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Abstract

Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the 

tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete 

microfluidics to select circulating tumor cell subpopulations from a single blood sample; 

circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a 

new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell 

subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic 

cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. 

Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell 

adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor 

cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, 

including next generation sequencing, mutation analysis, and gene expression. Results suggested 

fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are 

distinct subpopulations and the use of these in concert can provide information needed to navigate 

through cancer disease management challenges.

INTRODUCTION

Methods relying on anti-epithelial cell adhesion molecule (EpCAM) for positive affinity-

selection of circulating tumor cells (CTCs) has been cleared by the Food and Drug 

Administration (FDA) for metastatic breast, prostate, and colorectal cancers; however, 

enumeration of EpCAM(+) CTCs alone has demonstrated modest clinical sensitivity.1 

EpCAM-bearing CTCs may not be the only “players” in cancer progression. For example, 

CTCs undergoing epithelial-to-mesenchymal transitions2 lose epithelial antigens due to 

phenotypic plasticity. Additionally, the tumor microenvironment is composed of 

phenotypically distinct cells that may be involved in disease progression.3 Therefore, for 

CTC selection it becomes necessary to consider orthogonal markers in combination with the 
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epithelial ones to improve clinical sensitivity, patient stratification, disease recurrence 

monitoring, and/or therapeutic guidance.

The use of multiple affinity-selection markers has been attempted with a combination of 

monoclonal antibodies, mAbs (i.e., EpCAM plus TROP-2, HER-2, and CD44).4 In 

metastatic cancer patients, this strategy recovered EpCAM-negative cells that were 

cytokeratin (CK)-positive, contrasting with the classical CTC definition of EpCAM+/CK+/

CD45−4. While recovering CTCs on mixed monolayers of mAbs has been reported, 

subpopulations cannot be independently interrogated unless elaborate single-cell analysis is 

employed. Additionally, because CTC affinity-selection depends upon the mAb surface 

concentration, mixed monolayers can reduce recovery, especially when CTCs express low 

antigen levels. Positive CTC selection markers have included prostate-specific membrane 

antigen (PSMA), chemokine receptors, CD133, VCAM-1, MCAM (CD146), ICAM-1, 

CEA, HER-2, N-cadherin (CDH2)/O-cadherin (CDH11), and MUC1.5–7 Some of these 

antigens target only a particular cancer (i.e., PSMA) or lack cancer-specificity (CD133, 

VCAM-1, ICAM-1) as hematopoietic/endothelial/benign cells also expressed these antigens,
8–11 producing low CTC purity and confounding clinical interpretations of the data. Other 

markers (MUC1) are co-expressed with EpCAM and thus provide modest improvement in 

clinical sensitivity.6

We report a CTC selection strategy that uses serially connected microfluidic chips (i.e., 

discrete microfluidics) to affinity-select two CTC subpopulations expressing EpCAM and 

fibroblast activation protein alpha (FAPα).12 FAPα expression has been observed in >90% 

of human epithelial cancers and has been associated with mesenchymal characteristics and 

cell invasion of the extracellular matrix.13 Our choice for investigating FAPα CTCs was 

further guided by data from the Human Protein Atlas, which indicated mutually 

independent, orthogonal expression of FAPα and EpCAM across many cancer cell lines 

(Supplementary Fig. S1). FAPα has been identified via staining in CTCs that invade a cell 

adhesion matrix (CAM),14 but to date, affinity-selection of FAPα and EpCAM-bearing CTC 

subpopulations for enumeration from clinical samples, molecular profiling, and longitudinal 

surveillance has not been undertaken.

We hypothesized that FAPα can be used as an additional marker for selecting a 

phenotypically distinct CTC subpopulation with respect to a CTC subpopulation that 

expresses EpCAM. In addition, parsing these subpopulations into different fractions could 

provide molecular characteristics of distinct cancer cell phenotypes that could be useful in 

better predicting clinical outcomes.

RESULTS

Microfluidic CTC selection strategy

To demonstrate the utility of the dual selection assay for CTCs in this study, we employed 

sinusoidal microfluidics for CTC affinity isolation (Fig. 1a–c). The microfluidic chips 

process whole, unfractionated, and unfixed blood and use sinusoidal microchannels (Fig. 1b) 

to encourage interactions between flowing CTCs and mAbs decorated on the device’s 

surfaces (Fig. 1c, d) for affinity isolation. In previous reports, we have characterized the 
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sinusoidal technology for its operating principles and performance,15–20 isolated EpCAM+ 

CTCs in patients with localized and metastatic pancreatic ductal adenocarcinoma (L-PDAC 

and M-PDAC, respectively),17 metastatic epithelial ovarian cancer (M-EOC),18 and patient-

derived xenograft pancreatic ductal adenocarcinoma (PDAC) mouse models.20, 21 We also 

applied this technology for residual disease evaluation in multiple myeloma18 and acute 

myeloid leukemia19 patients, as well as T-cells and neutrophil isolation for stroke 

diagnostics.22 The sinusoidal technology offers high CTC recovery from clinical samples 

while achieving exquisite purity that enabled much of the molecular profiling reported 

herein (Fig. 1g).

In this study, we selected both FAPα+ and EpCAM+ cells from a single blood sample by 

arranging two microfluidic devices in series, one chip targeting FAPα+ and the other 

EpCAM+ cells (Fig. 1a, b). The CTC selection devices were made from cyclic olefin 

copolymer (COC) via hot embossing, and each device’s surfaces were covalently decorated 

with a single mAb type (see Methods).17, 20 Blood entered the first CTC selection device 

through a single inlet channel, passed through a parallel array of 50 sinusoidal mAb-laden 

selection channels at 2 mm/s (1.5 ml/h) (Fig. 1c),15, 16 and exited through a single outlet 

channel, which then fed the second device that was identical except for the identity of the 

selection mAb. After blood processing and washing, the chips could be disconnected so each 

CTC subpopulation could be interrogated independently, data which would have been 

obscured by immobilizing both mAbs in one device.

