 

significance for these demographic analyses.

AGE PREDICTION AND BRAIN AGE GAP—UiO and Cam-CAN data were used to 

train a support vector regression model (SVR) to predict participant age using FA, L1, RD 

and MD from atlas-derived ROIs (the exact same regions described above29, 30, 31) as 

features. Similar methods have been employed using imaging data previously9, 10, 32, 

including using DTI to assess participant age in a healthy cohort33. SVR was conducted in 

Matlab (https://mathworks.com/help/stats/fitrsvm.html) using the implementation “fitrsvm” 

with a linear kernel, automatic hyperparameter tuning and Sequential Minimal Optimization. 

Given that multiple MR scanners were used to collect the HIV and training data, scanner 

was used as a regressor on the features to control for interscanner variability. The model 

accuracy was validated using 10-fold cross-validation on the training set. After successful 

validation, the trained SVR was used to predict age of participants in the independent UCLA 

sample (HIV+ / HIV−). For each individual, BAG was computed by subtracting the 

participant’s predicted brain age by their chronologic age. Univariate analysis of covariance 

(ANCOVA) then compared BAG between UCLA HIV serostatus groups, controlling for 

chronological age and sex.

ASSOCIATIONS BETWEEN BRAIN AGE GAP IMMUNE STATUS AND 
COGNITIVE PERFORMANCE—Within HIV+ subjects, a stepwise hierarchical linear 

regression was conducted to investigate the relationship between BAG and chronological 

age, nadir CD4+, lifetime highest HIV RNA viral load and medical comorbidity index, and 

all possible interactive relationships between age and other dependent variables using a 

stepwise entry model.

Correlation analyses were used to investigate the relationship between BAG and cognitive 

performance in the UCLA HIV+ group. Correlations were conducted between BAG and 

individual cognitive domains (e.g. attention, memory) as well as global cognitive 

performance. We report both bivariate correlations as partial correlations covarying for 
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premorbid intellectual ability (Wide Range Achievement Test, 4th Edition (WRAT-4) 34). 

False discovery rate (FDR) was used to correct for multiple comparisons.

RESULTS

DEMOGRAPHIC GROUP COMPARISON

In the test dataset, the HIV+ and HIV-seronegative groups did not significantly differ on age, 

years of education, ethnicity, or sex (Table 1). The HIV+ group had significantly higher 

medical comorbidity burden (i.e. greater number of medical comorbidities) than the HIV− 

control group (χ2 = 7.39, p = 0.007). None of the participants tested positive for 

barbiturates, cocaine, methamphetamine, phencyclidine, or MDMA. Significantly more HIV

+ participants tested positive for prescribed benzodiazepines (χ2 = 5.93, p = 0.015) than did 

HIV− participants. The HIV serostatus groups did not differ on current alcohol or substance 

abuse, past (i.e. self-reported lifetime) substance dependence, past substance abuse, past 

alcohol dependence or past alcohol abuse (all p’s > 0.10). Participants were not included in 

the study if they reported previous methamphetamine abuse or dependence.

Within the HIV+ group, participants diagnosed in the pre-HAART era were significantly 

older (M = 56.85, SD = 8.93) than those diagnosed in the post-HAART era (M = 48.24,SD = 

12.16) (F(1, 70) = 8.22, p = 0.006). The pre- and post-HAART HIV+ groups did not 

significantly differ on current CD4+, current HIV viral load, nadir CD4+ or lifetime highest 

viral load (all p’s >0.1). Further, there was not a significant difference between the younger 

(50 years old and below) and older (51 years old and above) HIV+ participants on current 

CD4+, current HIV viral load, nadir CD4+ or lifetime highest viral load (all p’s >0.1). Table 

1 and Figure 1 provide additional detail on group demographics.

