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Abstract

IMPORTANCE—Continuous electroencephalography (EEG) use in critically ill patients is 

expanding. There is no validated method to combine risk factors and guide clinicians in assessing 

seizure risk.

OBJECTIVE—To use seizure risk factors from EEG and clinical history to create a simple 

scoring system associated with the probability of seizures in patients with acute illness.
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DESIGN, SETTING, AND PARTICIPANTS—We used a prospective multicenter (Emory 

University Hospital, Brigham and Women’s Hospital, and Yale University Hospital) database 

containing clinical and electrographic variables on 5427 continuous EEG sessions from eligible 

patients if they had continuous EEG for clinical indications, excluding epilepsy monitoring unit 

admissions. We created a scoring system model to estimate seizure risk in acutely ill patients 

undergoing continuous EEG. The model was built using a new machine learning method (Risk 

SLIM) that is designed to produce accurate, risk-calibrated scoring systems with a limited number 

of variables and small integer weights. We validated the accuracy and risk calibration of our model 

using cross-validation and compared its performance with models built with state-of-the-art 

logistic regression methods. The database was developed by the Critical Care EEG Research 

Consortium and used data collected over 3 years. The EEG variables were interpreted using 

standardized terminology by certified reviewers.

EXPOSURES—All patients had more than 6 hours of uninterrupted EEG recordings.

MAIN OUTCOMES AND MEASURES—The main outcome was the average risk calibration 

error.

RESULTS—There were 5427 continuous EEGs performed on 4772 participants (2868 men, 

49.9%; median age, 61 years) performed at 3 institutions, without further demographic 

stratification. Our final model, 2HELPS2B, had an area under the curve of 0.819 and average 

calibration error of 2.7% (95% CI, 2.0%–3.6%). It included 6 variables with the following point 

assignments: (1) brief (ictal) rhythmic discharges (B[I]RDs) (2 points); (2) presence of lateralized 

periodic discharges, lateralized rhythmic delta activity, or bilateral independent periodic discharges 

(1 point); (3) prior seizure (1 point); (4) sporadic epileptiform discharges (1 point); (5) frequency 

greater than 2.0 Hz for any periodic or rhythmic pattern (1 point); and (6) presence of “plus” 

features (superimposed, rhythmic, sharp, or fast activity) (1 point). The probable seizure risk of 

each score was 5% for a score of 0, 12% for a score of 1, 27% for a score of 2, 50% for a score of 

3, 73% for a score of 4, 88% for a score of 5, and greater than 95% for a score of 6 or 7.

CONCLUSIONS AND RELEVANCE—The 2HELPS2B model is a quick accurate tool to aid 

clinical judgment of the risk of seizures in critically ill patients.

Continuous electroencephalography (cEEG) provides real-time monitoring of brain function 

in hospitalized patients. The use of cEEG is expanding, motivated by reports showing a high 

incidence of subclinical seizures in encephalopathic patients with conditions ranging from 

sepsis to traumatic brain injury.1–3

Features of EEG reported as factors associated with of seizures include epileptiform and 

periodic discharges.4 However, to our knowledge, no study has examined how these factors 

affect seizure risk jointly, that is, it is unknown how seizure risk changes when several 

patterns occur simultaneously.

We propose a simple scoring system for seizure risk that we refer to as the 2HELPS2B 

score. Our tool provides a joint assessment of seizure risk from cEEG observations and 

history of seizures, and it allows physicians to make accurate, risk-calibrated probabilities by 

hand. We expect our tool to help physicians identify patients in need of continued cEEG 

monitoring and who are likely to benefit from interventions.
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Methods

Patients

Following institutional review board approval at Emory University, Brigham and Women’s 

Hospital, and Yale University, institutions prospectively entered participant data into an 

anonymized database.5 Waiver of consent was granted because of minimal risk to patients. 

The database includes reports of clinical information and findings on cEEG greater than or 

equal to 6 hours. The cEEG findings were coded using American Clinical Neurophysiology 

Society standardized terminology.6 Clinical variables were collected as described in Lee et 

al.5 Patients admitted for elective epilepsy monitoring were excluded. Data from 5427 cEEG 

sessions on 4772 different patients were collected. All investigators entering patient data had 

to undergo a module explaining the patterns and an examination demonstrating mastery of 

the material. This method has been shown to have high interrater reliability.7 Seizures are 

not defined in the American Clinical Neurophysiology Society terminology, but most 

clinicans used the modified Young et al8 criteria to define seizures. Both electrographic and 

electro-clinical seizures were included.