Several aspects of the sinusoidal architecture were optimized (125 µm radius of curvature, 

25 µm width, and 150 µm depth) to maximize recovery, throughput, and purity (Fig. 1b, d).
15, 16, 23 The CTC affinity-selection process can be separated into two parts, initiation of 

contact between a CTC and the mAb-coated surface and successful binding of the rolling 

CTC with surface-confined mAbs. For the first process, the sinusoidal architecture generated 

centrifugal forces (Fc) to propel CTCs towards the mAb-coated channel walls with a 

magnitude that varies with cell diameter, density, and forward velocity (V). For a 16 µm 

CTC traveling at 2 mm/s, the resultant centrifugal velocity (Vc) is 1.9 µm/s, four times 

greater than an 8 µm leukocyte. Channel width is critical to Fc’s effectiveness. In 25-µm 

wide channels, only a 4.5 µm shift in position is needed for a 16 µm CTC to interact with the 

wall, and a 15 s residence time is provided to produce a Vc of 1.9 µm/s that helps facilitate 

CTC-mAb interactions.16

While Vc can be enhanced by increasing the cell’s forward velocity V, the trade-off is lower 

probability of successful binding of rolling CTCs and surface-bound mAbs. The binding 

dynamics of CTC microfluidic affinity-selection can be described by the Chang–Hammer 

model,24 (see Eq. 1) which balances mAb-antigen binding kinetics, the residence time of the 

traveling CTC near a mAb, and the number of antigens on a CTC, with recovery becoming 

less probable at very high linear velocities and low antigen expression.

PR = 1 − 1/e
NRLk f

V . (1)
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In Eq. 1, the probability (PR) of CTC recovery and the forward binding constant (kf) are a 

function of how often Ab-antigen interactions occur and how probable a given binding event 

is considering the balance of the Ab-antigen binding kinetics with the reaction time. 

Recovery should: (i) decrease as the cell’s velocity (V) is increased due to shorter reaction 

time, and (ii) increase with the surface density of antigens expressed on the CTC (NR). As 

the CTC rolls over the surface with increasing length (L), PR increases and leads to higher 

recovery.

An aspect of the sinusoidal CTC chip that evolved from the Chang–Hammer model is 

related to long rolling distances of CTCs over the continuous microfluidic surface, which 

improves recovery by accumulating more potential binding events (Fig. 1e).16 This 

accumulative effect of long rolling distances in the sinusoidal architecture (>250 µm) is 

especially important to provide high recovery of CTCs with low antigen expression (limit of 

700 molecules per 16 µm CTC under shear force)19 and enables operation at relatively high 

V (2 mm/s),15, 16 which maintains high throughput (1.5 ml/h) and generates high fluidic 

shear stress (13.3 dynes/cm2) that disrupts non-specific adsorption of leukocytes to the 

mAb-coated COC polymer surface and yields the sinusoidal technology’s uniquely high 

purity.25

CTC recovery and orthogonality of the dual selection strategy

Two breast cancer cell lines, Hs578T and SKBR3, representing FAPα + CTCs (CTCFAPα) 

and EpCAM + CTCs (CTCEpCAM), respectively, were chosen to evaluate cell recovery and 

cross-reactivity using the dual selection strategy. These cell lines were characterized by 

multi-parameter flow cytometry, immunophenotyping, and mRNA gene expression 

(Supplementary Fig. S2A–C).

For Hs578T and SKBR3 cells spiked into healthy donors’ blood, the average recovery (±SD) 

were 75 ± 8% and 77 ± 2%, respectively. For comparison, the recovery of MCF-7 cells 

(higher expression of EpCAM than SKBR3) using the same architecture device and 

modification chemistry was 83 ± 5%.17 The purity of the selected CTC fractions seeded at 

~100 cells/ml into healthy donors’ blood was 93 ± 3% (Hs578T) and 91 ± 4% (SKBR3). 

Additionally, the cross-reactivity of Hs578T cells on the anti-EpCAM selection chip was 4 

± 2% (n = 3), and SKBR3 cells on the anti-FAPα selection device was 8 ± 3% (n = 3).

We selected both FAPα+ and EpCAM+ cells from a single blood sample by arranging two 

microfluidic devices in series. The effect of the order in which the devices were positioned 

on CTC recovery was investigated; no preferential CTC isolation on the first chip was 

observed (Supplementary Table S1). Also, there was no statistical difference between the 

order of the chips. The dual selection strategy reproducibility for each chip produced an 

RSD of 25% (n = 33). For these studies, the FAPα selection chip was positioned first in the 

series.

CTC dual selection from clinical samples

In a pilot clinical study, we analyzed blood from 11 healthy donors and 6 patients with 

benign disease (Supplementary Tables S2, S3), 5 L-PDAC, 10 M-PDAC, 3 localized 

colorectal cancer (L-CRC), 3 metastatic CRC (M-CRC), 10 metastatic breast ductal 
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carcinoma (M-BC), 8 metastatic chemotherapy naïve EOC (M-EOC-no-chemo), 5 

metastatic EOC that received neo-adjuvant chemotherapy (M-EOC-chemo), 3 localized 

chemotherapy-naïve EOC (L-EOC-no-chemo), and 5 castration resistant prostate cancer 

(CRPC) patients (Supplementary Tables S4–S8). Each CTC subpopulation was enumerated 

independently. CTCs were stained for CKs, CD45, and 4′,6-diamidino-2-phenylindole 

(DAPI) or counted using an impedance sensor following enzymatic release from the capture 

surface.17 Impedance sensing is a detection strategy of single cells that obviates the need for 

staining, which may interfere with the molecular analyses.15, 17 For the present study, 

following CTC isolation, cells were released from the device using trypsin and infused 

between electrodes operated at 40 kHz; each cell generates a detectable voltage pulse that 

correlates with cell size. An example of an impedance trace for CTCs is presented in 

Supplementary Fig. S3. We compared both CTCFAPα and CTCEpCAM counts obtained via 

staining and impedance sensing by performing duplicate analyses for randomly selected 

samples (Supplementary Table S9). The CTC counts obtained by both methods were similar, 

and any differences most likely reflect Poisson statistics.