AGE PREDICTION

Predicted brain age, derived from DTI metrics extracted from ROIs (previously described), 

was strongly correlated with chronological age in the training set (r = 0.84, R2 = 0.70, MAE 

= 7.39, RMSE = 10.64, p <.0001, 10-fold cross-validation), indicating successful tuning of 

the trained SVR model. Applied to UCLA testing data, the model successfully predicted 

brain age in the independent sample, both in the UCLA HIV− (r = 0.78, R2 = 0.61, MAE = 

7.64, RMSE = 9.43, p < 0.0001) and HIV+ groups (r = 0.64, R2 = 0.41, MAE = 9.48, RMSE 

= 12.004, p < 0.0001). Participant true chronological age was not correlated with prediction 

error (r = −.10, p = 0.31). Figure 2 depicts age prediction results. Figure 3 is a scatterplot 

depicting the 10-fold cross-validation of the SVR within the training data set.

In the testing dataset, HIV+ individuals showed higher differences between their brain age 

and their chronological age than HIV− counterparts (F (1, 103) = 12.408, p = 0.001, partial 

η2 = 0.21). As participant chronologic age increased, BAG also increased (F (39, 103) = 

5.57, p = 0.010, partial η2 = 0.37). There was no age*HIV interaction on BAG (p > 0.05).

NEUROCOGNITION, IMMUNE STATUS & BRAIN AGE GAP

All results reported below withstood FDR correction.
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A regression that used chronological age, HIV duration, pre- versus post-HAART diagnosis, 

medical comorbidity burden, nadir CD4+ count and lifetime highest HIV RNA viral load 

(log transformed) as predictors of BAG (R2 = 0.38, F(6, 70) = 4.13, p = 0.004) revealed 

associations between BAG and chronological age (β = −0.38, p = 0.006) and highest HIV 

RNA viral load (β = 0.34, p = 0.004) in the HIV+ group. No other dependent variable was 

significantly associated with BAG (all p’s > 0.10).

Next, the following step in the stepwise hierarchical regression resulted in the inclusion of 

the significant interactive effect of chronological age and lifetime highest HIV RNA viral 

load. No other interactive effects were significant (all p’s > 0.10). There was a significant 

interactive effect of chronological age and highest HIV RNA viral load (β = 0.23, p = 0.033) 

on BAG (R2 = 0.29, F(7, 70) = 2.66, p = 0.021). Both main effects for chronological age (β 
= −0.42, p = 0.007) and highest HIV RNA viral load (β = 0.22, p = 0.035) remained 

significant. In other words, older HIV+ participants who reported a history of higher viral 

load, had the greatest discrepancy between their estimated brain age and chronological age.

We also found significant associations between BAG and learning (r = −0.26, p = 0.008) and 

between BAG and memory (r = −0.21, p = 0.034). When controlling for premorbid 

intellectual ability (WRAT), both associations remained (learning: r = −0.27, p = 0.008; 

memory: r = −0.20, p = 0.041).

DISCUSSION

This study used machine learning along with a large training data set of normal WM aging 

to examine HIV-associated WM microstructural alterations and related this WM 

degeneration to cognitive impairment. Using an SVR trained with this healthy aging cohort 

to reliably predict participant age based on metrics of WM microstructure, we found that the 

brain WM age difference (BAG) was significantly higher in our HIV+ group than in the 

highly comparable HIV− group. Further, BAG widened with increasing age, suggesting that 

advancing age is a risk factor for neurodegeneration. Additionally, larger BAG was 

associated with worse cognitive performance, indicating that this neurodegeneration may be 

related to deleterious changes in cognition. Although chronological age was not significantly 

correlated with prediction error, confirmatory analyses verified that these significant 

associations between BAG and cognitive performance remained after controlling for 

participant true age.

Importantly, in our sample in which 11% of the HIV+ participants evidenced a detectable 

HIV RNA viral load, current CD4 and detectable viral load were not related to BAG. 

Conversely, highest lifetime HIV RNA viral load, which was not the current viral load for 

any participant, was related to BAG in the HIV+ group, even after controlling for factors 

such as HIV duration, pre- versus post-HAART diagnosis and medical comorbidities. 

