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Abstract

Antibodies have been used for more than 100 years in the therapy of infectious diseases but a new 

generation of highly potent and/or broadly cross-reactive human monoclonal antibodies 

(sometimes referred to as ‘super-antibodies’) offers new opportunities for intervention. The 

isolation of these antibodies, which are often rarely induced in human infections, has primarily 

been achieved by large-scale screening for suitable donors and new single B cell approaches to 

human monoclonal antibody generation. Engineering the antibodies to improve half-life and 

effector functions has further augmented their in vivo activity in some cases. Super-antibodies 
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1. Antibodies have been used for over a century prophylactically and, less often, therapeutically against viruses.

2. “Super-antibodies” — a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies — 
offer new opportunities for prophylaxis and therapy of viral infections.

3. Super-antibodies are typically generated in natural infection infrequently and/or in a limited number of individuals.

4. Isolation of these antibodies has primarily been achieved by large-scale screening for suitable donors and new single B 
cell approaches to human monoclonal antibody generation.

5. Super-antibodies may offer the possibility of treating multiple viruses of a given family with single reagents. They are 
also valuable templates for rational vaccine design.

6. The great potency of super-antibodies has many advantages for practical development as therapeutic reagents. These 
advantages can be enhanced by a variety of antibody engineering technologies.
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offer promise for the prophylaxis and therapy of infections with a range of viruses, including those 

that are highly antigenically variable and those that are newly emerging or have pandemic 

potential. The next few years will be decisive in the realization of the promise of super-antibodies.

TOC blurb

So-called ‘super-antibodies’ are highly potent, broadly reactive antiviral antibodies that offer 

promise for the treatment of various chronic and emerging viruses. This Review describes how 

recent technological advances led to their isolation from rare infected individuals and their 

development for the prevention and treatment of various viral infections.

The use of antibodies to ameliorate the adverse clinical effects of microbial infection can be 

traced back to the late nineteenth century and the work of von Behring and Kitasato on 

serum therapy of diphtheria and tetanus (reviewed in REFS 1,2). In these settings, the 

antibodies act to neutralize bacterial toxins. Therapies followed in which serum antibodies 

were targeted directly against bacterial and then viral pathogens. For viral pathogens, 

enriched polyclonal IgG molecules from immunized animals were shown to be effective in 

prophylaxis, and even post-exposure prophylaxis, for a number of viruses including hepatitis 

A virus, hepatitis B virus, hepatitis C virus, herpes simplex virus, measles virus, rabies virus, 

respiratory syncytial virus (RSV), smallpox virus and varicella zoster virus. Generally, the 

efficacy of antibody preparations declined with the duration of infection such that they were 

often regarded as poor therapeutic options. Of course, the major antiviral strategy of the 

twentieth century was vaccination.

Over the latter part of the twentieth and early part of the twenty-first century, there have 

been major developments in our understanding of and ability to manipulate antibodies. The 

advent of hybridoma technology in 1976 provided a reliable source of mouse monoclonal 

antibodies (mAbs), the first impact of which was not on antibody therapy but on the 

characterization of cells through the definition of cell surface markers. Broad 

implementation of mAbs in therapy had to wait until the development of humanized mouse 

antibodies and then the generation of fully human antibodies by various techniques 

described below. Such antibodies have been largely applied in the fields of oncology and 

autoimmunity. Only a single antiviral mAbs, the RSV-specific antibody palivizumab, is in 

widespread clinical use. The reasons for this have been discussed elsewhere1,3–6, although 

perhaps the most significant reasons are the relatively high cost of production of mAbs, the 

difficulties of administration and a belief that antibodies are largely only effective in a 

prophylactic setting, which can be achieved for many viruses by vaccination.

However, as we discuss here, an increasing number of antiviral antibodies with quite 

remarkable properties in terms of potency and/or cross-reactivity with other viruses or 

strains of the same virus are being isolated. These so-called ‘super-antibodies’ are changing 

our understanding of what we can hope to achieve with antibodies against microbial 

infection in the clinic. Increased potency can greatly reduce the unit costs of treatment, make 

feasible alternative routes of administration and extend the effective half-life of the antibody. 

Increased cross-reactivity can allow us to consider targeting multiple viruses with single 
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antibodies. Antibody engineering can impact both potency and cross-reactivity and can 

greatly extend half-life of super-antibodies.

In this Review, we discuss how new approaches have fueled the identification of super-

antibodies, where and how such antibodies may be best applied and future directions for the 

field.

Super-antibody discovery

Many acute viral infections induce robust neutralizing antibody responses in the large 

majority of individuals. In general, these viruses show little evidence for evasion of antibody 

responses and we have referred to them as ‘evasion lite’ 7. Typically, they either display 

limited antigenic variability in their surface protein (or proteins) or they show considerable 

variability but nevertheless express immunodominant conserved epitopes. Examples of 

viruses in this category include measles virus, poliovirus, chikungunya virus and RSV8–11. 

Presumably the life cycle of these viruses does not dictate immune evasion. For these types 

of viruses, the isolation of super-antibodies from immune donors has been achieved in a 

relatively straightforward manner8,9,12–14. However, some viruses have evolved mechanisms 

to evade effective neutralizing antibody responses (termed ‘evasion strong’) and induce such 

responses at much lower levels. Effective responses in the context of infection with highly 

antigenically variable viruses refers not only to their neutralization potency but also to their 

effectiveness against diverse circulating global isolates, often referred to as breadth. For 

these viruses —including HIV, influenza virus, Ebola virus and Lassa virus — only a 

proportion of infected individuals, sometimes quite small, will generate broad and potent 

neutralizing antibody responses15–21. Furthermore, within these individuals, potent broadly 

neutralizing antibody (bnAb) specificities generally only constitute a small fraction of the 

antigen-specific memory B cell pool.

For example, only a few percent of HIV-1-infected individuals develop broad and potent 

serum responses over time, and B cell cloning efforts have demonstrated that bnAbs 

generally comprise <1% of the HIV envelope (Env)-specific memory B cell repertoire22. 

Although there are probably multiple factors that contribute to the low abundance of bnAbs 

within these individuals, the intrinsic nature of the viral Env protein likely has a key role. 

The HIV Env protein has evolved a multitude of mechanisms to evade bnAb responses, 

including decoy forms of Env, enormous antigenic variability, an evolving glycan shield, 

immunodominant variable epitopes, and poorly accessible conserved epitopes23. 

Furthermore, most HIV-specific bnAbs incorporate unusual features for epitope recognition, 

such as uncommonly long (or short) complementarity determining region 3 (CDR3) loops, 

insertions and deletions, tyrosine sulfation and extensive somatic hypermutation, which 

likely also contribute to the rarity and delayed development of bnAbs during natural 

infection24–26.