In blood from healthy donors, no CTCFAPα or CTCEpCAM were detected. The mean for 

CTCFAPα and CTCEpCAM in patients with non-cancer disease was 1.8/ml and 2.6/ml, 

respectively (Supplementary Table S10). CTC test positivity and test specificities were 

determined by establishing a threshold value based on 3 × SD for cells detected in healthy 

and non-cancer disease patients. The test specificity at this threshold was 100% (n = 17). 

Dual CTC selection provided 100% test positivity for patients with all malignancies but M-

BC (Fig. 1h), which yielded 80%.

For cancer patient samples, the number of CTCFAPα and CTCEpCAM varied with the disease 

type (Fig. 1f). Pairwise statistical analysis showed a significant difference between CTCs 

detected in cancer patients and healthy donors or patients with non-cancer disease 

(Supplementary Table S11).

CTCFAPα were most prevalent in M-CRC (26–49/ml), while CTCEpCAM were most 

abundant in chemotherapy-naïve M-EOC (65–680/ml; Supplementary Table S10). In M-

EOC, the median CTCEpCAM was higher for chemotherapy-naïve patients compared to 

patients undergoing chemotherapy (129/ml vs. 42/ml, p = 0.007). Conversely, there was no 

change observed in CTCFAPα counts between these two groups (36 vs. 32/ml). CTCFAPα 

numbers were 2 × lower in L-EOC-no-chemo patients (18/ml; Supplementary Fig. S4A, B).

The recoveries of CTCs evaluated from clinical samples, determined using the “self-

referencing” method (see SI),18 for randomly selected samples were found to be 79 ± 7% (n 
= 3) and 87 ± 2% (n = 3) for CTCFAPα and CTCEpCAM, respectively. The difference in the 

clinical recovery arises from dissimilarities in the level of antigen expression and cell size 

within a CTC subpopulation. The purity determined for each individual selection bed, 

defined as [CTCs/(CTCs + leukocytes)], are reported in Fig. 1h with WBCs counts reported 

in Supplementary Tables S14–S19.

Fluorescence images of CTCFAPα and CTCEpCAM isolated from MCRC, M-BC, and M-

EOC-no-chemo (Fig. 2) showed that both subpopulations displayed characteristics attributed 
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to a CTC (i.e., large nuclear/cytoplasm ratio). However, differences in morphological 

features between CTCFAPα and CTCEpCAM were not conclusive mainly due to the nature of 

the affinity-based selection process, which can change the appearance of cells upon antigen–

mAb binding to solid surfaces in the presence of shear forces. No CTCs were identified that 

were triple stained (DAPI+, CK +, CD45+) or showed only nuclear staining.

Immunophenotyping of CTC subpopulations in clinical samples

Selected CTCs were immunophenotyped for expression of CD45, pan-CK (epithelial 

marker), and VIM (mesenchymal marker). The fluorescence intensity was normalized (see 

Methods) and CTCs were classified as showing no (−), medium (+) or high (++) expression 

of the appropriate marker. Examples of different phenotypes are shown in Fig. 3. Figure 3a 

shows two FAPα+ cells isolated from a pancreatitis patient. These rare cells were CK−/VIM

++/CD45− with a low nuclear-to-cytoplasmic ratio and were classified as circulating 

fibroblasts and not CTCFAPα.

In L/M-PDAC patients, most CTCFAPα were VIM++ and CK+ (Fig. 3b). CTCEpCAM with 

this phenotype were found in M-PDAC, but not in L-PDAC patients. In L-PDAC, the 

CTCEpCAM dominating fraction equally expressed VIM and CK with some cells VIM- and 

CK++.

For a triple negative M-BC patient, the majority of CTCFAPα showed VIM++ and CK+ with 

the remaining CTCs equally expressed CK and VIM (Fig. 3b). CTCEpCAM showed all 

phenotype combinations.

These results indicated the presence of different phenotypes among CTCFAPα and 

CTCEpCAM; VIM++ and CK+ implied a mesenchymal type, VIM− and CK++ an epithelial 

one, and a third phenotype showing co-expression of CK and VIM suggested a cell 

undergoing epithelial–mesenchymal transition (EMT).2

Longitudinal tracking of PDAC patients

Figure 4a–c shows longitudinal tracking results for five PDACpatients. The first CTC test 

for 3/5 of these patients was obtained preoperatively on the day of surgery. It appeared that 

CTCFAPα were the dominating population at that time as indicated by CTCFAPα/CTCEpCAM 

ratio (defined as ϕ) ranging between 1.2 and 2.3 (Fig. 4b, c).

Figure 4a shows longitudinal tracking of M-PDAC patient #25. Levels of CTCFAPα 

decreased 60 days after the initial analysis with no significant change observed on day 129. 

CTCEpCAM increased slightly; computed tomography (CT) imaging was consistent with 

stable disease over this time period and ϕ was 0.3. However, CTC analysis on day 171 

showed a nearly 2-fold increase in CTCFAPα and a significant drop in the CTCEpCAM 

burden, with ϕ equal to 2.3. This patient’s disease later showed progression by CT imaging. 

CA19-9 levels were low and continually decreased over the entire testing period (normal < 

35 U/ml).

Figure 4b shows results for L-PDAC patient #45. Pre-operative CTCFAPα was 20/ml; 

CTCEpCAM was 12/ml (ϕ = 1.7); and CA19-9 was 1764 U/ml. On day 162, the CTC burden 
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was ~10/ml for both subpopulations (ϕ = 0.6), and CT imaging was not definitive for disease 

recurrence. On day 208, CTCFAPα counts increased to 20/ml, while CTCEpCAM were 7/ml 

(ϕ = 2.7). CT imaging for this patient thereafter showed metastatic disease. CA 19-9 levels 

decreased 2-fold from the pre-operative level but remained high at 831 U/ml. In PDAC 

pt#45 and #25 CA 19-9 levels did not correlate with disease progression as determined by 

CT.

