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Abstract

Individually personalized computational models of heart mechanics can be used to estimate 

important physiological and clinically-relevant quantities that are difficult, if not impossible, to 

directly measure in the beating heart. Here, we present a novel and efficient framework for 

creating patient-specific biventricular models using a gradient-based data assimilation method for 

evaluating regional myocardial contractility and estimating myofiber stress. These simulations can 

be performed on a regular laptop in less than 2 h and produce excellent fit between measured and 

simulated volume and strain data through the entire cardiac cycle. By applying the framework 

using data obtained from 3 healthy human biventricles, we extracted clinically important quantities 

as well as explored the role of fiber angles on heart function. Our results show that steep fiber 

angles at the endocardium and epicardium are required to produce simulated motion compatible 

with measured strain and volume data. We also find that the contraction and subsequent systolic 

stresses in the right ventricle are significantly lower than that in the left ventricle. Variability of the 

estimated quantities with respect to both patient data and modeling choices are also found to be 
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low. Because of its high efficiency, this framework may be applicable to modeling of patient 

specific cardiac mechanics for diagnostic purposes.

Keywords

cardiac mechanics; contractility estimation; data assimilation; parameter estimation; patient 
specific simulations; stress estimation

1 | INTRODUCTION

Cardiac computational modeling has emerged as both a powerful method to provide basic 

insight into cardiac function/dysfunction and as a support tool to improve current clinical 

practice. Its development is in part driven by significant advancements in medical imaging 

techniques,1–3 which now provide a wealth of information about cardiac structure and 

kinematics. Merging this information with biophysical descriptions of cardiac behavior 

allows for the creation of powerful patient specific models of the heart.4–6 Such models can 

be used to predict the outcome of different treatment strategies7 or to extract useful 

indicators of mechanical function, such as myocardial contractility8,9 and myofiber stress,
10,11 potential biomarkers that are currently difficult, if not impossible, to measure directly 

using imaging techniques. 12

Of particular importance is ventricular myofiber stress,13 which is hypothesized to be a key 

driver of pathological remodeling processes in cardiac diseases.14 Correspondingly, 

quantifying stress and determining how cardiac interventions may reduce abnormal stress is 

considered a useful avenue in developing treatments for heart failure.15 However, while 

measurements of heart motion are possible using an array of imaging techniques, no direct 

measurements of the load experienced by myocytes are currently possible in vivo and 

estimates are used instead. One widely used method is the law of Laplace, a simplified 

model that takes into account pressure, wall thickness, and curvature, and can be used to 

evaluate stress in idealized geometries. However, despite its wide use, it has been shown that 

this law severely under-estimates myofiber stress in largely irregular patient-specific 

ventricular geometries.16 Furthermore, regional stresses also cannot be accurately estimated 

using this idealized law.

To overcome these limitations, patient specific simulation using finite element modeling is 

widely accepted as a viable way to accurately estimate myofiber stresses in the complex 

geometry of the heart and has been used in designing heart failure treatments to reduce 

myocardial stress.15,17,18 However, one of the many challenges faced by researchers 

developing patient specific models is to efficiently and accurately incorporate individual data 

into the them, which often requires determining model parameters that best reproduce the 

observations, ie, data assimilation.19,20 Typically, one defines a cost function representing 

the mismatch between simulated and observed data and searches for model parameters that 

minimize this cost function. Several techniques have been employed to solve this 

minimization problem. Global methods, using parameter sweeps21–23 or genetic algorithms,
24,25 are attractive because they can cover the entire parameter space, and are therefore more 

likely to retrieve the global mimumum of the cost function. However, such methods require 
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an extensive number of functional evaluations, which in the case of heart mechanics can be 

computationally expensive. Local optimization methods, on the other hand, typically start at 

some given initial guess, and iteratively search the local neighborhood for better candidates 

in the minimization of the cost function. These methods are typically faster than global 

methods but have the drawback that the solution may depend on the initial guess. One 

example of a local method is the reduced order unscented Kalman filtering approach, 26 

which has been applied to personalize cardiac electromechanical models from cine MRI. 27

Another class of local optimization methods are the gradient-based methods, which 

successively reduce the cost functional by searching along the gradient descent direction. 