In the case of influenza virus infection, the vast majority of neutralizing antibodies elicited 

by infection or vaccination bind to variable epitopes within the haemagglutinin (HA) 

globular head of the viral particles and display strain-specific neutralizing activity27. 

Influenza virus-specific bnAbs typically target the conserved HA stem, but this region has 
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variable immunogenicity28–31. The relatively low frequency of bnAbs against the HA stem 

is perhaps due to the typically tight packing of HA trimers on the virus surface, which may 

limit antibody accessibility to this region. For Ebola and Lassa viruses, extensive 

glycosylation on the surface envelope proteins results in masking of conserved neutralizing 

epitopes15,32. In cases where super-antibodies are present at low frequency within immune 

repertoires, large-scale donor screening and high-throughput B cell isolation platforms have 

proven to be critical for the discovery of super-antibodies. Over the past several years, 

technological advances in these two areas have led to the identification large numbers of 

super-antibodies, mostly from infected individuals, against a plethora of viral pathogens.

Large-scale donor screening

In the case of HIV, which has served as a prototype virus for many studies in this field 33, 

systematic selection of donors with broadly neutralizing serum responses has proven to be 

critical for the identification of super-antibodies. Prior to 2009, the HIV field had been 

operating with a handful of bnAbs, all of which were limited either in breadth or in potency 
34. A number of factors complicated the identification of bnAbs, including the inefficiency 

of traditional approaches to mAb discovery, the small fraction of B cells that secrete bnAbs, 

and the limited availability of samples from donors who had developed broad and potent 

neutralizing serum responses. Beginning in 2005, the problem of limited samples was 

addressed by establishing donor screening programmes to identify HIV-infected individuals 

with broadly neutralizing serum responses to serve as source material for the generation of 

bnAbs18,19,35,36. In one of the largest studies, ~1,800 HIV-1-infected individuals from 

Australia, Rwanda, Uganda, the United Kingdom and Zambia were screened for broadly 

neutralizing sera using a reduced pseudovirus panel representative of global circulating 

HIV-1 isolates19. A subset of individuals, termed “elite neutralizers”, were identified that 

exhibited exceptionally broad and potent neutralizing serum responses and were therefore 

prioritized for bnAb isolation.

Over the past eight years, mining of these and similar samples has led to the identification of 

dozens of remarkably broad and potent HIV super-antibodies37–41. Careful selection of 

donors with desirable serum profiles has also enabled the isolation of rare super-antibodies 

to influenza virus, RSV, human metapneumovirus (HMPV), rabies virus and Zika 

virus12,42–44. For example, the pan-influenza A virus-neutralizing mAb FI6 and the RSV 

and HMPV cross-neutralizing mAb MPE8 were isolated from donors who were selected on 

the basis of their strong heterotypic serum responses12,42. Similarly, two pan-lyssavirus 

neutralizing mAbs, called RVC20 and RVC58, were isolated from the memory B cells of 

four donors who exhibited potent serum neutralizing activity against multiple lyssavirus 

species43.

High-throughput human B cell isolation technologies

Human antiviral neutralizing mAbs have been isolated using various different technologies, 

including combinatorial display libraries, human immunoglobulin transgenic mice and 

single B cell isolation methods (Fig. 1). Although all of these technologies have proven 

valuable for mAb generation, the recent burst in super-antibody discovery has primarily 

been driven by advances in single B cell-based methods. There are several possible reasons 
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for this, including inefficiencies in combinatorial library generation and interrogation 

(leading to the loss of rare clones), altered binding characteristics of antibody fragments 

produced in heterologous expression systems (for example, Escherichia coli or yeast), 

constraints on the generation of suitable recombinant antigens for immunization or library 

selections, the loss of native heavy and light chain pairing during immune library generation, 

and inherent differences between the adaptive immune systems of humanized mice and 

humans45.

Over the past decade, several technological breakthroughs in the B cell cloning arena have 

fueled super-antibody identification. One of these advances came in 2009, when direct 

functional screening of thousands of B cell clones from an HIV elite neutralizer led to the 

isolation of two super-antibodies, PG9 and PG16, which were about an order of magnitude 

more potent than first-generation bnAbs37. Notably, PG9 and PG16 bind poorly to 

recombinant Env proteins and thus would not have been identified without direct functional 

screening of B cell supernatants. To date, many dozens of HIV-specific bnAbs targeting a 

diverse range of epitopes have been identified using functional screening approaches39,46–48. 

Highly potent super-antibodies to RSV, HMPV, Lassa virus and human cytomegalovirus 

(HCMV) have also been discovered using high-throughput functional screening 

technologies12,13,49,50 (Table 1).

Similar to PG9 and PG16, these super-antibodies were isolated by screening B cell 

supernatants based on their capacity to neutralize infection in vitro and were subsequently 

found to react poorly with currently available recombinant envelope proteins. In the case of 

RSV, this approach led to the isolation of the highly potent mAb D25, which binds to an 

epitope that is exclusively expressed on the prefusion conformation of RSV fusion (F) 

glycoprotein49,51. An engineered variant of mAb D25 (MEDI8897), which exhibits 50–100 

times greater neutralization potency than palivizumab, is now being tested in clinical trials 

for the prevention of RSV-associated disease in high-risk infants. A second RSV prefusion 

F-specific super-antibody, which cross-neutralizes several different paramyxoviruses 

including HMPV, was also isolated by screening B cell supernatants for neutralizing 

activity12 (Table 1).

In the case of HCMV, direct functional screening enabled the isolation of highly potent 

super-antibodies specific for conformational epitopes within the gH–gL–UL128–UL130–

UL131A pentamer complex, which was not previously known to be a target for neutralizing 

antibodies13. Direct functional screening approaches have also led to the discovery of potent 

super-antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV), Ebola 

virus, influenza virus, chikungunya virus, rabies virus and the poxvirus family9,42,43,52–56. 

Notably, in the case of MERS-CoV, only a single B cell culture out of 4,600 screened 

showed neutralizing activity53. Similarly, the pan-influenza A virus neutralizing mAb FI6 

was isolated by testing 104,000 plasma cells from eight immune donors42. Finally, only two 

out of 500 mAbs that were selected based on their ability to neutralize rabies virus showed 

cross-neutralizing activity against multiple lyssavirus species43. These examples clearly 

illustrate that exhaustive interrogation of immune repertoires is often required for the 

identification of rare cross-neutralizing super-antibodies.
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A second breakthrough in the HIV antibody field followed the development of technology 

for antigen-specific single B cell sorting57–59. This approach, coupled with the use of 

rationally designed Env probes, allowed for the discovery of two new potent HIV bnAbs that 

target the conserved CD4 binding site60,61 (Table 1). Following this discovery, several other 

potent bnAbs against the CD4 binding site were isolated using similar approaches38,62,63. 