In L-PDAC patient #48 on day 85, both CT scan and CTC analysis were performed. Both 

CTC subpopulations were enumerated (ϕ = 1.2), and the results of CT imaging indicated 

metastatic disease. A subsequent CTC test administered on day 230 showed similar 

CTCFAPα burden (26/ml) and a decrease in CTCEpCAM numbers (ϕ = 2.2, Fig. 4c), and CT 

imaging determined disease progression.

In L-PDAC patient #66, the ϕ was 1.2 on the day of surgery. It decreased to 0.6 on day 96 

following surgery, but increased again to 1.5 on day 194. CTC testing on day 194 detected 

the same burden of CTCEpCAM (~51/ml) as found on day 96, but a 2.5-fold increase in 

CTCFAPα burden (31 v 79 CTCFAPα/ml) was observed (Fig. 4c). At that time (day 194), 

disease progression was determined via CT imaging.

In the fifth patient tested in the longitudinal study (patient #46), the ϕ was 2.3 on the day of 

surgery, indicating a dominant CTCFAPα subpopulation. Nineteen and 53 days following 

surgery, post-operative chemotherapy and radiation, the CTC burden was low as only 3–5 

CTC/ml were detected for both subpopulations. When the CTC test was performed at day 

207, the counts for both CTC subpopulations increased (14/ml for CTCFAPα and 26/ml 

CTCEpCAM), with CTCEpCAM being the dominating population (ϕ = 0.6, Fig. 4c). About a 

year following surgery, this patient’s disease was classified as stable by CT.

For all aforementioned PDAC patients, we analyzed CTC results for which clinical notations 

were available: (i) samples acquired pre-operatively (localized disease), CT imaging 

indicating (ii) stable disease or (iii) metastasis (Supplementary Fig. S4). For this data set, the 

tandem analysis of both CTCFAPα and CTCEpCAM subpopulations appeared to be a better 

indicator of PDAC disease state than the analysis of either subpopulation alone (Fig. 4c and 

Supplementary Fig. S5).

CTC next generation sequencing (NGS) and mutation detection using the polymerase 
chain reaction/ligase detection reaction (PCR/LDR)

When isolated CTC fractions are of low purity, single-cell picking must be performed to 

eliminate wild type background. Given the high purity afforded by the sinusoidal 

microfluidic, we sought to obviate single cell picking and release CTCs in bulk from the 

microfluidic chip, and performing whole genome amplification (WGA) and NGS on the 

bulk affinity selected CTC subpopulations. We surveyed both CTC subpopulations isolated 

from a chemotherapy-naïve L-EOC patient (CTCFAPα = 105, CTCEpCAM = 717). Deep read 

depths (9900–65,000) allowed for high fidelity mutation detection. The CTCFAPα and 

CTCEpCAM gDNA contained the same missense somatic mutations in TP53 and CDH1 
genes and other SNPs, suggesting these CTCs had the same origin (Supplementary Table 

S12).
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We also targeted KRAS mutations in CTCs using PCR/LDR (see Methods), a sensitive 

method due to dual amplification, to identify mutations in low copy numbers of DNA (Fig. 

5a).26 By designing different length discriminating and common-fluorescently labeled 

primers, the LDR products differed in size depending on the specific KRAS mutation 

(Supplementary Table S13). LDR products were detected by capillary gel electrophoresis 

(Fig. 5b). gDNA from cell lines of known KRAS genotype (HT29—wild-type (wt) and 

LS180—mutated (mt) G35A) provided controls. HT29 gDNA showed peaks corresponding 

to 50 and 67 nt fragments indicating wt exon 1 codon 12 (wt35 and wt34, Supplementary 

Table S13), while LS180 gDNA showed an additional product of 44 nt (Fig. 5b) indicating 

mt G35A in this codon in agreement with the literature.27 LDR reactions without gDNA 

showed no products (Fig. 5b).

CTC subpopulations from one M-CRC, L-CRC, L-PDAC and two M-PDAC samples were 

independently genotyped (Fig. 5c). Tumor tissue was not available for testing.

The prevalence of KRAS mutations in PDAC is nearly ubiquitous and represents the earliest 

genetic alteration in this disease.28 In M-PDAC patient #68, both subpopulations showed 

three mutations in KRAS (Fig. 5b). However, in patients #66 and #67, CTCEpCAM were not 

mutated, whereas CTCFAPα showed G35A and G35T KRAS mutations. Multiple mutations 

are indicative of cancer cell aneuploidy, and this “polyclonality” of KRAS SNPs is a 

common feature in PDAC patients.29

For CRC patients, KRAS mutations are often found in codon 12 (80%), most frequently 

G35A and G35T.30 CTCFAPα from M-CRC patient #118 was wt KRAS; however, 

CTCEpCAM showed a G35A mutation. In L-CRC patient #135, we detected mt G34C in 

CTCFAPα and mt G35A in CTCEpCAM (Fig. 5c).

Gene expression analysis of FAPα and EpCAM CTCs

While the molecular profiling of CTC was performed to obtain information on orthogonality 

or dissimilarity of evaluated CTC subpopulations, these data will demonstrate the 

translational capacity and clinical utility of molecular profiling CTCs isolated using the 

sinusoidal microfluidic device.

We evaluated possible mRNA expression changes due to microfluidic isolation using cell 

lines. Relative expression of mRNA for selected genes assessed for Hs578T and SKBR3 

cells harvested from culture and affinity isolated on a microfluidic chip indicated no 

significant differences for the tested genes (Supplementary Fig. S6), indicating no obvious 

influence of the affinity selection process on mRNA expression.