Data Set Creation

We considered 24 candidate variables for inclusion in risk models (Table 1). Posterior 

dominant rhythm; brief (ictal) rhythmic discharges (B[I]RDs); reactivity; sporadic 

(nonperiodic and non-rythmic) epileptiform discharges; history of seizure, generalized 

rhythmic delta activity (GRDA), lateralized rhythmic delta activity (LRDA), generalized 

periodic discharges (GPDs), lateralized periodic discharges (LPDs), and bilateral 

independent periodic discharges (BIPDs); primary neurological diagnosis (altered mental 

status, infection, inflammatory disease, cerebral neoplasm, hypoxic/ischemic 

encephalopathy, intracerebral hemorrhage, metabolic encephalopathy, stroke, subarachnoid 

hemorrhage, subdural hemorrhage, traumatic brain injury, and hydrocephalus); frequency of 

rhythmic or periodic patterns; presence of a stimulus-induced pattern; and presence of a 

“plus factor” (ie, superimposed rhythmic, fast, or sharp activity). Candidate variables were 

selected based on prevalence within the database and previous associations with seizures.

Variables were combined into single factors to simplify the prediction model and increase 

the effect size for each factor. This was performed for variables that are associated with a 

similar risk of seizures and rarely co-occur. To create a frequency binary variable, frequency 

was divided into binary variables at each 0.5-Hz interval from 0.5 to 3 Hz. Each potential 

dividing point was analyzed to find the cut point with maximal predictive value.

Descriptive statistics are reported with 95% CIs. Odds ratios and Fisher exact test results are 

reported for candidate variables with α set to .05.

Risk Score Methods

Our goal was to create a risk score similar to CHADS2 (congestive heart failure, 

hypertension, age greater than 75, diabetic, and history of stroke [doubled]),9 that is, a 

simple additive model with a limited number of factors and small integer weights for quick 

calculations. There is no standard method to create such models. Existing tools were built 
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manually (eg, CHADS2 a point system for stroke risk with atrial fibrillation)9 or by 

combining logistic regression with ad hoc feature selection and rounding (eg, simplified 

acute physiology score [SAPS II], a point system for mortality in the intensive care unit).10

Existing approaches may fail to produce risk-calibrated models. Therefore, we built our risk 

score using a new method known as Risk-Calibrated Super sparse Linear Integer Model 

(RiskSLIM).11 This RiskSLIM method uses optimization techniques to find the best logistic 

regression model with bounded integer coefficients (integers between −10 and 10), and a 

limited number of risk factors (at most 6). In such settings, Risk-SLIM can output an 

optimized risk score with superior risk-calibration and/or area under the curve (AUC). 

Because RiskSLIM is a new method, we compared RiskSLIM models with baseline models 

built using state-of-the-art methods: penalized logistic regression (PLR) with a combined 

L1/L2 penalty using the same constraints.

Risk Score Evaluation

We evaluated all models for accuracy and risk calibration (ie, how well the predicted 

probability of a seizure matches the true prevalence). To assess accuracy, we computed the 

area under the receiver operating characteristic curve (ROC). To assess risk calibration, we 

constructed reliability diagrams plotting the observed prevalence of seizures vs the predicted 

probability (eg, Figure, A).12 In addition, we examined the average calibration (CAL) error, 

the mean squared error between the predicted probability and the observed prevalence. 

When a model has perfect risk calibration, the reliability curve should lie on the 45° line, 

and CAL should be 0% (Figure, A). The average CAL error is a measure of how close the 

probable risk of seizures and the actual risk of seizures are. It is minimized to find the best 

risk model.

Risk Score Validation

We validated the performance of all models using standard 5-fold cross-validation (5-CV). 

That is, we randomly split the data into 5 parts, fit the model using 4 of 5 folds, and 

validated this model on last fold (that the model had not seen). This procedure was repeated 

5 times, each time using a different fold for validation, to obtain 5 independent estimates of 

CA Land AUC. We report the mean of these estimates as 5-CV CAL and 5-CV AUC.

Because fitting models with PLR requires us to specify free parameters, we fit models for 

more than 1100 combinations of free parameters and picked the combination that 

maximized the 5-CV test AUC. This required us to validate the performance using a nested 

5-CV procedure. All results for model performance are reported with respect to the left-out 

data (the fold used for testing) only; testing data were held out and were not used for either 

choosing the values of free parameters nor for training the model. This rigorous separation 

of training and testing data provides protection against over fitting and minimizes bias in the 

reported model performance.

Struck et al. Page 4

JAMA Neurol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Patients

Among 5427 cEEG sessions, 719 (12.52%) had a seizure during cEEG; 2315 (40.03%) had 

GRDA, LRDA, BIPDs, LPDs, or GPDs. A total of 340 (5.92%) had sporadic epileptiform 

discharges.