Recently, advances in the generation of recombinant native-like HIV Env trimers have 

enabled the identification of exceptionally potent “PG9-class” bnAbs40.

Many HIV super-antibodies have now been generated using single B cell sorting 

technology38,40,60,62,63. The use of fluorescently labeled probes to sort antigen-specific 

memory B cells has also allowed for the discovery of highly potent super-antibodies to 

Ebola virus, RSV, human papilloma virus (HPV), Zika virus and influenza 

virus11,30,31,44,64,65. In the case of Ebola virus, a large-scale single B cell cloning effort led 

to the isolation of several hundred mAbs specific for Ebola virus surface glycoprotein (GP), 

two of which showed potent pan-Ebola virus neutralizing activity and protective 

efficacy64,66. A similar effort in the RSV field allowed for the isolation of several prefusion 

F protein-specific mAbs that show over 100 times more potent neutralizing activity than 

palivizumab11. In addition, multiple groups have used clever dual antigen labeling strategies 

to identify potent bnAbs to HIV, influenza virus, Ebola virus and HPV30,31,40,65,67,68. The 

structures of several super-antibodies bound to their viral targets are shown in Fig 2. Finally, 

a recent report showed that bnAbs to HIV can be readily elicited in cows using a single Env 

trimer immunogen and that this induction depends on the long heavy chain CDR3 loops of 

the bovine immunoglobulin repertoire 67. It is possible that this repertoire may provide 

advantages in generating super-antibodies against other pathogens.

Vaccination or infection-induced antibody-secreting cell (ASC) responses have also proven 

to be a rich source of antigen-specific antibodies. Following early studies that showed a 

transient but large population of ASCs appears in peripheral blood 5–7 days after tetanus 

toxoid booster vaccination 69, it was shown that influenza virus vaccination produced a 

similar ASC response and that the large majority of mAbs cloned from these cells bound 

with high affinity to influenza virus, providing a proof-of-concept that the ASC response 

could be exploited to rapidly generate antigen-specific antibodies against any immunizing 

antigen 70. To date, plasmablast cloning has led to the isolation of mAbs against many 

different viruses, including dengue virus, Zika virus, HIV, influenza virus, vaccinia virus and 

rotavirus29,71–76.

One of the advantages of the plasmablast approach is that antigen baiting is not required for 

B cell sorting, thereby allowing for the isolation of antibodies that target epitopes that are 

poorly expressed on recombinant antigens. For example, in the case of dengue virus, potent 

bnAbs targeting E-dimer dependent epitopes were isolated using this approach72. However, 

it is important to emphasize that the ability to isolate super-antibodies using this method will 

depend on several factors. First, during a primary infection, the ASC population will be 

mainly composed of activated, low-affinity naive B cells (rather than affinity-matured 

memory B cells), making the possibility of identifying super-antibodies extremely unlikely. 

Second, in the context of a booster vaccination or secondary infection with an antigenically 

similar virus, most of the plasmablast response will be directed against immunodominant 
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epitopes, which in many cases are not targeted by effective neutralizing antibodies. In such 

cases, exhaustive cloning, production and characterization of the plasmablast-derived mAbs 

would likely be required to identify rare super-antibodies. In contrast, secondary infection 

with an antigenically related but sufficiently divergent virus can drive the preferential 

expansion of B cells that target highly conserved epitopes, as exemplified by the unusually 

high frequency of bnAbs induced in donors who were infected with the novel H1N1 

influenza virus in 200929,75. In principle, one could use this type of approach for the 

generation of super-antibodies in humanized mice or other animal models using suitably 

designed immunogens and immunization regimens.

Rapid response platforms for emerging viruses

Over the past two decades, humanity has faced a new emerging, or re-emerging, viral threat 

almost every year, including severe acute respiratory syndrome coronavirus (SARS), West 

Nile virus, pandemic influenza virus, Ebola virus, MERS-CoV and Zika virus. Due to their 

comparatively fast path to approval and generally favourable safety profiles, mAb therapies 

represent a promising alternative to vaccines and small molecule drugs for the treatment and 

prevention of emerging viral threats. Recently, several laboratories have demonstrated the 

feasibility of identifying, characterizing and scaling-up production of highly potent mAbs in 

remarkably short timeframes.

In response to the 2014–2015 MERS-CoV outbreak, two different groups illustrated the 

power of their mAb discovery platforms by isolating highly potent MERS-specific mAbs, 

producing the mAbs in gram quantities, and testing the lead mAbs in animal models at an 

unprecedented speed53,77. In one of these studies, a single highly potent MERS-CoV 

neutralizing mAb was identified from the memory B cells of a convalescent donor using a 

high-throughput functional screening approach53. This mAb, called LCA60, showed both 

pre- and post-exposure protection in a mouse model of MERS-CoV infection. Importantly, it 

only took the authors four months from the initial B cell screening to the development of a 

stable cell line that produces the neutralizing mAb at 5 g/L. In the second study, human 

immunoglobulin transgenic mice were immunized with the MERS-CoV Spike protein and 

then used to generate a panel of potent MER-CoV-specific neutralizing mAbs within several 

weeks77. The authors also quickly generated a humanized mouse model of MERS-CoV 

infection, which was used to demonstrate the therapeutic efficacy of their mAbs.

In a third study, vaccination of transchromosomal cows engineered to produce fully human 

IgG molecules with MERS-CoV was shown to yield high serum titres of MERS-CoV-

specific neutralizing antibodies78. Importantly, administration of the purified polyclonal 

transchromosomal bovine human IgG to mice either 12 hours before or 24 and 48 hours 

after MERS-CoV infection resulted in a significant reduction in viral lung titres. 

Transchromosomal bovines have also been used to rapidly generate polyclonal neutralizing 

antibodies to Hanta virus, Venezuelan equine encephalitis virus and Ebola virus79–81, 

demonstrating the feasibility of using this platform to rapidly generate therapeutics to 

combat emerging viral threats. The antibodies arising from transchromosomal cows are 

polyclonal to date but there is potential for mAb isolation.
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Between 2015 and 2016, several groups responded to the 2014–2015 Ebola virus outbreak 

by swiftly generating highly potent Ebola virus GP-specific neutralizing mAbs from the 

memory B cells of convalescent donors54–56,64,66. Many of these mAbs showed potent post-

exposure therapeutic efficacy against either Ebola or Bundibugyo virus in animal models 

and a subset showed protective efficacy against multiple Ebola virus strains54,55,64,66. 

Similarly, several groups have recently reported on the isolation of potent Zika virus-specific 

neutralizing mAbs from human donors14,44,82,83. Notably, one of these neutralizing mAbs, 

called ZIKV-117, showed post-exposure protection against Zika virus in both pregnant and 

non-pregnant mice82.