CTC subpopulations were tested for their mRNA expression in five M-PDAC and two M-

CRC patients (Fig. 5d, e and Supplementary Fig. S7). Gene expression patterns differed 

between CTCFAPα and CTCEpCAM subpopulations and were distinct from the patient’s T 

cells and buffy coat. EpCAM mRNA expression for the CTCEpCAM subpopulation was 10-

fold higher than CTCFAPα for both cancer types, and FAPα mRNA was not found in the 

CTCEpCAM subpopulation. Both results agreed with immunophenotyping; when CTCs were 

stained with fluorescently-labeled anti-EpCAM mAb, 89 ± 11% of CTCEpCAM and 12 ± 6% 
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CTCFAPα had detectable EpCAM. FAPα mRNA expression was exclusively observed in 

CTCFAPα but was rather low because the FAPα protein is a product of alternative splicing of 

ten different mRNAs. (http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?

db=human&c=Gene&l=FAP) When two variants were tested in the Hs578T cell line, both 

FAPα mRNA were observed (Supplementary Fig. S2C). VIM mRNA was expressed higher 

in CTCFAPα than CTCEpCAM in M-PDAC; however, VIM expression was high in both 

subpopulations in M-CRC. mRNA expression profiling included stem cell markers (CD133, 
CD24, and CD44). In M-PDAC, CD133, CD24 mRNA was highly expressed in both 

subpopulations, with CD44 showing expression only in CTCEpCAM. Both subpopulations of 

CTCs in M-CRC showed expression of CD24 but lacked CD44 and CD133 (Supplementary 

Fig. S7A).

Both CTC subpopulations from M-PDAC and M-CRC patients lacked CD34 mRNA, 

suggesting absence of endothelial cell character and no significant contamination from 

hematopoietic cells. CD34 mRNA was expressed, as expected, in the M-PDAC buffy coat 

(Supplementary Fig. S7A).

KRAS mRNA in the CTCEpCAM subpopulation was highly expressed when compared to 

CTCFAPα for M-CRC (Supplementary Fig. S7A), which contrasted to M-PDAC. However, 

when we evaluated expression in individual patients (Fig. 5d), we observed that the wt 

KRAS gene in CTCEpCAM was overexpressed, while for the mutated KRAS in CTCFAPα, 

expression was 10-fold lower. Similar observations were made for the L-PDAC patient. 

Overexpression of wt KRAS suggests activation of downstream signaling pathways.31

We tested PSA and PSMA mRNA gene expression in a CRPC patient (Supplementary Fig. 

S7B). PSA and PSMA mRNA were expressed in both CTCFAPα and CTCEpCAM, suggesting 

these cells originated from the prostate tumor environment as PSMA and PSA mRNA 

expression is observed in normal prostate, hyperplastic, and invasive prostate carcinomas.32 

CTCFAPα were also stained with a fluorescently-labeled PSMA mAb, which confirmed the 

presence of this protein.

CTC isolation from PDX: Do CTCFAPα originate from human tumor or mouse-activated 
stroma?

FAPα is considered a marker of cancer-associated fibroblasts (CAFs), but it is also 

expressed by pericytes, fibrocytes, or fibroblasts during wound healing.33 CAFs or 

circulating fibroblasts are typically identified as expressing FAPα/SMAα/VIM but lacking 

CK and CD45,34 and are genetically stable.33 Fibrocytes detected in tumor stroma or bone 

marrow are FAPα+/CD34+/CD45+ while the FAPα+/CD34+/CD45− phenotype suggests a 

mesenchymal stem cell.35, 36 Isolated CTCFAPα expressed VIM, CK, but no CD45 

(phenotyping and gene expression) and were CD34− as determined by mRNA expression 

(i.e., were different from fibrocytes or CAFs). Additionally, mutations detected in CTCFAPα 

in M-CRC and L/M-PDAC and L-EOC implied neoplastic character, unlike CAFs.

We used PDX mouse models to more directly test whether isolated CTCFAPα originated 

from human tumor or activated stroma (i.e., mouse stroma). We note that the anti-human 

mAbs used for isolation in this study will cross react with murine FAPα and EpCAM 
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antigens; (human FAPα shares 90% AA identity with mouse FAPα, and human/mouse 

EpCAM share 82% aa sequence identity). CTC originating from mouse tissue and human 

tumor will be detected. We isolated CTCs from PDX models of basal-like breast cancer (Fig. 

6a–c) and extracted gDNA from CTC subpopulations and tumor tissue. CTCs gDNA was 

subjected to WGA, PCR amplification with human-specific primers, and sequencing. The 

sequences were evaluated for homology to human and mouse gDNA of the same exon. The 

DNA from both CTCEpCAM and CTCFAPα subpopulations and tumor showed human 

sequence (Fig. 6d), suggesting CTCFAPα did not originate from mouse stroma surrounding 

the tumor.

It is possible that CTCFAPα originate from epithelial precursor cells or are a product of 

independent event in the epithelium, or could be precursor cells themselves with the ability 

to differentiate and clonally expand; these cells could represent a subpopulation of cancer 

cells undergoing EMT or mesenchymal–epithelial transition.37

DISCUSSION

The challenge associated with CTCs as biomarkers has been modest clinical sensitivity with 

the FDA-approved platform. The question arises: does the biology limit the CTC burden or 

is the analytical platform used for their isolation limiting? Indeed, many microfluidic 

technologies have shown higher clinical sensitivity/CTC test positivity compared to the 

FDA-approved test.6, 38 A challenge with CTC assays is that in many cases, only a single 

selection marker is used for isolation despite the phenotypically diverse microenvironment 

of the tumor. We addressed this issue by using a CTC dual selection strategy that employed 

discrete microfluidics designed to independently select two phenotypically distinct 

subpopulations; CTCEpCAM and CTCFAPα, which represent epithelial and mesenchymal-like 

cancer cell phenotypes, respectively. Dual selection with the use of discrete microfluidics 

provided high CTC test positivity and specificity (Fig. 1h). The orthogonality of these two 

subpopulations was demonstrated through differential expression of EpCAM and FAPα 
mRNA and immunophenotyping with anti-EpCAM and anti-FAPα antibodies (Fig. 2, 

Supplementary Fig. S7A). For CRPC patients, PSA and PSMA mRNA expression in 

CTCFAPα indicated that these cells originated from the prostate tumor (Supplementary Fig. 