While these methods may substantially improve the convergence towards the minimum, 

estimating the gradient in these methods, however, introduces significant additional 

computational costs. Specifically, estimating the gradient by standard finite differences 

typically requires as many functional evaluations as the number of control parameters (N + 1 

evaluations for N parameters). Gradient-based methods are therefore impractical if the 

number of control parameters is large. Nevertheless, gradient-based approaches have been 

applied to personalize cardiac mechanics models in several studies.20,28–30 For example, in 

the study of Wang et al,30 a sequential quadratic programming optimization technique was 

utilized to estimate passive material parameters, while in the study of Göktepe et al,31 a 

Levenberg-Marquardt method was used to estimate material parameters from shear data. In 

the study of Delingette et al,29 the minimization was performed using a quasi-Newton 

Broyden-Fletcher-Goldfarb-Shanno Bounded (BFGS-B) method, where the gradient was 

computed using the adjoint method. In this study, however, the adjoint equation was derived 

analytically, which may be challenging in more complex problems of cardiac mechanics. 

More recently, a new approach based on automated derivation of functional gradients via 

solving the corresponding adjoint system have emerged.32 Overcoming the issue that 

gradient-based methods face in dealing with a large number of parameters, this approach 

enables one to compute the functional gradient at a computational expense that does not 

depend on the number of control parameters. 28

Here, we apply such a gradient-based data assimilation framework in order to fuse clinical 

imaging data from a cohort of healthy subjects to a biventricular mechanics model 

accurately and efficiently. By relating physical processes to the kinematics observed in 

medical images, we extracted clinically important quantities from these subject-fitted 

models and evaluated the sensitivity of these quantities to modeling choices such as fiber 

architecture and model for active contraction.

The paper is organized as follows. In section 2, we present the pipeline for data assimilation 

that includes an outline of the underlying ventricular mechanics model and solution 

methods. Section 3 presents the results of applying the framework to imaging data acquired 

from 3 healthy subjects, including a comparison of model prediction with the observed data, 

analysis of mechanical parameters extracted from the model, and a sensitivity analysis of 

model parameters to the input data. Finally, in sections 4 and 5, we discuss the performance 

of the framework and draw conclusions about its applicability in clinical settings.
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2 | METHODS

2.1 | Data acquisition and preprocessing

Cine magnetic resonance (MR) images of 3 healthy subjects, referred here as CASE1, 

CASE2, and CASE3, were acquired at the National Heart Centre of Singapore and written 

informed consent was obtained from all participants. Three-dimensional biventricular 

geometries of each subject were manually segmented from the MR images at multiple 

cardiac time points using the medical image analysis software MeVisLab (http://

www.mevislab.de).

Cavity volumes of the left ventricle (LV) and right ventricle (RV) were computed from the 

segmented geometries at different time points in a cardiac cycle in each subject. Using a 

method described in the study of Xi et al,11 these volumes were paired with normal left and 

right ventricular pressure wave forms from previous studies33 to construct pressure- volume 

loops of the LV and RV. Based on a previous empirical study,34 LV pressure for each subject 

was also scaled so that the end-systolic pressure is 90% of the measured cuff pressure.

The observed regional circumferential and longitudinal Green-Lagrange strains in the LV 

free wall (LVFW), septum, and RV free wall (RVFW) were estimated from the MR images 

in each subject using a hyperelastic warping technique.35,36 The output of this preprocessing 

step is used to calculate the estimated regional strain-time data. Briefly, a biventricular finite 

element model reconstructed from the end-systolic (template) image was registered to all 

other cine (target) images acquired in the cardiac cycle by minimizing the squared difference 

between the target and template image intensities. This ill-posed correlation problem is 

regularized by also minimizing a prescribed (Neo-Hookean) strain energy function over the 

mesh. We note that other regularization approaches have also been proposed, such as 

regularization based on incompressibility37 or on equilibrium.38,39 Hyperelastic warping 

offers a good balance between regularization and strain estimation.35 The implementation of 

the image correlation procedure is based on FEniCS,40 and is freely available*.