In certain cases, the availability of super-antibodies that target highly conserved epitopes 

may shorten timelines further by bypassing the need for mAb discovery. For example, it was 

recently shown that a subset of dengue virus-specific mAbs potently cross-neutralize Zika 

virus84–86. These bnAbs — perhaps carrying Fc mutations that ablate Fc receptor binding to 

avoid potential for antibody-dependent enhancement14 — could immediately be used for 

prophylaxis for pregnant women living in Zika virus endemic regions. Notably, cocktails of 

super-antibodies targeting different epitopes, or bispecific or trispecific super-antibody 

constructs, will likely be required to prevent neutralization escape87–93.

Antibodies in prophylaxis and therapy

Antibodies can function against viruses by several mechanisms, primarily divided into 

activities against free virus particles and activities against infected cells. Neutralization, 

measured in vitro as the ability of antibody to prevent viral entry into target cells without a 

requirement for involvement of any other agents, is an activity against free virions that has 

been most correlated with protection in vivo. Activities against infected cells generally 

depend on Fc effector functions and involve host effector cells. They include antibody-

dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and 

antibody-dependent cellular phagocytosis (ADCP). It is presumed that these latter activities 

are likely to be important in therapy using antibodies. Since neutralization frequently 

correlates with the ability to bind to native structures on the virion surface, it can give some 

indication of the ability of antibodies to mediate effector activities such as ADCC and 

ADCP. The potency of super-antibodies is then often estimated from neutralization 

measurements, although ultimately it is of course in vivo activity that is crucial.

Prophylaxis

Vaccination is the most effective and low-cost method of preventing viral disease. However, 

the development of effective vaccines against many important viral pathogens — including 

HIV, RSV, hepatitis C virus, dengue virus and HCMV — has been met with limited success. 

Furthermore, vaccine development is a long complex process, often lasting 10–15 years, 

making immunization an impractical means of protecting individuals from new emerging 

viral threats, unless pan-virus family vaccines can be developed. For example, if antibodies 

can be identified that potently neutralize existing strains of Ebola virus, or even Ebola and 

Marburg filoviruses, then one could anticipate that a vaccine templated from the antibodies 

would be effective even against emerging strains of Ebola virus. However, at the current 
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time, passive antibody prophylaxis represents a promising alternative to vaccination for a 

number of viral infections.

Currently, three purified polyclonal hyperimmune globulins derived from human donors 

immune to hepatitis B virus, HCMV or varicella zoster virus are on the market for the 

prevention of serious diseases associated with these viruses. A rabies virus-specific immune 

globulin, combined with vaccination, is also available for post-exposure prophylaxis. In 

1998, palivizumab — a humanized mAb that targets the RSV F protein — became the first 

US Food and Drug Administration approved antiviral mAb. Palivizumab soon replaced RSV 

hyperimmune globulin (RespiGam) for the prevention of severe RSV-associated disease in 

high-risk infants. However, although palivizumab is more specific and 50–100 times more 

potent than RespiGam, the cost associated with the required dosing makes its use 

impractical for all infants94. A second-generation RSV-specific mAb, which shows up to 50 

times greater neutralization potency than palivizumab and contains substitutions in the Fc 

domain that extend its serum half-life, is currently in phase 2 clinical trials for the prevention 

of severe RSV-associated disease in all infants95 (Table 2).

Although palivizumab is the only commercially available mAb for the prevention of a viral 

disease, there are multiple antiviral mAbs in preclinical and clinical development that have 

shown pre-exposure efficacy in animal models. For example, the potent MERS-CoV-specific 

mAbs described above were shown to prophylactically protect humanized mice against 

MERS-associated disease. Similarly, mAbs to chikungunya virus, influenza virus, HIV and 

Ebola virus have shown potent prophylactic efficacy in animal models9,85,96–102. Recently, a 

broadly neutralizing anti-Zika virus mAb (ZIKV-117) was shown to protect against 

maternal-fetal transmission in a mouse model of Zika virus infection82. If this observation 

translates to humans, prophylaxis with ZIKV-117 or similar neutralizing mAbs may be a 

promising means of protecting at-risk pregnant women against Zika virus infection and fetal 

transmission.

In the case of HIV, multiple studies have shown that passively administered neutralizing 

mAbs provide protection against intravenous, vaginal, rectal and oral challenge in non-

human primate and mouse models99–101,103–106. A large ongoing study (the antibody 

mediated prevention (AMP) study) will assess the ability of the VRC01 mAb specific for the 

CD4 binding site to decrease the risk of HIV acquisition in humans (See Further reading). 

Although animal studies have provided proof-of-principle that a vaccine capable of inducing 

sufficient titres of bnAbs could prevent the establishment of HIV infection in humans, and 

the AMP study will investigate this directly, the design of immunogens that efficiently elicit 

these rare antibodies remains a formidable challenge. To bypass the challenges associated 

with active vaccination against HIV, a number of groups have proposed alternative strategies 

based on vector-mediated antibody gene transfer to express bnAbs in vivo107. Unlike 

traditional passive immunization, which would require long-term repeated treatment with 

bnAbs, vectored immunoprophylaxis only involves a single injection and enables continuous 

and sustained delivery of antibodies. In 2009, pioneering work demonstrated that vector-

mediated delivery of antibody-like molecules can provide vaccine-like protection against 

SIV challenge in non-human primate models108.
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Subsequent studies have shown that vectored immunoprophylaxis is also compatible with 

full-length IgG molecules and CD4-like molecules109–111. If the preclinical results in mice 

and macaques translate to humans, vectored antibody gene delivery strategies could provide 

an alternative form of prophylaxis against HIV and other challenging vaccine targets such as 

hepatitis C virus, pandemic influenza virus and malaria. Recently, non-viral vector nucleic 

acid delivery technologies have also been developed to obviate the potential safety issues 

associated with viral vector-mediated delivery, such as long-term persistence and potential 

viral DNA integration into the host genome112–117. In a recent study, it was shown that the 

administration of lipid encapsulated, nucleoside-modified mRNAs encoding the heavy and 

light chain genes of the broadly neutralizing HIV-1-specific antibody VRC01 to humanized 

mice resulted in high serum antibody concentrations and protection against intravenous 

HIV-1 challenge114.

Similar proof-of-concept studies have also been performed using synthetic DNA plasmid-

mediated antibody gene transfer112,113. In one such study, synthetic DNA plasmids encoding 

cross-neutralizing anti-dengue virus antibodies were delivered to mice by electroporation 

and resulted in biologically relevant levels of serum antibody112. Importantly, a single 

intramuscular injection of plasmid DNA conferred protection against severe dengue disease 

in a mouse model. Although several technical challenges remain to be addressed, such as 

enhancing in vivo antibody expression levels and reducing the potential for immunogenicity, 

these studies demonstrate the feasibility of using plasmid DNA and modified mRNA-based 

antibody delivery technologies for passive immunotherapy.