Seizure Prediction Risk Score

After fitting several models using RiskSLIM and PLR for model size constraints ranging 

between 4 and 27, we selected a RiskSLIM model with 6 variables shown in Table 2.

In contrast to the baseline PLR model, the RiskSLIM model was simpler, had superior risk 

calibration (mean 5-CV CAL of 2.7% [95% CI, 2.0%–3.6%] vs 8.9% [95% CI, 7.9%–9.8%] 

for PLR), and had comparable AUC (mean 5-CV AUC of 0.819 [95% CI, 0.799–0.849] vs 

0.821 [95% CI, 0.801–0.855] for PLR). We also compared 2HELPS2B with a PLR model 

where we did not round the coefficients or constrain the number of variables. In this case, we 

did obtain a model with slightly better risk calibration (mean 5-CV CAL 2.0% [95% CI, 

1.5%–3.0%]) and improved AUC (mean 5-CV AUC of 0.837 [95% CI, 0.815–0.868]), but 

this model is no longer simple enough to use for quick predictions as the points are not 

integers and it used 21 of the 29 variables.

As a mnemonic, we call this RiskSLIM model the 2HELPS2B score, which represents 

GRDA, LRDA, BIPDs, LPDs, or GPDs with a frequency greater than 2 Hz (1 point); 

epileptiform discharges (1 point); LPDs or LRDA or BIPDs (1 point);GRDA, LRDA, 

BIPDs, LPDs, or GPDs with plus features (superimposed rhythmic, fast, or sharp activity); 

any history of seizures; (acute or remote) (1 point); and B(I)RDs (2 points).

The risks of seizures for each possible 2HELPS2B score are 5% for a score of 0, 12% for a 

score of 1, 27% for a score of 2, 50% for a score of 3, 73% for a score of 4, 88% for a score 

of 5, and greater than 95% for a score of 6 or 7. Table 2 provides a reference with the 

probabilities for each score from 1 to 6. The area under the ROC for this model applied to all 

patients was 0.819 and for the 5 folds ranged between 0.776 and 0.849. Figure, A is a risk-

calibration plot of probable vs actual incidence of seizures at each point level. Figure, B 

plots the ROC with 95% CIs.

Discussion

The 2HELPS2B score is an accurate, simple, and clinically practical risk score for seizure 

occurrence in hospitalized patients undergoing cEEG. The large sample size of data 

collected at multiple institutions with a systematic application of standardized EEG 

nomenclature fostered development of a robust risk scoring system. The large sample size 

provides statistical power; the multiple institutions and uniform data collection ensure broad 

applicability.

The 2HELPS2B system combines 5 readily observable EEG features with a single factor 

from the patient history (any known history of seizure, remote or acute) to assign a score 
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between 0 and 7. The score has good face validity, being based on established clinical and 

EEG risk factors. Moreover, it shows excellent CAL: the probabilities it assigns for each 

level of risk closely match those observed in our cohort. The association of higher frequency 

(>1.5-Hz) discharges and increased risk of seizures seen in the study by Rodriguez Ruiz et 

al13 was confirmed to have independent association value in the 2HELPS2B investigation.

The rigorous cross-validation method that we used and the large cohort size of 5427 ensures 

our results are widely applicable. Supporting the generalizability of our study, the incidence 

of seizures in our cohort is within the 8% to 34% range of published reports.1,14–22 

Subgroups also have an incidence similar to prior studies, such as stroke at 10% (range, 6%–

26%) and subarachnoid hemorrhage at 7% (range, 4%–19%).1–3,17

Limitations

There are some limitations of the study. The duration of cEEG was not included in the 

database; thus, this study does not address the change in probability of seizures with 

increased observation duration. This issue has been partially addressed in prior studies. Risk 

of a seizure within 72 hours was found to be less than 5% if a seizure was not detected 

within 16 hours of monitoring.2,4 Future studies should explore the association between the 

time-dependent risk for seizures under continued observation in relation to the 2HELPS2B 

score. No cEEG sessions of less than 6 hours were included in this study; hence, these 

criteria should be applied with caution to studies of less than 6 hours. However, a reasonable 

approach for use of the 2HELPS2B score would be to calculate the score at the initial 

reading of the cEEG, typically within the first half hour of recording (>68% of EEG 

abnormalities are evident by this time).2 If new EEG findings emerge, the 2HELPS2B score 

should be modified at the second reporting, typically on the order of 6 to 8 hours. By this 