Highest lifetime viral load also was not different between the younger and older HIV+ 

groups. Furthermore, older HIV+ participants who reported high plasma viral load had the 

greatest discrepancy between their estimated brain age and chronological age, suggesting 

that history of high viral burden contributes to accentuated brain aging. These findings 

suggest that the impact of early disease burden, even among a sample comprised of 11% of 
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participants with currently detectable HIV RNA viral load, has adverse effects on brain/

cognition as HIV+ individuals age. This provides further support of previous findings9,that 

demonstrated this augmented aging effect in a sample with no participants with detectable 

HIV RNA. The relationship of the past plasma viral load to current brain reservoirs of HIV 

are not known, and we can only speculate that persons with a higher plasma viral burden in 

blood may have also acquired more viral seeding in brain; this may be the stimulus for 

greater neuroinflammation and more neurodegeneration over years of exposure. Taken 

together, these findings may suggest that HIV is associated with an augmented aging process 

in WM which is itself associated with lower cognitive performance.

The mechanisms by which HIV and age result in augmented neurodegeneration are unclear. 

Holt and colleagues6 suggest two potential explanations regarding the relationship between 

HIV infection and increased brain aging. First, the increased brain age (BAG) may be 

explained by premature WM aging resulting from the virus facilitating neurodegenerative 

processes35, such as axonal injury, loss of axonal density, reduced patency of axons. 

Alternatively, advanced age may increase the effects of the virus on the CNS, thereby 

creating a synergistic interaction effect between HIV and aging6. Our finding that lifetime 

highest HIV RNA viral load, particularly in the context of advanced chronological age, was 

related to augmented WM aging (i.e. BAG) supports the first hypothesis. In line with this 

hypothesis, HIV effects on the brain have been shown to occur via similar cellular 

mechanisms as normal aging36, including alterations of the neuroprotective and 

inflammatory functions of microglia37, white matter microvasculature changes38, 

cholinergic deficit39 and accumulation of amyloid-beta and tau plaques40. Any single or 

combination of these mechanisms could lead to loss of WM microstructural organization 

through axonal injury (in line with AD contributions to SVR model), loss of axonal density 

(MD contributions) and/or reduced patency of axons (RD contributions).

To the best of our knowledge, this is the first study to demonstrate an HIV-associated 

accentuated aging process in WM microstructure, using DTI. These findings are generally 

consistent with the literature, including a recently published study showing an HIV-related 

accentuated aging process in combined grey matter/white matter volume9. Similar to that 

reported by Cole et al., we did not find significant relationships between WM BAG and 

Nadir CD4 or HIV duration. Our findings expand upon these previous results by providing 

data suggesting the mechanism through which this augmented aging process deleteriously 

affects WM microstructure. Our results also further the literature in that we found a 

significant relationship between BAG and peak HIV RNA viral load as well as a significant 

age*peak viral load interactive effect on BAG, indicating that the effects of disease burden 

on brain integrity are more pronounced with advanced age.

Further, these findings indicate the significant advantages of using BAG to predict HIV-

associated white matter aging over other methods. The BAG findings were much stronger 

than our conventional age-trajectory findings, indicating that the SVR-based brain age 

approach we used is a sensitive approach to reveal group differences beyond simple 

differences in mean DTI measures. Additionally, BAG outperformed each individual DTI 

metric in its ability to discriminate between HIV+ and HIV− participants and demonstrate 

the effect of HIV infection on advancing brain white matter age. BAG also may be more 
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useful than, or at the very least a meaningful compliment to, hyper/hypo-intense lesion 

volume and count which has been shown to relate to HIV infection and cognitive 

performance, but not to HIV clinical variables or HIV-associated aging41, 42, 43. 

Additionally, BAG is a relatively easy metric to understand and thus it circumvents the 

cumbersome and difficult to interpret multivariate score often used with DTI metrics which 

are inherently difficult to connect to clinical variables. In contrast, BAG was successfully 

and clearly connected to both HIV clinical variables (e.g. HIV RNA viral load) and 

neurocognitive performance.