Therapy

Conventional wisdom says that antibodies are effective if present before or shortly after viral 

exposure but their efficacy declines markedly once infection is established. For example, the 

anti-RSV antibody palivizumab is effective in the clinic prophylactically but not 

therapeutically 118. However, there are indications that the dogma may be challenged by 

super-antibodies. An example is the ability of a new generation of bnAbs against HIV to 

strongly impact ongoing infection in animal models 87,119,120, in which an earlier generation 

of less potent mAbs had very limited effects 121. This likely reflects the increased 

neutralization potency of the super-antibodies but also the increased breadth of 

neutralization that may restrict escape pathways 119. A number of super-antibodies are now 

being evaluated in humans for their activities against established HIV infection122–126 (Table 

2). Initial results are interesting, providing for example an indication of enhanced immune 

responses following bnAb administration 127. The emerging results will be followed closely, 

including in the context of combining bnAbs with drugs and other antiviral agents to attempt 

HIV cure.

For other viruses, clear evidence of a strong therapeutic effect for super-antibodies has not 

been gathered yet. A number of cases such as antibody treatment of rabies virus and Junin 

virus infections 43,128 are probably better interpreted as post-exposure prophylaxis rather 

than therapy of established infection. Two promising examples of possible therapy are the 

successful treatment of Ebola virus- or Lassa virus-infected monkeys with mAbs once 
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symptoms have appeared 89,129. Unfortunately, no definitive evidence of the efficacy of 

mAbs in Ebola or Lassa-symptomatic humans yet exists.

Camelid-derived single-domain antibodies (sdAbs), which are comprised of a single heavy-

chain variable domain, represent a promising new class of antibody-based therapeutics for 

RSV and other viruses that cause lower respiratory tract infections 130–133. Due to their 

small size and high solubility and stability, sdAbs can be rapidly delivered to the site of 

infection via inhalation. Notably, a neutralizing anti-RSV sdAb (ALX-0171) that targets an 

epitope overlapping that bound by palivizumab recently showed a trend towards a 

therapeutic effect in a phase I/IIa clinical trial based on reduced viral loads and clinical 

symptoms in hospitalized RSV-infected infants. Prefusion F protein-specific sdAbs that 

show up to 180,000 times greater neutralization potency than ALX-0171 have recently been 

identified and may offer even greater therapeutic benefit 133.

Practical considerations arising with super-antibodies

Intuitively, the enhanced potency of super-antibodies is immediately recognized as beneficial 

in antibody prophylaxis and therapy. However, there are also a number of additional effects 

from this enhanced potency that may not be instantly appreciated and that can be further 

strengthened by antibody engineering. For example, enhanced potency means that less 

antibody needs to be used and this can allow easier to develop low-concentration 

subcutaneous administration, rather than more difficult to develop high-concentration 

subcutaneous formulations or less convenient (low concentration) intravenous 

administration. Enhanced potency also means that the life-time of effective antibody 

following administration is extended, thereby requiring fewer administrations to maintain a 

useful protective or therapeutic effect. Antibody engineering can also extend half-life 

significantly 95,134–139 so that for the most potent super-antibodies, one could envisage 

requiring administrations perhaps only every 3–6 months for efficacy. Antibody engineering 

can also deliver greater efficacy through enhanced Fc effector function 140,141.

Conclusions

The deployment of antibodies as antiviral agents has progressed through a number of stages 

over the years, corresponding to increasing levels of potency of the reagent administered. It 

began with immune serum over a century ago, then to polyclonal antibodies, then mAbs and 

now into highly potent human mAbs dubbed super-antibodies. Thanks to research that has 

been primarily carried out in the cancer field, technologies have been developed to endow 

these super-antibodies with enhanced in vivo function.

Will super-antibodies change the landscape of antiviral prophylaxis and therapy? The answer 

to this question will depend on a number of factors, including, first, the rapidity of 

development of antiviral vaccines; vaccines will likely remain the cheapest and most 

effective antiviral measure but some viruses such as HIV present a huge vaccine challenge. 

Second, the effective cost of antibody treatment, which incorporates not only manufacturing 

cost but also the durability of administered antibody and the route of administration. Third, 

the success of antibodies in the treatment of established viral infections. Particularly in the 
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therapeutic setting, the answers can only be obtained with clinical trials using the best super-

antibodies available.
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GLOSSARY

Humanized mouse antibody
A genetically engineered mouse antibody in which the protein sequence has been modified 

to increase its similarity to human antibodies, thereby decreasing its potential 

immunogenicity.

Transchromosomal cows
Cows that have been genetically modified to incorporate human chromosomes so that upon 

immunization they generate human antibodies.

Antibody-dependent cellular cytotoxicity
A mechanism by which Fc receptor-bearing effector cells such as natural killer (NK) cells 

recognize and kill antibody-coated target cells, such as virus-infected cells. The Fc portions 

of the coating antibodies interact with an Fc receptor (e.g. FcγRIII; also known as CD16 

that is expressed by NK cells) thereby initiating a signalling cascade that results in the 

release of 22 cytotoxic granules (containing perforin and granzyme B) from the effector cell, 

which lead to cell death of the antibody-coated cell.

Complement-dependent cytotoxicity
A mechanism of antibody-mediated immunity whereby the association of antibody on a 

target cell surface leads to binding of the complement component C1q and triggering of the 

classical complement cascade. The cascade leads to elimination of taeget cells by a number 

of mechanisms including the formation of the membrane attack complex, the cytolytic end 

product of the complement cascade.

Hyperimmune globulins
An antibody preparation generated from the plasma of donors with high titers of antibody 

against a specific pathogen or antigen. Hyperimmune globulins are available against rabies, 

hepatitis B and varicella-zoster viruses amongst other viruses.
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Figure 1. Technologies for monoclonal antibody generation
a) Combinatorial display libraries. Human antibody heavy and light chain genes are 

amplified by PCR, and antibody fragments are displayed on the surface of a particle or cell 

in which the antibody genes are found (such as phage, yeast or mammalian cells142–145). 

Successive rounds of enrichment are performed to select for clones that bind to the target 

antigen. Genes encoding antibodies of interest are cloned into human IgG expression vectors 

to produce monoclonal antibodies (mAbs). b) Human immunoglobulin transgenic mice are 

generated by introducing human immuoglobulin loci into the mouse genome146,147. Upon 

immunization, the transgenic mice produce fully human antigen-specific antibodies. The B 

cells harvested from the immunized mice are fused with myeloma cells to generate 

antibody-secreting hybridomas, which are then screened for binding or functional activity. c) 

Single B cell cloning. Antigen-specific memory B cells or plasmablasts are single-cell sorted 

by flow cytometry and cognate heavy and light chain variable genes are amplified by RT-

PCR57,58,148. The antibody variable genes are cloned into human IgG expression vectors to 

produce mAbs. d) Memory B cell immortalization. Memory B cells are immortalized by 

Epstein–Barr virus and B cell culture supernatants are screened for binding or functional 

activity149. Positive cultures are sub-cloned by limiting dilution. e) Memory B cell culture. 