S7B), which is not unprecedented as EpCAM-/PSMA+ prostate cancer CTCs have also been 

identified by others.39

FAPα as a new marker for CTC affinity selection was specific as only a few hematopoietic 

cells were co-isolated from blood of healthy donors and non-cancer patients. Although 

circulating fibroblasts (FAPα+/α-SMA+/CK−/CD45−) were found in metastatic cancer 

patients (median = 4/7.5 ml) using filtration,34 these cells were not consistently isolated in 

our studies. These cells were CK −/CD45−/VIM+, and with this distinct phenotype, we 

could distinguish these cells from CTCs without compromising the integrity of the dual 

selection assay.

High purities of both CTC subpopulations allowed for bulk molecular analyses, obviating 

the need for single cell analysis. For example, a chemotherapy naïve L-EOC patient sample 

with high CTCFAPα and CTCEpCAM counts underwent WGA of gDNA and targeted-exome 
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NGS; similar mutational profiles between the CTC subpopulations suggested a common 

origin. It is possible that unique mutation profiles in subclones of CTCFAPα and/or 

CTCEpCAM subpopulations were too infrequent to be detected by bulk analysis. Even with 

the purity achieved herein, detecting mutations by NGS in low frequency clones would incur 

requiring a more rigorous workflow including single CTC picking, WGA, NGS, and 

comparative analysis of single CTC mutations (consensus sequencing). Unfortunately, 

associated with this workflow would be amplification errors and low success rates associated 

with WGA.40 The costs and intense labor associated with these strategies would hinder 

clinical translation. Alternatively, PCR/LDR provides enhanced sensitivity for low frequency 

mutations, thereby providing translatable analysis of actionable and highly conserved 

mutations, such as KRAS.

KRAS mutational status in CTCs has been shown to have a high concordance with the 

primary tumor (~90%).30 Thus, in the absence of a primary tumor or anatomically 

inaccessible organs, decisions regarding treatment appropriateness could be made using 

CTCs.30 This is important as patients who harbor KRAS mutated genes derive minimal 

benefit from anti-EGFR mAb therapy. We detected KRAS mutations in CTCFAPα and 

CTCEpCAM but not always in both CTC subpopulations. For example, in two PDAC patients 

who underwent multiple rounds of chemotherapy, KRAS mutations were found in CTCFAPα 

but not in CTCEpCAM (Fig. 5). Thus, the testing of both subpopulations would be advisable 

to secure better concordance with the primary/metastatic sites and provide information for 

combination therapies. These differences in mutational status are not clear but may be a 

result of chemotherapy or reflect different cancer cells’ pre-chemotherapy KRAS 
dependence.41 Interestingly, M-EOC patients were found to have a 3-fold lower median 

CTCEpCAM count following chemotherapy treatment compared to chemotherapy naïve 

patients, while CTCFAPα median counts for these cohorts remained unchanged, potentially 

suggesting CTCEpCAM were more sensitive to chemotherapy. Further studies should address 

whether CTCFAPα are equipped with properties that enable chemoresistance.

Recently, the presence of both epithelial and quasi-mesenchymal subtypes of cancer cells 

was identified in PDAC42; selection strategies targeting EpCAM only may not fully 

recapitulate the primary/metastatic tumor and provide insufficient information for patients 

with a non-epithelial PDAC subtype. We longitudinally tracked CTCFAPα and CTCEpCAM in 

L/M-PDAC patients and observed that CTCEpCAM burden alone was not indicative of 

disease status (Fig. 4); however, the ratio of CTCFAPα to CTCEpCAM better correlated with 

disease progression (Supplementary Fig. S5).

A dual selection strategy with orthogonal markers offered high test positivity for CTCs for a 

several cancers, even early stage disease. In addition, we demonstrated the ability to 

efficiently isolate CTCs from small blood volumes in PDX mouse models. The sinusoidal 

microfluidic chips provided high recovery and purity of CTCs for both localized and 

metastatic cancers to allow for “bulk” molecular profiling. Further, the use of discrete 

microfluidics for dual selection of CTCs of different phenotypes obviated the loss of 

subpopulation-specific distinctions in therapy response due to ensemble averaging, which 

would occur if mixed-monolayers of mAbs were poised within one microfluidic device.
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Surveillance of both CTC subpopulations (epithelial and mesenchymal) can deliver more 

phenotype-specific insights into cancer progression and chemotherapy resistance, which 

cannot be discerned using other types of circulating markers, e.g., cell free DNA, because 

their origin cannot be associated with a certain tumor cell type.

METHODS

Clinical samples

Healthy donors’ blood samples were obtained from the UNC Cancer Hospital Blood Bank. 

Blood from patients diagnosed with non-cancer or cancer were collected according to an 

approved UNC Institutional Review Board procedure. Written informed consent was 

obtained from all patients included in the study before enrollment. Peripheral blood samples 

were drawn by venipuncture into Vacuette® containing EDTA (Greiner) tubes. Tables S2–S8 

provide annotation data on the patients enrolled in this study. Supplementary Tables S14–

S19 provide raw CTC enumeration data.

Reagents and chemicals

COC (6013S-04) was purchased from TOPAS Advanced Polymers (Florence, KY). 

Chemicals and reagents used in these studies included Micro-90, reagent-grade isopropyl 

alcohol (IPA), phosphate-buffered saline pH = 7.4 (PBS), 2-(4-morpholino)-ethane sulfonic 

acid (MES), 7.5% bovine serum albumin (BSA), Triton X-100, paraformaldehyde solution 

(Sigma-Aldrich, St. Louis, MO), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 

N-hydroxysuccinimide (NHS) (Pierce, Rockford, IL), mouse anti-human EpCAM mAb 

(R&D Systems, clone#158210, Minneapolis, MN), mouse anti-human Fibroblast Activation 

Protein α (FAPα) mAb (R&D Systems, clone#427819), mouse monoclonal anti-Fc blocker 

IgG (R&D Systems,), DAPI, anti-CD45-FITC mAb (eBioscience, clone HI30), anti-CK 8 

and 19 mAb (CK8/19-eFluor®615, clone#LP3K, BA17), anti-pan-CK-(AE1/AE3) 

eFluor®615 mAb (eBioscience, San Diego, CA), anti-human EpCAM-eFluor®660 mAb 

(eBioscience, clone#1B7), anti-human vimentin-Alexa Fluor®488 mAb (clone 280618 

(R&D), and anti-human vimentin-APC mAb (R&D Systems, clone#280618). Nuclease-free 

water and microtubes (Ambion, Foster City, CA) were used for preparation and storage of 

all samples and reagents.