Three-dimensional biventricular meshes of the 3 normal subjects were created using Gmsh41 

with the number of elements ranging from 4000 to 8000 tetrahedral elements. The chosen 

reference geometries were reconstructed from MR images in late diastole, and all meshes 

were uniformly refined in order to perform a convergence analysis.

Rule-based fibers were assigned using the Laplace Dirichlet Rule-Based (LDRB) algorithm.
42 Although previous histological studies43 suggest that myofiber helix angle varies 

transmurally from +60° at the endocardium to −60° at the epicardium, variability in fiber 

angle, nevertheless, exists between individuals. Therefore, we seek to also test how different 

fiber angle gradient alters the parameter estimation and the extracted outputs. More 

specifically, an angle +α/−α is prescribed on the endo- and epicardium for α ranging from 

30° to 80° at increments of 10°. If not otherwise specified, an angle of +60° and −60° on the 

endo- and epicardium, respectively, is prescribed. In Figure 1, we show this range of fiber 

fields for one of the subjects.

*https://bitbucket.org/mgenet/dolfin_dic
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2.2 | Mechanical modeling

We consider a configuration of a biventricular continuum body ℬ, which is a function κ: ℬ 
→ ℝ3, and denote the reference and current configurations by Ω0 = κ0(ℬ) and Ω = κ(ℬ), 

respectively. Letting X and x be the coordinates of a given material point in the reference 

and current configuration, respectively, we have the corresponding displacement field U=x–
X, and the deformation gradient

F = ∂U
∂X + I . (1)

Mechanics of the heart wall was described using an active strain formulation44 that assumes 

a multiplicative decomposition of the deformation gradient,

F = FeFa . (2)

Here, Fa is associated with an inelastic deformation resulting from the actively contracting 

muscle fibers, whereas Fe = FFa
−1 is associated with the elastic deformation that preserves 

compatibility in the tissue and passively carrying the mechanical load. We choose Fa to have 

the specific form

Fa = (1 − γ)f0 ⊗ f0 + 1
1 − γ

(I − f0 ⊗ f0), (3)

in which the parameter γ is associated with the relative active shortening along the muscle 

fibers. The same form of the active deformation gradient has previously been applied in 

other studies.28,45

We consider the transversely Holzapfel and Ogden hyperelastic material46 model that has 

the strain energy density function

Ψ(F) = a
2b e

b(I1 − 3)
− 1 +

a f
2b f

e
b f (I4f0

− 1)
+
2

− 1 , (4)

where the invariants are given by

I1 = tr C, I4f0
= f0 · (Cf0) . (5)
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Here C=FTF is the right Cauchy Green tensor, and f0 denotes the unit fiber vector field in 

the reference configuration. Within the active strain formulation, the strain energy depends 

only on elastic deformations, and so the modified strain energy function Ψ = Ψ̃ (Fe) was 

used instead.

For comparison, we also test the more frequently used active stress formulation.47 In this 

formulation, the total Cauchy stress tensor is additively decomposed into a passive and an 

active component, ie,

σ = σp + σa, (6)

where the passive stress tensor is given by

σp = 1
J

∂Ψ
∂F FT, (7)

and the active stress tensor is given by

σa = Ta [f ⊗ f + η(I − f ⊗ f)] . (8)

Here, Ta is the magnitude of the active stress and η controls the amount of transverse active 

stresses. Although active stresses, in principle, develop along the fiber direction, studies have 

shown48 that active stresses in the transverse direction are nonnegligible due to imperfect 

alignment of the muscle fibers. We therefore set η=0.2,49 and note that transverse active 

stresses are naturally embedded in the active strain formulation by requiring det Fa=1.

Myocardium was assumed to be incompressible. The incompressibility was enforced in the 

model using a 2-field variational approach, in which the term −p(J–1) was added to the total 

strain energy with p denoting a Lagrange multiplier that represents the hydrostatic pressure. 