Single B cells are activated and cultured, and B cell supernatants are screened for binding or 

functional activity37,150. Antibody variable genes are amplified from clones of interest by 

PCR and cloned into human IgG expression vectors to produce mAbs.
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Figure 2. Structures of super-antibodies bound to their target antigens
a) Cryoelectron microscopy structure of the broadly neutralizing anti-HIV-1 antibody 

PGT145 in complex with a recombinant HIV envelope trimer151. PGT145 binds to a glycan-

dependent quaternary epitope at the trimer apex152. b) Crystal structure of the influenza 

virus group 1/group 2 neutralizing antibody CR9114 in complex with influenza virus 

haemagglutinin (HA)153. CR9114 recognizes a highly conserved epitope in the HA 

stem154,155. c) Crystal structure of the respiratory syncytial virus (RSV) and human 

metapneumovirus (HMPV) cross-neutralizing antibody MPE8 in complex with a stabilized 

RSV prefusion fusion glycoprotein trimer156. d) Crystal structure of the Zika virus and 

dengue virus cross-neutralizing antibody C8 in complex with a soluble Zika virus envelope 

ectodomain85. C8 targets a quaternary epitope that bridges two envelope protein subunits.

Walker and Burton Page 22

Nat Rev Immunol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Walker and Burton Page 23

Ta
b

le
 1

A
nt

i-
vi

ra
l S

up
er

A
bs

V
ir

us
P

ro
to

ty
pi

c 
Su

pe
rA

b
Si

m
ila

r 
an

ti
bo

di
es

*
A

nt
ig

en
ic

 r
eg

io
n

A
nt

ib
od

y 
is

ol
at

io
n 

te
ch

no
lo

gy

H
IV

PG
9,

 P
G

T
14

5
PG

16
, P

G
T

14
1-

14
4,

 C
H

01
-0

4,
 P

G
D

M
14

00
–1

41
2,

 C
A

P2
56

- 
V

R
C

26
.0

1-
12

V
2 

ap
ex

H
um

an
 B

 c
el

l i
so

la
tio

n

V
R

C
01

V
R

C
02

, V
R

C
03

, 8
A

N
C

13
1,

 8
A

N
C

37
, 8

A
N

C
13

4,
 N

IH
45

-4
6,

 3
B

N
C

60
, 

B
N

C
62

, 3
B

N
C

11
7,

 1
2A

12
, 1

2A
21

,1
2A

30
, V

R
C

-P
G

04
, V

R
C

-C
H

31
, 

V
R

C
27

, V
R

C
07

-5
23

, N
6

C
D

4 
bi

nd
in

g 
si

te
H

um
an

 B
 c

el
l i

so
la

tio
n

PG
T

12
1,

 P
G

T
12

8,
 P

G
T

13
5

PG
T

12
2,

 P
G

T
12

3,
 P

G
T

12
5-

PG
T

12
7,

 P
G

T
13

0,
 P

G
T

13
1,

 P
G

T
13

6,
 

PG
T

13
7,

 1
0-

10
74

V
3 

gl
yc

an
H

um
an

 B
 c

el
l i

so
la

tio
n

PG
T

15
1,

 3
5O

22
, 8

A
N

C
19

5
PG

T
15

2-
15

8,
 A

C
S2

02
, N

12
3-

V
R

C
34

.0
1

gp
12

0/
gp

41
 in

te
rf

ac
e

H
um

an
 B

 c
el

l i
so

la
tio

n

10
E

8
M

PE
R

H
um

an
 B

 c
el

l i
so

la
tio

n

In
fl

ue
nz

a

C
05

F0
45

-0
92

, 6
41

 I
-9

H
A

 h
ea

d
H

um
an

 B
 c

el
l i

so
la

tio
n,

 p
ha

ge
 d

is
pl

ay

FI
6

M
E

D
I8

85
2,

 C
R

91
14

, 3
9.

29
, 8

1.
39

, C
T

14
9,

 5
6.

a.
09

, 3
1.

b.
09

, 1
6.

a.
26

, 
31

.a
.8

3
H

A
 s

te
m

H
um

an
 B

 c
el

l i
so

la
tio

n

R
SV

/H
M

PV
M

PE
8

A
D

I-
14

44
8,

 2
5P

13
Si

te
 I

II
H

um
an

 B
 c

el
l i

so
la

tio
n

R
SV

D
25

D
25

, A
M

22
, 5

C
4,

 A
D

I-
15

61
8

Si
te

 ø
H

um
an

 B
 c

el
l i

so
la

tio
n

H
C

M
V

9I
6,

 8
I2

1
1F

11
, 2

F4
, 6

G
4

Pe
nt

am
er

ic
 c

om
pl

ex
H

um
an

 B
 c

el
l i

so
la

tio
n

R
ab

ie
s

R
V

C
58

Si
te

 I
II

H
um

an
 B

 c
el

l i
so

la
tio

n

R
V

C
20

Si
te

 I
H

um
an

 B
 c

el
l i

so
la

tio
n

D
en

gu
e/

Z
ik

a

A
11

, C
8

A
11

, C
8,

 C
10

, B
2,

 B
7,

 C
4

E
-d

im
er

 in
te

rf
ac

e
H

um
an

 B
 c

el
l i

so
la

tio
n

Z
00

4
Z

02
8,

 Z
00

1,
 Z

00
6,

 Z
01

0,
 Z

03
1,

 Z
03

5,
 Z

03
8,

 Z
01

4,
 Z

K
A

-1
90

, A
D

I-
 

24
19

2,
 A

D
I-

24
23

2,
 A

D
I-

24
22

7,
 A

D
I-

24
23

8
D

II
I 

la
te

ra
l r

id
ge

H
um

an
 B

 c
el

l i
so

la
tio

n

E
bo

la
A

D
I-

15
87

8
6D

6,
 A

D
I-

15
74

2,
 C

A
45

, F
V

M
09

Fu
si

on
 lo

op
H

um
an

 o
r 

m
ac

aq
ue

 B
 c

el
l i

so
la

tio
n

M
E

R
S

L
C

A
60

, R
E

G
N

30
51

, R
E

G
N

30
48

R
ec

ep
to

r-
bi

nd
in

g 
do

m
ai

n
H

um
an

 B
 c

el
l i

so
la

tio
n,

 h
um

an
iz

ed
 m

ic
e

L
as

sa
 v

ir
us

8.
9F

Q
ua

te
rn

ar
y 

G
PC

-C
 e

pi
to

pe
H

um
an

 B
 c

el
l i

so
la

tio
n

37
.2

D
25

.6
A

Q
ua

te
rn

ar
y 

G
PC

-B
 e

pi
to

pe
H

um
an

 B
 c

el
l i

so
la

tio
n

25
.1

0C
, 1

2.
1F

Q
ua

te
rn

ar
y 

G
PC

-A
 e

pi
to

pe
H

um
an

 B
 c

el
l i

so
la

tio
n

* T
hi

s 
lis

t o
f 

an
tb

od
ie

s 
is

 n
ot

 e
xh

au
st

iv
e 

an
d 

is
 c

av
ea

te
d 

by
 th

e 
fa

ct
 th

at
 d

if
fe

re
nt

 n
eu

tr
al

iz
at

io
n 

as
sa

ys
 c

an
 g

iv
e 

di
ff

er
en

t r
es

ul
ts

.