It is important to consider these findings also in the context of the psychosocial stressors and 

associated comorbidities associated with living with HIV. For example, the HIV+ sample 

evidenced greater rates of comorbidities, both medical (which were included in the model 

herein) and psychiatric (e.g. depression, which was not included in the model). It is unclear 

in the literature to what extent depression is a secondary reaction to living with HIV or is a 

neurologic symptom of the predominantly frontal-subcortical clinical profile of the disease. 

Therefore, it remains unclear whether the augmented aging findings are related directly and 

solely to the effects of the HIV virus on the brain or if they are also related to secondary 

effects of these HIV-associated increased comorbidities. This is particularly worthy of 

follow up investigation given that depressive disorders are the most prevalent mental health 

disorders associated with HIV44 and studies have shown that depression can be associated 

with neurodegeneration and increased brain age45.

There are limitations of the current study worth noting. First, the cross-sectional nature of 

this study hinders our ability to make inferences about the rates of neuroanatomic changes in 

HIV. Importantly, this limited our ability to determine whether our findings relate to a more 

static, vestigial process which adds to or augments the aging process in HIV, or whether in 

fact these results are related to a dynamic, accelerated aging process. This is an important 

distinction and clinically meaningful question, particularly as the HIV+ population continues 

to age in the post-HAART era, and must be addressed using a longitudinal model. A recent 

longitudinal publication45 demonstrated that HIV+ participants demonstrated greater 

predicted brain age than HIV− controls when analyzed at cross-section. However, when 

followed longitudinally, the HIV+ and HIV− groups evidenced comparable rates of change 

in neuroimaging markers, suggesting that, when receiving successful treatment, people 

living with HIV are not at risk for accelerated brain aging over two years. Longer 

longitudinal studies will help clarify whether or not this pattern remains steady over time.

Next, the SVR-modeling of the DTI data appeared to be less accurate (MAE = 7.39 years) 

than that using T1-MRI to measure brain volume (MAE = 5.01 years)9. This could be due to 

differences in the neuroimaging methodology used (e.g. size, variability and number of 

features of training sample set). However, it is also the case that we sought to test a different 

biological entity (DTI-based WM microstructure), and as such a direct comparison between 

SVR-derived brain ages may not be appropriate, as Cole et al sought to determine a best-

predicted brain age based on grey/white matter volume and we sought to determine the best-

predicted age of WM microstructure.. The fact that data was acquired at multiple sites using 

different MR scanner could be a factor and a limitation. However, scanner was included as a 

variable in the model and the data was homogenized using a single, uniform processing 
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pipeline which has become an accepted standard of practice in the field and indeed has been 

used in similar machine learning papers9, 10 where the training data and the disease-specific 

data were collected at separate sites using different scanners and non-identical scanning 

parameters. Therefore, this is a limitation of note but one whose impact on the findings was 

minimized to the best of our abilities. Additionally, although the TBSS method applied 

should limit the impact of atrophy on our findings, this study did not employ any specific 

control regarding possible WM lesions. Given that WM lesions have been reported in the 

brains of HIV+ patients, it is possible that our prediction of WM age could be improved had 

we included WM lesions from any affected patient in the model. Further, there are some 

inherent demographic differences (e.g. race/ethnicity) in the training datasets (from England 

and Norway) and the test dataset (from Los Angeles). While we attempted to control for 

these by comparing our UCLA HIV+ participants to UCLA HIV− participants who were 

highly matched on demographic variables and assessing the effect of race/ethnicity on the 

outcomes, it remains possible that such demographic or even genetic variables could 

contribute to our findings, though we believe this is less likely for several reasons including 

the SVR model fit statistics and similar findings from Cole et al.9 Further, there are some 

limits to the generalizability of this study. These include the exclusion of participants with 

substance use disorders and Axis I diagnoses, the (although non-significant) fact that our 

sample included fewer HIV+ women, and the fact that the older HIV+ adults are long term 

survivors from the pre-HAART era and may not be representative of HIV+ adults reaching 

older age in the near future who were diagnosed in the post-HAART era. Importantly 

though, it is possible that comorbid substance abuse and/or psychiatric disorders may 

increase the risk of premature brain aging. Although the current CD4+ and viral load data 

used in this study were extracted from blood samples collected during the course of this 

study, nadir CD4+ and highest lifetime viral load were self-reported by participants. 