The deviatoric and volumetric mechanical responses were also uncoupled by 

multiplicatively decomposing the deformation gradient,50

F = Fiso Fvol (9)

and letting the strain energy be a function of only isochoric deformations, ie, Ψ = Ψ̄ (Fiso).

Ventricular base was fixed in the longitudinal direction, and the biventricular geometry was 

anchored by constraining the epicardial surface using a Robin-type boundary condition with 

a linear spring11 of stiffness k=0.5 kPa/cm2. Measured cavity pressure in the LV (plv) and 

RV (prv) were applied as a Neumann condition at the endocardial surfaces. The Euler-
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Lagrange equations in the Lagrangian form reads: find (U, p)∈V×Q such that for all (δU, 

δp)∈V×Q and (U · N) ∣
∂Ω0

base = 0,

δΠ(U, p) = ∫
Ω0

[P: ∇δU − δp(J − 1) − pJF−T : ∇δU] dV + δΠext = 0, (10)

with

δΠext = ∫
∂Ω0

endo LV
plvJF−TN · δUdS + ∫

∂Ω0
endo RV

prvJF−TN · δUdS + ∫
∂Ω0

epi
kU · δUdS . (11)

Here V=H1(Ω0), completed with homogeneous Dirichlet boundary data, Q=L2(Ω0), N is the 

outward pointing unit normal and P is the first Piola-Kirchhoff stress tensor.

For an incompressible, hyperelastic, continuum body, the total Cauchy stress tensor is given 

by

σ = 1
J

∂Ψ(F)
∂F FT − pI . (12)

With the decoupling of the isochoric and volumetric deformation according to (9), the first 

term in (12) represents the deviatoric stresses and p is the hydrostatic pressure. Myofiber 

stress was computed by first a push forward of the fiber field to the current configuration, 

f=Ff0, and then an inner product with the stress tensor σf=f·σf. The average fiber stress in a 

given region Ωj was computed by integrating the fiber stress over that region and dividing by 

the volume, ie, σf
Ω j = ∣ Ω j ∣−1 ∫

Ω j
σfdV

2.3 | PDE-constrained optimization

The ventricular mechanics model outlined in section 2.2 contains model parameters that may 

vary from individual to individual. Calibration of these model (or control) parameters was 

achieved by solving a PDE-constrained optimization problem, where we minimized a cost 

functional representing the mismatch between the simulated and observed data, subject to 

the constraint of satisfying (10) to (11). The minimization problem can be formally stated as
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minimize
m

𝒥((U, p), m)

subject to δΠ(U, p) = 0.
(13)

Here,  is the objective functional that we want to minimize, which depends on the state 

variable (U, p) and the control parameter(s) m. The state variables may also depend on the 

control parameters (U, p)=(U(m), p(m)). To ease notation, this dependency is not explicitly 

stated here.

Minimization of the cost functional , should bring the simulated results closer to the 

clinical observations. Therefore,  should reflect a distance between the simulated results 

and the observed data. Given a measurement point i, let (Ui, pi) be the simulated state 

variables at that point, and let mi represents any generic model parameter that we want to 

estimate. The cost functional is then given by

𝒥((Ui, pi), mi) = α𝒥volume ((Ui, pi), mi) + β𝒥strain ((Ui, pi), mi) + λ𝒥reg (mi) . (14)

The first 2 terms represent the mismatch between simulated and observed strains and 

volumes, whereas reg is a regularization term that penalizes nonsmooth values of the 

control parameter mi for numerical stability. The weights α, β, and λ control what terms is 

favored in the optimization.

The cavity volume was given by

V∼ . = − 1
3 ∫

∂Ωo
endo

(X + U)JF−TNdS . (15)

This equation holds as long as the base remains flat and is located at the x=0 plane. We let 

volume be the sum of the squared relative volume error in each chamber

𝒥volume ((Ui, pi), mi) =
VLV

i − V∼LV
i

VLV
i

2

+
VRV

i − V∼RV
i

VRV
i

2

. (16)

Here, (ṼLV, ṼRV) and (VLV, VRV) are the simulated and measured cavity volumes, 

respectively.