Nat Rev Immunol. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Walker and Burton Page 24

Ta
b

le
 2

A
nt

i-
vi

ra
l m

A
bs

 in
 c

lin
ic

al
 d

ev
el

op
m

en
t

A
nt

ib
od

y
V

ir
us

A
nt

ib
od

y 
is

ol
at

io
n 

te
ch

no
lo

gy
Ta

rg
et

St
ag

e 
of

 d
ev

el
op

m
en

t
M

an
uf

ac
tu

re
r

In
di

ca
ti

on

Po
rg

av
ix

im
ab

E
bo

la
Im

m
un

iz
at

io
n/

C
hi

m
er

iz
at

io
n

V
ir

al
 e

nv
el

op
e 

gl
yc

op
ro

te
in

Ph
as

e 
I/

II
M

ap
p 

B
io

ph
ar

m
ac

eu
tic

al
; L

ea
fB

io
Po

st
-e

xp
os

ur
e 

tr
ea

tm
en

t o
f 

E
bo

la
 v

ir
us

 
in

fe
ct

io
n

M
B

L
 H

C
V

1
H

C
V

H
um

an
iz

ed
 m

ic
e

H
C

V
 E

2 
gl

yc
op

ro
te

in
Ph

as
e 

II
M

as
sB

io
lo

gi
cs

Pr
ev

en
tio

n 
of

 
H

C
V

 r
ec

ur
re

nc
e 

in
 p

at
ie

nt
s 

re
ce

iv
in

g 
a 

liv
er

 
tr

an
sp

la
nt

PR
O

 1
40

H
IV

Im
m

un
iz

at
io

n/
H

um
an

iz
at

io
n

C
C

R
5

Ph
as

e 
II

I
Pr

og
en

ic
s 

Ph
ar

m
ac

eu
tic

al
s

T
re

at
m

en
t o

f 
H

IV
-1

 in
fe

ct
io

n

Ib
al

iz
um

ab
H

IV
Im

m
un

iz
at

io
n/

H
um

an
iz

at
io

n
C

D
4

Ph
as

e 
II

I
Ta

iM
ed

 B
io

lo
gi

cs
T

re
at

m
en

t o
f 

H
IV

-1
 in

fe
ct

io
n

U
B

 4
21

H
IV

Im
m

un
iz

at
io

n/
H

um
an

iz
at

io
n

C
D

4
Ph

as
e 

II
U

ni
te

d 
B

io
m

ed
ic

al
T

re
at

m
en

t o
f 

H
IV

-1
 in

fe
ct

io
n

V
R

C
01

-L
S

H
IV

H
um

an
 B

 c
el

l i
so

la
tio

n
H

IV
 g

p1
20

Ph
as

e 
I

N
at

io
na

l I
ns

tit
ut

e 
of

 A
lle

rg
y 

an
d 

In
fe

ct
io

us
 D

is
ea

se
s

Pr
ev

en
tio

n 
of

 
H

IV
-1

 in
fe

ct
io

n

V
R

C
01

H
IV

H
um

an
 B

 c
el

l i
so

la
tio

n
H

IV
 g

p1
20

Ph
as

e 
I

N
at

io
na

l I
ns

tit
ut

e 
of

 A
lle

rg
y 

an
d 

In
fe

ct
io

us
 D

is
ea

se
s

T
re

at
m

en
t o

f 
H

IV
-1

 in
fe

ct
io

n

3B
N

C
11

7-
L

S
H

IV
H

um
an

 B
 c

el
l i

so
la

tio
n

H
IV

 g
p1

20
Ph

as
e 

I
R

oc
ke

fe
lle

r 
U

ni
ve

rs
ity

T
re

at
m

en
t o

f 
H

IV
-1

 in
fe

ct
io

n

10
-1

07
4 

an
d 

3B
N

C
11

7
H

IV
H

um
an

 B
 c

el
l i

so
la

tio
n

H
IV

 g
p1

20
Ph

as
e 

I
R

oc
ke

fe
lle

r 
U

ni
ve

rs
ity

T
re

at
m

en
t o

f 
H

IV
-1

 in
fe

ct
io

n

PG
T

12
1

H
IV

H
um

an
 B

 c
el

l i
so

la
tio

n
H

IV
 g

p1
20

Ph
as

e 
I

In
te

rn
at

io
na

l A
ID

S 
V

ac
ci

ne
 

In
iti

at
iv

e
T

re
at

m
en

t a
nd

 
pr

ev
en

tio
n 

of
 

H
IV

-1
 in

fe
ct

io
n

PG
D

M
14

00
 a

nd
 P

G
T

12
1

H
IV

H
um

an
 B

 c
el

l i
so

la
tio

n
H

IV
 g

p1
20

Ph
as

e 
I

In
te

rn
at

io
na

l A
ID

S 
V

ac
ci

ne
 

In
iti

at
iv

e
T

re
at

m
en

t a
nd

 
pr

ev
en

tio
n 

of
 

H
IV

-1
 in

fe
ct

io
n

M
B

 6
6

H
IV

/H
SV

H
um

an
 B

 c
el

l i
so

la
tio

n
H

IV
 g

p1
20

, H
SV

 g
ly

co
pr

ot
ei

n 
D

Ph
as

e 
I

M
ap

p 
B

io
ph

ar
m

ac
eu

tic
al

Pr
ev

en
tio

n 
of

 
H

IV
-1

 a
nd

 H
SV

 
se

xu
al

 
tr

an
sm

is
si

on

V
IS

 4
10

In
fl

ue
nz

a
U

nk
no

w
n

In
fl

ue
nz

a 
he

m
ag

gl
ut

in
in

Ph
as

e 
II

V
is

te
rr

a
T

re
at

m
en

t a
nd

 
pr

ev
en

tio
n 

of
 

in
fl

ue
nz

a 
A

 v
ir

us
 

in
fe

ct
io

n

Nat Rev Immunol. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Walker and Burton Page 25