Fabrication and assembly of the CTC microfluidic devices

Microfluidic devices used COC substrates that were hot embossed from a metal mold 

master. The chip design was a Z-configuration consisting of a 26.3mm× 20.5mm footprint 

with inlet and outlet channels (20.5mm long, 400 µm wide, and 150 µm deep) connecting a 

series of 50-sinusoidal channels that in concert formed the CTC selection bed. Each 

sinusoidal channel was 30.6mm long, 150 µm deep and 25 µm wide.

The surface area of the CTC selection bed was 596 mm2 (11 mm2/channel). The chip’s total 

volume was 9.4 µl (138 nl/channel) with a 2.5 µl volume for the inlet/outlet channels. 

Microfluidic devices and the planar substrates from which they were made were sonicated in 

10% Micro-90 for 10 min, rinsed with IPA and DI water and dried at 70 °C. Devices and 

cover plates, both consisting of COC, were thermally fusion bonded between two glass 
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plates in a convection oven at 131 °C for 30 min after which, they were UV/O3 activated for 

15 min (22 mW/cm2 at 254 nm) in a home-built activation chamber equipped with a quartz, 

low-pressure Hg lamp. This activation protocol generated a functional scaffold of surface-

confined carboxylic acids to which selection mAbs could be attached. Devices were 

modified using EDC–NHS chemistry (20 mg/ml EDC, 2 mg/ml NHS, in 100 mM MES, pH 

4.8) followed by incubation with a solution of mAb (0.5 mg/ml; 150mM PBS buffer, pH 7.4) 

overnight at 4 °C.

Fluid dynamic simulations through sinusoidal channel architectures

The Chang–Hammer model24 (see Eq. 1) was used to investigate the dynamics of CTC 

affinity-selection as described elsewhere.16 Parameters for the simulation not provided by 

Chang–Hammer24 were: a 16-µm diameter CTC, mean EpCAM expression of 49,700 

EpCAM molecules/cell,43 a kin of 2.5 × 104 M−1 s−1 for antibody-EpCAM binding kinetics,
44 and variable rolling distance.

Isolation of CTCFAPα and CTCEpCAM via dual selection

Whole blood was processed using the dual selection strategy within 3 h following collection. 

Usually 2ml of blood was infused into the microfluidic device yielding a linear velocity of 2 

mm/s (25 µl/min). A post-isolation rinse was performed at 4 mm/s with 2ml PBS/0.5% BSA. 

Affinity-bound cells were identified and enumerated via staining or impedance sensing.

CTC staining and imaging

Cells were stained with anti-CD45-FITC mAbs (clone HI30; BioLegend, San Diego, CA), 

fixed with formaldehyde (2%), permeabilized with 0.1% Triton X-100, and stained with a 

mixture of CK 8, (clone C-46), 18 (clone DA/7), 19 (clone A53-B/A2), or pan-CK-

eFluor®615 (clone C-11; BioLegend), anti-Vimentin-Cy5, and DAPI. In some cases, cells 

were stained with anti-EpCAM-Cy5 or FAPα via a secondary IgG mAb. CTC visualization/

enumeration was performed using an inverted Olympus IX71 microscope (Center Valley, 

PA) equipped with a high resolution (1344 × 1024) CCD camera (Hamamatsu ORCA-03G) 

and a mercury arc lamp. Images were collected, background corrected, normalized, and 

analyzed using Metamorph software (Molecular Devices Inc.). In ImageJ images were 

converted to 8-bit type, a gray scale values of the signal were read from the line plots and the 

phenotypes were classified as no signal (−) (0–30 level), weak (+) (31–100 level), and strong 

(++) (101–256 level).

Impedance detection of CTCs

Following CTC selection and bed washing, CTCs could be released from the capture surface 

of the sinusoidal channels with buffer consisting of 0.25% w/v trypsin in 25mM TRIS/

192mM glycine buffer (pH 7.4). Released CTCs traversed through an impedance sensor and 

an electrical signal was recorded using in-house designed electronics. Impedance responses 

from CTCs were scored when the signal-to-noise ratio exceeded 3:1 using Matlab.
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RNA isolation and reverse transcription (RT)—quantitative PCR (RT-qPCR)

Cells were lysed and RNA was extracted from the lysate followed by RT performed using 

the Cell-to-Ct Kit (Life Technologies). A volume of2 µl of synthesized first strand cDNA 

was used for qPCR performed with a Universal SYBR green mix (BioRad) using a total 

reaction volume of 10 µl. RT-qPCR was performed using an Agilent HT7900 instrument 

(Applied Biosystems, Foster City, CA, USA). Primers were obtained from RealTime-

Primers.com.

The qPCR steps consisted of 20 s at 95 °C and 40 cycles each for 3 s at 95 °C and 15 s at 

58 °C and 15 s at 68 °C. Expression data were calculated using the comparative threshold 

cycle (Ct) method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the 

endogenous control. The Ct data for GAPDH was used to create ΔCt values [ΔCt = Ct (target 

gene) −Ct (GAPDH)]. Relative quantification values were calculated using the equation: 

2−ΔCt.

Genomic DNA isolation, whole genome amplification, and NGS

gDNA was extracted and purified using the Quick-gDNA™ MicroPrep kit (Zymo 

Research). WGA was performed using the Illustra Single Cell GenomiPhi DNA 

Amplification Kit (GE Healthcare) following manufacturer protocol. Samples were 

subjected to targeted-exome NGS on a Miseq® using the TruSight™ Tumor 26 Sequencing 

Panel (Illumina).

PCR/LDR assay

Cell lines of known KRAS genotype (HT29, wild-type and LS180—G12V) were secured 

from the Tissue Culture Facility at UNC. gDNA from the cell lines and CTCs was extracted 

using an Agencourt DNA isolation kit (Beckman–Coulter). PCR was performed with DNA 

in a total volume of 20 µl using Taq 2 × Master Mix (New England Biolabs, Ipswich, MA). 