Volumetric averaged strains were computed in each material region (ie, LVFW, RVFW, and 

septum) using end-diastole (ED) as reference. Letting FED be the deformation gradient 
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tensor associated with ED, the Green-Lagrange strain tensor with ED as reference was given 

by E∼ = 1
2 (FTFED

−TFFED
−1 − I). Averaged normal strain along the circumferential direction ecirc 

in material region Ωj was defined by

ε∼ j = 1
∣ Ω j ∣∫

Ω j

ecirc · E∼ecirc dV . (17)

Correspondingly, the strain mismatch functional was given by the total squared error 

between the simulated circumferential strain ε∼ j
i  and the measured circumferential strain ε j

i

over all material regions

𝒥strain ((Ui, pi), mi) = ∑
j = 1

N
ε j

i − ε∼ j
i 2 . (18)

Finally, the regularization term was defined as the total squared distance from the mean 

value, that is, if mi=(m1,···, mN), then

𝒥reg (mi) = ∑
j = 1

N
(m j

i − mi)2, mi = 1
N ∑

j = 1

N
m j

i . (19)

As noted above, the purpose of this term is to avoid numerical instabilities by penalizing 

large variations in the control parameters.

The functional gradient

d𝒥
dm = ∂𝒥

∂m + d𝒥
dw

∂w
∂m , w = (U, p) (20)

points in the direction of steepest descent and is required in gradient-based optimization 

methods. While the terms ∂𝒥
∂m  and d𝒥

dw  are typically straightforward to compute, the term ∂w
∂m

cannot be computed easily, since the state variable w can only be determined by solving the 

force-balance Equation 10. Specifically, estimating this term with N control parameters 

using a finite difference approach will require one to solve the (typically computational 

expensive) force-balance equation N + 1 times, becoming impractical when N is large. 

Instead, it is possible to transform the system of equations into its adjoint system, where the 

gradient is given by
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d𝒥
dm = ∂𝒥

∂m − z∗∂(δΠ)
∂m , (21)

with (·)*. referring to the adjoint (or Hermitian transpose) and z is the solution of

∂(δΠ)
∂w

∗
z = ∂𝒥

∂w
∗

. (22)

We can therefore solve the adjoint Equation 22 first, and then compute the functional 

gradient by plugging the solution z into (21). Hence, computing the functional gradient 

using the adjoint approach requires only 1 additional solve of a linearized system that is 

independent of the number of control parameters.

2.4 | Parameter estimation

The pipeline for fitting the model to patient data was divided into 2 sequential phases: a 

passive phase where we estimated the material parameters that define the passive behavior of 

the myocardium, and an active phase where we estimated the amount of active contraction. 

In both cases, the control parameters were spatially resolved. During the passive phase, the 

control parameter was allowed to vary spatially on the LV (LVFW + septum) and RV 

segments, while in the active phase the LV was separated into LV free wall and septal 

segments, which provided additional degrees of freedom to allow for nonhomogeneous LV 

contraction.

Geometries used in the simulation were reconstructed from medical images. These 

geometries are, in principle, not load free. Hence, we need to estimate the unloaded (zero 

pressure) geometries, which will revert back to the original reconstructed geometries when 

loaded with the measured pressure. Several methods exists for estimating the unloaded 

geometry.51,52 Among the most simplest ones is the backward displacement method53,54 that 

can also be used to incorporate residual stresses into the finite element models by simulating 

tissue growth.55 Nevertheless, this inverse problem (of finding the unloaded geometry) has 

been shown to produce nonunique solutions, especially when buckling is present,52 although 

relaxation techniques can be used to improve convergence and stability.56 For the case of a 

biventricular geometry, buckling may occur due to the thin RVFW and a high RV pressure. 