A
nt

ib
od

y
V

ir
us

A
nt

ib
od

y 
is

ol
at

io
n 

te
ch

no
lo

gy
Ta

rg
et

St
ag

e 
of

 d
ev

el
op

m
en

t
M

an
uf

ac
tu

re
r

In
di

ca
ti

on

M
H

A
A

 4
54

9A
In

fl
ue

nz
a

H
um

an
 B

 c
el

l i
so

la
tio

n
In

fl
ue

nz
a 

vi
ru

s 
ha

em
ag

gl
ut

in
in

Ph
as

e 
II

G
en

en
te

ch
T

re
at

m
en

t o
f 

in
fl

ue
nz

a 
A

 v
ir

us
 

in
fe

ct
io

n

C
T

 P
27

In
fl

ue
nz

a
H

um
an

 B
 c

el
l i

so
la

tio
n

In
fl

ue
nz

a 
vi

ru
s 

ha
em

ag
gl

ut
in

in
Ph

as
e 

II
C

el
ltr

io
n

T
re

at
m

en
t a

nd
 

pr
ev

en
tio

n 
of

 
in

fl
ue

nz
a 

A
 v

ir
us

 
in

fe
ct

io
n

D
ir

id
av

um
ab

In
fl

ue
nz

a
Ph

ag
e 

di
sp

la
y

In
fl

ue
nz

a 
vi

ru
s 

ha
em

ag
gl

ut
in

in
Ph

as
e 

II
N

at
io

na
l I

ns
tit

ut
e 

of
 A

lle
rg

y 
an

d 
In

fe
ct

io
us

 D
is

ea
se

s
T

re
at

m
en

t a
nd

 
pr

ev
en

tio
n 

of
 

in
fl

ue
nz

a 
A

 v
ir

us
 

in
fe

ct
io

n

C
R

80
20

In
fl

ue
nz

a
H

um
an

 B
 c

el
l i

so
la

tio
n

In
fl

ue
nz

a 
vi

ru
s 

ha
em

ag
gl

ut
in

in
Ph

as
e 

II
C

ru
ce

ll
T

re
at

m
en

t a
nd

 
pr

ev
en

tio
n 

of
 

in
fl

ue
nz

a 
A

 v
ir

us
 

in
fe

ct
io

n

R
G

 6
02

4
In

fl
ue

nz
a

H
um

an
 B

 c
el

l i
so

la
tio

n
In

fl
ue

nz
a 

vi
ru

s 
ha

em
ag

gl
ut

in
in

Ph
as

e 
I

G
en

en
te

ch
T

re
at

m
en

t o
f 

in
fl

ue
nz

a 
B

 v
ir

us
 

in
fe

ct
io

n

M
E

D
I 

88
52

In
fl

ue
nz

a
H

um
an

 B
 c

el
l i

so
la

tio
n

In
fl

ue
nz

a 
vi

ru
s 

ha
em

ag
gl

ut
in

in
Ph

as
e 

II
M

ed
Im

m
un

e
T

re
at

m
en

t o
f 

in
fl

ue
nz

a 
A

 v
ir

us
 

in
fe

ct
io

n

T
C

N
 0

32
In

fl
ue

nz
a

H
um

an
 B

 c
el

l i
so

la
tio

n
In

fl
ue

nz
a 

M
2e

 p
ro

te
in

Ph
as

e 
II

T
he

ra
cl

on
e 

Sc
ie

nc
es

; Z
en

ya
ku

 
K

og
yo

T
re

at
m

en
t o

f 
in

fl
ue

nz
a 

A
 v

ir
us

 
in

fe
ct

io
n

m
 1

02
.4

N
ip

ah
 a

nd
 

H
en

dr
a 

vi
ru

s

Ph
ag

e 
di

sp
la

y
V

ir
al

 e
nv

el
op

e 
gl

yc
op

ro
te

in
 G

Ph
as

e 
I

Pr
of

ec
tu

s 
B

io
sc

ie
nc

es
, I

nc
.

Pr
ev

en
tio

n 
an

d 
tr

ea
tm

en
t o

f 
N

ip
ah

 a
nd

 
H

en
dr

a 
vi

ru
s 

in
fe

ct
io

ns

R
ab

im
ab

s
R

ab
ie

s
Im

m
un

iz
at

io
n

V
ir

al
 e

nv
el

op
e 

G
 p

ro
te

in
Ph

as
e 

I/
II

W
or

ld
 H

ea
lth

 O
rg

an
iz

at
io

n;
 Z

yd
us

 
C

ad
ila

T
re

at
m

en
t a

nd
 

pr
ev

en
tio

n 
of

 
ra

bi
es

R
A

B
-1

R
ab

ie
s

H
um

an
iz

ed
 m

ic
e

V
ir

al
 e

nv
el

op
e 

G
 p

ro
te

in
A

pp
ro

ve
d

Se
ru

m
 I

ns
tit

ut
e 

of
 I

nd
ia

; 
M

as
sB

io
lo

gi
cs

Po
st

-e
xp

os
ur

e 
pr

op
hy

la
xi

s 
of

 
ra

bi
es

Fo
ra

vi
ru

m
ab

R
ab

ie
s

Ph
ag

e 
di

sp
la

y,
 H

um
an

 B
 c

el
l 

is
ol

at
io

n
V

ir
al

 e
nv

el
op

e 
G

 p
ro

te
in

Ph
as

eI
I/

II
I

C
ru

ce
ll;

 S
an

of
i P

as
te

ur
Po

st
-e

xp
os

ur
e 

pr
op

hy
la

xi
s 

of
 

ra
bi

es

Pa
liv

iz
um

ab
R

SV
Im

m
un

iz
at

io
n/

H
um

an
iz

at
io

n
V

ir
al

 f
us

io
n 

pr
ot

ei
n

A
pp

ro
ve

d
M

ed
Im

m
un

e
Pr

op
hy

la
xs

is
 in

 
hi

gh
-r

is
k 

in
fa

nt
s

M
E

D
I 

88
97

R
SV

H
um

an
 B

 c
el

l i
so

la
tio

n
V

ir
al

 f
us

io
n 

pr
ot

ei
n

Ph
as

e 
II

M
ed

Im
m

un
e

Pr
op

hy
la

xs
is

 in
 

hi
gh

-r
is

k 
in

fa
nt

s

Nat Rev Immunol. Author manuscript; available in PMC 2018 November 01.


	Abstract
	TOC blurb
	Super-antibody discovery
	Large-scale donor screening
	High-throughput human B cell isolation technologies

	Rapid response platforms for emerging viruses
	Antibodies in prophylaxis and therapy
	Prophylaxis
	Therapy

	Practical considerations arising with super-antibodies
	Conclusions
	References
	Figure 1
	Figure 2
	Table 1
	Table 2