Additionally, the DTI-based WM metrics were extracted from the entire white matter 

skeleton, rather than from individual WM tracts (e.g. uncinate fasciculus). This method 

limits the spatial resolution of our technique. Future examinations between specific tracts 

with respect to white matter aging are warranted.

Despite these limitations, the findings of the current study support the hypothesis of HIV-

associated augmented brain aging and provide a unique contribution to the existing literature 

by demonstrating that the mechanism by which this process occurs in WM microstructure 

appears to be related to HIV-associated neurodegeneration, including axonal injury, loss of 

axonal density and reduced patency of axons that likely occurs via similar cellular 

mechanisms as typical aging. Importantly, neuroimage-derived age predictors may indeed be 

biomarkers of normal and pathologic aging processes. Therefore, this technique may be 

generalizable to other disease processes which may affect the aging process, including 

neurodegenerative disorders (e.g. Alzheimer’s disease) and other neuro-medical illnesses. 

This technique may also be useful in identifying patients at risk for cognitive decline, 

functional limitations, and early mortality10.
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Figure 1. AGE OF GROUPS
Age distribution for training (UiO, Cam-CAN) and test (UCLA; HIV+/HIV−) samples. 

Distributions are displayed as density functions.
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Figure 2. SVR-BASED AGE PREDICTION
HIV+ was estimated significantly older compared to HIV−. (A) Predicted brain age vs. 

chronological age stratified for group. (B) Corresponding brain age gap.
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Figure 3. 10-FOLD CROSS-VALIDATION OF TRAINING DATA USED BY SUPPORT 
VECTOR REGRESSION MACHINE MODEL
Scatterplot depicting the -fold cross-validation results from the dataset used to train the 

support vector regression machine to predict participant chronological age based on DTI 

metrics of white matter microstructural integrity.
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Table I

DEMOGRAPHIC COMPARISON BETWEEN HIV+ & HIV− GROUPS

N = 70 N = 34

Demographic Variable HIV+ UCLA HIV−

Male sex (%) 58 (83%) 17 (50%)

Education (years) 13.32 ± 1.93 14.00 ± 2.56

Age 50.7 ± 11.93 53.25 ± 10.28

Age Range 24 – 76 24 – 66

Ethnicity* 35% C, 65% AA 50% C, 50% AA

HIV Duration 16.37± 8.13

Pre- HAART Diagnosis 32 (46%)

Nadir CD4 (#/mm3) 246.1 ± 212. 26

Current CD4 (#/mm3) 663.61 ± 282.426

# (%) with detectable viral load 8 (11%)

Peak viral load (IU/mL) 395055.97 ± 767296.72

(%) with Major Depression (SCID) 4 (7%) 1 (5%)

# (%) current barbiturate use (urine screen)** 24 (34%) 3 (9%)

# (%) current opiate use (urine screen) 7 (10%) 1(3%)

# (%) current marijuana use (urine screen) 23 (33%) 11 (33%)

Medical Comorbidity Burden** (Range/Median) 0 – 6/1 0 – 3/0

Heart Failure 4 (6%) 1 (3%)

Diabetes 5 (7%) 1 (3%)

Hypertension 18 (26%) 6 (18%)

COPD 4 (6%) 1 (3%)

Kidney Disease 5 (7%) 0

Anemia 13 (19%) 5 (15%)

Thyroid Condition 4 (6%) 1 (3%)

Testosterone Treatment 13 (19%) 2 (6%)

Estrogen Treatment 3 (4%) 1 (3%)

*
C = Caucasian; AA = African American

**
p < 0.05
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