For this reason, we choose a simpler approach to estimate the unloaded configuration. As 

shown in the left of Figure 2, we start by applying 1 iteration of the backward displacement 

method with initial values prescribed for the material parameters followed by the material 

parameter estimation as outlined below. This will result in a deflated geometry as shown in 

the right of Figure 2. A sensitivity analysis (A) was conducted to assess how the choice of 

the initial material parameter values affects our results.

Four material parameters, ie, a, af, b, and bf (4) have to be estimated in the passive phase. 

Due to the sparsity of passive data used for the optimization, if we let all these parameters 

vary freely, we may end up in a situation where multiple parameter sets will equally 
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minimize the cost functional, and the optimal control will depend heavily on the initial guess 

of the optimization. We therefore restricted our control parameter to be only the linear 

isotropic parameter with an initial guess a=1.291 kPa and have the remaining parameters 

fixed according to Asner et al21 (Table 2, case 2). The weights were set α=1.0, β=0.0, and 

λ=10−6 in (14) so that only ED volumes were used for fitting. Since fitting the left and right 

ventricular, end-diastolic volumes might require different material properties of the left and 

right ventricular wall, the parameter a was spatially resolved with 1 parameter associated 

with the LV (LVFW + septum) and 1 parameter associated with the RVFW.

In the active phase, the optimized passive material parameters were fixed and the relative 

active fiber shortening γ in (3) was chosen as control parameter. For this phase, the weights 

in (14) were set to α=0.1, β=1.0, and λ=10−4, so that both strain and volume are considered 

in the optimization. This choice of weighting was made ad hoc, reflecting the relative size of 

the different terms in the cost functional. It should also be noted that the volume functional 

in (16) is a relative error while the strain functional in (18) represents a total error. The cost 

function parameter values were taken from Balaban et al,28 where they were chosen based 

on an L-curve type analysis.

For each time point, we estimated γ locally in the LVFW, RVFW, and septum. The initial 

guesses for the optimization were set to 0 in the first iteration. In subsequent iterations, the 

initial guesses were set to the optimized values found in the previous iteration. Note that in 

the case when active stress formulation was used instead, the parameter Ta in 8 was used as 

the control parameter and estimated in a similar fashion. A schematic illustration of the full 

optimization pipeline is provided to the left in Figure 2.

The control parameter in the active phase represents an index of contractility,9 meaning that 

the higher the value of the control parameter, the more forcefully the myocardium is trying 

to contract against the external loads. To separate between the LV and RV contractility, we 

extracted the average value of this control parameter in these 2 segments. Another index of 

contractility is the end systolic elastance, 57 which we have also estimated in the LV and RV 

by perturbing the loading conditions at the end-systolic state and estimate the slope of the 

resulting pressure-volume relationship. 9

2.5 | Implementation details

The force-balance equations of this incompressible nonlinear elasticity problem were solved 

using the finite element method with Lagrange elements. More specifically, the displacement 

and hydrostatic pressure fields were interpolated using piecewise quadratic and linear 

Lagrange basis functions, respectively. These mixed elements, known as the Taylor-Hood 

finite elements,58 are known to satisfy the discrete inf-sup condition59 and leads to a stable 

discretization. The solver was implemented in FEniCS,60 which is an open-source platform 

for solving PDEs using the finite element method. Nonlinear systems of equations were 

solved using Newton’s method, and a distributed memory parallel LU solver61 was used to 

solve the linear systems.

To solve the optimization problem (13), we applied a sequential quadratic programming 

algorithm.62 This gradient-based optimization algorithm requires the functional gradient 
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(20). This gradient was computed by solving an automatically derived adjoint equation using 

dolfin-adjoint.32 The full source code is publicly available†.

3 | RESULTS

In this section, we present the results from the model personalization process. Results of the 

data matching are presented in Section 3.1, together with a validation of the model and 

analysis of the solver performance. To validate the model, we compare the simulated and 

measured longitudinal strain that was not used in the optimization. In Section 3.2, we 

present the results of the extracted mechanical features such as indices of contractility and 

fiber stress. We also investigated the efficiency of the algorithm and the effect of mesh 

refinement and found that the chosen refinement level was sufficient to yield convergent 

solutions.