time,95% of epileptiform abnormalities have been detected.2 Initially, 2HELPS2B can serve 

as a tool to augment clinical judgment regarding duration of monitoring and need for 

antiseizure medications. We anticipate future clinical studies using 2HELPS2B as a risk-

stratifying metric to define rigorous cut points guiding clinical management, similar to the 

way the CHADS2 score guides anticoagulation in atrial fibrillation.9

Conclusions

The 2HELPS2B score is an easy-to-use tool to augment clinical judgment of the risk for 

seizures in individual patients. The simplicity of the system allows for easy integration into 

clinical workflow. With increasing familiarity, 2HELPS2B will improve communication 

between EEG interpreters and clinicians through the use of a quickly comprehensible single 

number to describe seizure risk for patients on cEEG.
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Key Points

Question

Can the risk of seizures in critically ill patients be accurately determined with a simple 

clinical tool?

Findings

In this study, a point system using 6 variables (brief [ictal] rhythmic discharges [2 

points]; presence of lateralized periodic discharges, lateralized rhythmic delta activity, or 

bilateral independent periodic discharges [1 point]; prior seizure [1 point]; sporadic 

epileptiform discharges [1 point]; frequency greater than 2.0 Hz of periodic/rhythmic 

pattern [1 point]; and presence of “plus” features [1 point]) was associated with seizure 

risk of 5% with a score of 0, 12% with a score of 1, 27% with the score of 2, 50% with 

the score of 3, 73% with a score of 4, 88% with a score of 5, and greater than 95% with a 

score of 6 or 7.

Meaning

The 2HELPS2B score may provide accurate seizure risk stratification from patient 

history and initial electroencephalography.
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Figure. Risk Calibration and Receiver Operating Characteristics for Scoring System
A, Each dot represents a point value from 0 to 6 points. Point values are only shown up to 6 

because no patients in the database had 7 points. The x-axis is the probable seizure risk 

based on the SLIM 6-variable RiskSLIM model. The y-axis is the actual observed risk, 

estimated as the fraction of patients with a given score who had seizures. The black line has 

a slope of 1 and intercept at the origin. Proximity to this line indicates goodness of fit and is 

used as a marker to look for bias. The number associated with each dot is the number of 

patients in the Critical Care EEG Research Consortium database with the associated number 

of points. B, Receiver operating characteristics curve for the RiskSLIM model with 95% CIs 

developed from bootstrapping from the full training set is represented by the dashed lines. 

The solid black line represents the null classifier. Area under the curve = 0.819.

Struck et al. Page 10

JAMA Neurol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Struck et al. Page 11

Table 1

Univariate Risk Factor Analysisa

Variable Proportion With Sz (95% CI) No. (%) of Patients With Finding OR (95% CI) P Valueb