PCR cocktails consisted of 2 µl of primers, 10 µl Taq 2× Master Mix, 6 µl nuclease free 

water and 2 µl gDNA. PCR was carried out in a thermal cycler (MJ Research Inc.) with the 

following steps: denaturation at 94 °C for 2.5 min followed by 40 cycles of denaturation at 

94 °C for 15 s; annealing for 30 s at 58 °C and extension at 72 °C for 30 s. A final extension 

at 72 °C for 7 min was followed by a cooling step at 4 °C. KRAS primers were obtained 

from IDTDNA: forward primer 5′ AAC CTT ATG TGT GAC ATG TTC TAA TAT AGT 

CAC 3′ and reverse primer 5′ AAA ATG GTC AGA GAA ACC TTT ATC TGT ATC-3′. 

PCR products (290 bp) were electrophoresed at 8.3 V/cm in 1 × TBE using a 4% agarose gel 

with ethidium bromide (Lonza) staining. Amplicons were indexed against a DNA sizing 

ladder 50–766 bp (New England Biolabs). Images were collected using a Logic Gel imaging 

system (Eastman Kodak).

LDRs were carried out in a 20-µl volume with North9° Ligase. The LDR cocktail contained 

discriminating and common primers 4 nM each, amplicons 0.6–1 ng (3–5 fmol), 40 units of 

DNA ligase and buffer. Thermocycling conditions were 94 °C for 1 min and 59 °C for 4 min 

that was repeated 20-times. Common primers for codon 34 and 35 were Cy5-labeled. 

Discriminating primers were design to produce ligated products with different sizes 
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(Supplementary Table S13). LDR products were separated using a Beckman CQ CE system 

and sized against the appropriate ladder.

Statistical analysis

Statistical analysis was conducted using a non-parametric U-test (Wilcoxon–Mann–Whitney 

test). For all analyses, p < 0.05 was considered statistically significant.

Data and materials availability

The authors declare that all data supporting the findings of this study are available within the 

paper and its supplementary information files. Discussion of data contained within this study 

or its relevant findings can be addressed by the corresponding author upon reasonable 

request.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Sinusoidal microfluidic device used in the study and summary of clinical results. a 
Schematic of the dual selection strategy using mAbs directed against FAPα and EpCAM 

cell-surface antigens. b SEM of the CTC selection microfluidic device. c Optical 

micrographs of the CTC selection microchip filled with whole blood, and the chip after 

rinsing with buffer. d An image (5×) of DAPI-stained Hs578T cells isolated within the 

channels of the microfluidic device. e Simulation of CTC recovery from blood at different 

translational velocities as a function of cell rolling distance along the mAb decorated 

surface. f Box plots for CTCs isolated from the blood of healthy donors, patients with non-

cancerous disease, CRPC, M- PDAC, M-CRC, M-BC, and M-EOC. CTC counts were 

normalized to 1ml of blood. g Test positivity in cancer patients’ blood using the single 

EpCAM approach and the dual selection strategy (test positivity based on the CTCFAPα 
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and/or CTCEpCAM counts exceeding a level that was 3× SD for counts from non-cancer 

patients)
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Fig. 2. 
Phenotyping analysis in fluorescence microscopy. Images (40×) of CTCFAPα and 

CTCEpCAM isolated using the sinusoidal microfluidic chips and stained with a panel of 

markers: DAPI, anti-pan-CK-TR, anti-CD45-FITC, anti-VIM-FITC, anti-EpCAM-Cy5, and 

anti-FAPα-Cy5
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Fig. 3. 
CTC phenotyping. a Fluorescence micrographs of cells isolated from a patient diagnosed 

with pancreatitis, and CTCFAPα and CTCEpCAM isolated from L/M-PDAC patients. All cells 

stained negative for CD45. b Immunophenotyping results of CTCFAPα and CTCEpCAM. The 

pie charts show the percent of CTCs with pan-CK and/or VIM expression for L-PDAC 

patient #66, M-PDAC patient #25, and M-BC patient #5
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Fig. 4. 
Longitudinal tracking of CTCFAPα and CTCEpCAM numbers in the blood of PDAC patients. 

a M-PDAC patient #25. The first CTC analysis was performed during second-line therapy (t 
= 0). b L-PDAC patient #45. The first CTC analysis in this case was performed pre-

operatively on the day of surgery (t = 0). CA19-9 measurements (green stars) are shown 

when available. CTCFAPα = red dots, and CTCEpCAM = blue squares. Points are connected 

for ease of visualization, but do not represent any type of functional relationship between the 

individual data points. c A summary of all patients tested in this longitudinal study
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Fig. 5. 
KRAS mutation detection. a Schematic of the polymerase chain reaction/ligase detection 

reaction (PCR/LDR) assay. b Electropherograms of LDR products for: No gDNA; HT29 

wt35 (50 nt); LS180 G35A (44 nt); M-PDAC CTCFAPα G35A (44 nt), CTCEpCAM G34C 

(61 nt); and CTCFAPα G35T (55 nt). The gray trace shows the DNA markers. The 

fluorescence intensity values are arbitrary. c Table summarizing PCR/LDR results for HT29 

and LS180 cell lines, M-CRC, L-CRC, M-PDAC, and L-PDAC CTCs. d RT-qPCR gene 

expression profiles for L-PDAC patient #66 and M-PDAC patient #67
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Fig. 6. 
Phenotype, genotype, and CTCs from basal-like breast cancer PDX models. a IHC (400×) of 

tumor tissue in paraffin sections stained for FAPα, EpCAM, VIM, and pan-CK (scale bar = 

20 µm). b Fluorescence microscope images of CTCFAPα and CTCEpCAM isolated from the 

blood via cardiac puncture (scale bar = 15 µm). c CTCs isolated from two PDX models and 

a healthy NSG control. d Sanger sequencing traces for amplicons generated from exon 6 

TP53 DNA isolated from tumor tissue, CTCFAPα, and CTCEpCAM with primers designed for 

human sequence
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