3.1 | Data assimilation, validation, and solver performance

The simulated and measured pressure-volume (PV) loops of the RV and LV, as well as 

circumferential strain in the LV, septum and RV are shown in Figure 3. We found that the fit 

of the data was highly dependent on the choice of fiber angles, which affects both volume 

change and circumferential shortening. Plotting the average value of the volume cost 

functional (as defined in (16)) for each choice of fiber angles (see the upper right panel in 

Figure 3) revealed that the optimal value of α lies in the range 70° to 80° for all 3 cases.

Although available, we chose not to use longitudinal strain data in the optimization. 

Therefore, the comparison of model-predicted longitudinal strain with the measurements 

serves as a validation of the model-personalization process. The simulated and measured LV 

longitudinal strain curves are shown in Figure 4. We note that the fit in all regions was again 

highly sensitive to the choice of fiber angle. Choosing α=70° produced the best fit for the 

LV longitudinal strain for CASE1 and CASE3, while an angle 60° gave the best fit for 

CASE2. The septal and RV longitudinal strain was best fitted with α=80°.

We further evaluated the solver performance in the optimization process. In this work, all 

computations were performed on a computing cluster using 1 node with 8 cores. In Table 1, 

we present timings for evaluation of the forward model (ie, evaluation of the cost functional) 

and timings for evaluation of the gradient, as well as the average number of such evaluations 

and the standard deviations. These timings are shown for optimizations using the original 

and refined meshes with a fiber angle of 60°.

3.2 | Mechanical analysis

3.2.1 | Cardiac contraction—The estimated active strain parameter γ in (3), which 

served as the control parameter during the optimization in the active phase, is plotted for 

various fiber angles to the left in Figure 5. This parameter varies regionally in the LVFW, 

septum, and RVFW, but is shown here as an average in the LV containing LVFW + septum 

(top) and RV containing only RVFW (bottom). As shown in the figure, time variation and 

magnitude of γ were similar in the 3 cases and insensitive to the prescribed fiber angles.

†https://bitbucket.org/finsberg/pulse_adjoint
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Time traces of the active strain parameter γ found in the LV and RV are plotted together for 

the 60°-fiber angle case in the left of Figure 6 in order to better compare their differences. A 

similar plot of the active stress parameter Ta in logarithmic scale is also shown in the same 

figure. As shown in the figure, the time-variations of Ta and γ, which are indices of cardiac 

contractility, were largely similar between the LV and RV with peak values located 

approximately at end-systole. Peak values found in the RV were, however, lower than those 

found in the LV. These findings were consistent across all the 3 cases. A similar plot in 

Figure 7 shows that the active strain γ is insensitive to the mesh resolutions listed in Table 1.

3.2.2 | Fiber stress—Time traces of the average Cauchy fiber stress are shown on the 

right of Figure 5 for different fiber angle variations. Only very small variations in the 

average fiber stress were found with respect to the choice of fiber angle in the optimization 

process. Snap shots of the fiber stress distribution at ED and ES are plotted in Figure 8 for 

the 60°-fiber angle case. Regional variation of fiber stress was largely consistent between the 

3 cases with pockets of high and low stresses found, respectively, at the apex-epicardial and 

endocardial regions at ES.

In Figure 6, we compare the average fiber stress time variation found using the 2 different 

active contraction formulations, either active strain or active stress. As shown in the figure, 

fiber stress in the RV computed using active stress and active strain formulations behaved 

similarly with time. Similar regional variation was also found where both formulations 

predicted higher fiber stress in the LV than in the RV. Peak fiber stress predicted in the LV, 

however, was different in the 2 formulations with higher stress occurring at isovolumic 

relaxation in the active stress formulation.

The specific average value of the end-diastolic and end-systolic fiber stress for the case of a 

60°-fiber angle are displayed in Table 2, showing small variability between patients, despite 

differences in individual PV loops.