PDR 0.10 (0.08–0.12) 1166 (21.5) 0.711 (0.50–0.92) <.001

BRDs 0.69 (0.62–0.76) 176 (3.2) 18.805 (18.47–19.14) <.001

Unreactive background 0.18 (0.15–0.22) 454 (8.4) 1.610 (1.36–1.86) <.001

Prior Sz 0.23 (0.20–0.25) 1168 (21.5) 2.663 (2.50–2.83) <.001

GRDA 0.13 (0.11–0.15) 927 (17.1) 1.071 (0.862–1.28) .51

LRDA 0.28 (0.23–0.32) 410 (7.6) 2.967 (2.73–3.20) <.001

GPDs 0.16 (0.13–19) 696 (12.8) 1.368 (1.15–1.59) <.01

LPDs 0.44 (0.41–0.48) 802 (14.8) 9.825 (9.65–10.0) <.001

BIPDs 0.28 (0.21–0.36) 122 (2.2) 2.784 (2.38–3.19) <.001

Infection 0.16 (0.11–0.24) 118 (2.2) 1.350 (0.853–1.85) .26

Inflammation 0.13 (0.06–0.24) 56 (1.0) 0.998 (0.202–1.80) .99

Neoplasm 0.19 (0.16–0.22) 577 (10.6) 1.694 (1.47–1.92) <.001

ICH 0.12 (0.10–0.15) 543 (10.0) 0.963 (0.693–1.23) .84

Metabolic encephalopathy 0.06 (0.04–0.10) 325 (6.0) 0.467 (0.0177–0.916) <.001

Stroke 0.10 (0.07–0.13) 452 (8.3) 0.737 (0.416–1.059) .06

SAH 0.07 (0.05–0.09) 508 (9.4) 0.499 (0.140–0.845) <.001

SDH 0.13 (0.10–0.17) 353 (6.5) 1.078 (0.760–1.40) .62

TBI 0.07 (0.04–0.12) 142 (2.6) 0.523 (0–1.170) .05

Hypoxic/ischemic 0.13 (0.10–0.16) 390 (7.2) 1.004 (0.694–1.311) .99

IVH 0.10 (0.06–015) 146 (2.7) 0.736 (0.180–1.29) .31

Hydrocephalus 0.07 (0.03–0.14) 86 (1.6) 0.520 (0–1.35) .14

Discharges 0.29 (0.26–0.33) 763 (14.1) 3.733 (3.55–3.91) <.001

Frequency (>2Hz)c 0.42 (0.32–53) 77 (1.4) 2.570 (1.62–4.09) <.001

Abbreviations: BIPD, bilateral periodic discharges; BRDs, brief rhythmic discharges; GPDs, generalized periodic discharges; GRDA, generalized 
rhythmic delta activity; ICH, intracranial hemorrhage; IVH, intraventricular hemorrhage; LPDs, lateralized periodic discharges; LRDA, lateralized 
rhythmic delta activity; OR, odds ratio; PDR, posterior dominant rhythm; Prop, proportion with seizures; SAH, subarachnoid hemorrhage; SDH, 
subdural hemorrhage; Sz, seizure; TBI, traumatic brain injury.

a
A total of 2868 were men (49.9%), median age; 61 years.

b
P value calculated with Fisher exact test.

c
Variable only evaluated for ictal-interical continuum patterns.

JAMA Neurol. Author manuscript; available in PMC 2018 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Struck et al. Page 12

Ta
b

le
 2

O
pt

im
iz

ed
 R

is
k 

Sc
or

e 
fo

r 
Se

iz
ur

e 
Pr

ob
ab

ili
ty

a

V
ar

ia
bl

e

To
ta

l S
co

re

0
1

2
3

4
5

>6

Pr
ob

ab
le

 r
is

k 
of

 S
z,

 %
b

5
12

27
50

73
88

>
95

A
ct

ua
l p

re
va

le
nc

e 
of

 S
z,

 %
 (

95
%

 C
I)

c
3 

(2
–3

)
12

 (
10

–1
3)

34
 (

31
–3

7)
52

 (
46

–5
7)

71
 (

63
–7

8)
84

 (
71

–9
9)

92
 (

77
–1

00
)

a Sc
or

in
g 

fo
r 

ea
ch

 r
is

k 
fa

ct
or

 w
as

 2
 p

oi
nt

s 
fo

r 
br

ie
f 

rh
yt

hm
ic

 d
is

ch
ar

ge
 a

nd
 1

 p
oi

nt
 e

ac
h 

fo
r 

la
te

ra
liz

ed
 p

er
io

di
c 

di
sc

ha
rg

es
/b

ila
te

ra
l i

nd
ep

en
de

nt
 p

er
io

di
c 

di
sc

ha
rg

es
/la

te
ra

liz
ed

 r
hy

th
m

ic
 d

el
ta

 a
ct

iv
ity

; p
lu

s 
fe

at
ur

es
; p

ri
or

 s
ei

zu
re

; f
re

qu
en

cy
 g

re
at

er
 th

an
 2

 H
z;

 a
nd

 d
is

ch
ar

ge
s.

 N
ot

e,
 n

o 
pa

tie
nt

s 
ha

d 
7 

po
in

ts
 in

 th
e 

co
ho

rt
 (

al
l p

os
si

bl
e 

ri
sk

 f
ac

to
rs

);
 h

en
ce

, i
ts

 n
on

in
cl

us
io

n.

b Pr
ob

ab
ili

ty
 o

f 
se

iz
ur

e 
pr

es
en

te
d 

as
 th

e 
m

ea
n;

 p
ro

ba
bl

e 
ri

sk
 is

 th
e 

pr
ob

ab
ili

ty
 o

f 
se

iz
ur

e 
ba

se
d 

on
 R

is
kS

L
IM

.

c T
he

 n
um

be
rs

 in
 p

ar
en

th
es

es
 a

re
 9

5%
 C

Is
 o

bt
ai

ne
d 

us
in

g 
bo

ot
st

ra
p 

re
sa

m
pl

in
g.

JAMA Neurol. Author manuscript; available in PMC 2018 December 01.


	Abstract
	Methods
	Patients
	Data Set Creation
	Risk Score Methods
	Risk Score Evaluation
	Risk Score Validation

	Results
	Patients
	Seizure Prediction Risk Score

	Discussion
	Limitations

	Conclusions
	References
	Figure
	Table 1
	Table 2