3.2.3 | Ventricular elastance—Table 3 shows the estimates of ES elastance in the LV 

and RV that were computed using the active strain formulation. The table shows the average 

± 1 standard deviation of the ES elastance over various fiber angles. Elastance was 

consistently found to be approximately 10 times larger in the LV than in the RV and was 

largely insensitive to the prescribed fiber angle as indicated by the small standard deviation.

4 | DISCUSSION

In this study, we have presented a novel and highly-efficient method for noninvasive 

personalization of an image-based biventricular mechanics model based on regional 

measurements of circumferential strain, as well as global measurements of volumes and 

pressures in the LV and RV. A gradient based optimization method was used to minimize the 

model-data mismatch by solving a PDE-constrained optimization problem for each 

measurement point in order to calibrate model parameters. Passive material parameters and 

an unloaded (zero-pressure) geometry were estimated using the biventricular geometry that 

was reconstructed from MR images acquired at late diastole. Time variation of an active 

contraction parameter was estimated throughout the cardiac cycle starting from ED.
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This framework was applied using measurements from 3 normal subjects to extract 

estimates of regional fiber stress as well as indices of myocardial contractility. Sensitivity 

analysis of the model outputs with respect to the choice of fiber angle distribution, mesh 

resolution, and active formulation were also conducted. The described framework is 

effective and efficient in capturing cardiac mechanical behavior throughout the cardiac cycle 

and gave low patient-to-patient variability in the extracted mechanical features. As such, it 

has potential clinical utility in the quantification of contractile function and myocardial 

stress in vivo and the potential differentiation of pathological states.

4.1 | Data compatibility and multiobjective optimization

The objective functional in problem (13) consists of a weighted sum of different objective 

functionals. Such problems are referred to as multiobjective optimization problems.63 While 

it is possible to perfectly match the strain or volume data individually with the chosen 

control parameters (data not shown), there is expected to be a trade-off when fitting both the 

volume and strain data in a combined objective functional. In such cases, a single, unique 

optimum does not always exist, but rather a family of so-called Pareto optimal solutions can 

be found.63 The particular solution found will depend on the chosen weights of each 

objective.

In a previous study,28 the weights in the total functional given in (14) were determined by 

performing an exhaustive search, by testing several combinations of weights of the strain 

and volume functionals, and by choosing the corner point of strain versus volume error 

curve. However, the weights will depend on the data source, and in our case, choosing the 

weights proposed in other studies28 resulted in an excellent fit of the volume, while a 

relatively poor fit of the strain, and hence, a higher weight was chosen for the strain. 

Nevertheless, neither was captured exactly, and which data source is more important for 

model utility remains to be determined. In addition, other general methods for solving 

multiobjective optimization problems 63 may be superior to the weighted sum method used 

here and will be considered in future studies.

4.2 | Effect of mesh resolution

As shown in Table 1, the total run time is substantially larger for a refined mesh (35 000–60 

000 elements) compared with a coarser mesh (4000–8000 elements). Since computing time 

is an important factor that may limit the application of computational models in the clinic, 

we have investigated the accuracy of our predictions from the coarse meshes. Our results 

show that the accuracy of the extracted features related to cardiac contraction and fiber stress 

are not very sensitive to mesh resolution beyond the coarsest levels of approximately 4000 

elements. As seen in Figure 7, the fiber stress and active strain traces obtained on the coarse 

and fine meshes are very similar, indicating that the coarsest meshes give sufficient accuracy 

for the extracted mechanical features.

4.3 | Fiber angle sensitivity

In this work, we applied a rule-based algorithm42 to assign myocardial fiber orientations to 

the biventricular geometries and investigated the sensitivity of the data matching and the 

extracted mechanical features to the choice of fiber field. Different fiber fields, in which the 

Finsberg et al. Page 14

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fiber angle varies linearly across the myocardium wall from α at the endocardium to −α at 

the epicardium were tested, for the range 30°≤α≤80°. Our results show that α has to be in 

the upper part of the range, ie, 70° to 80°, in order to fit the PV loop and circumferential 

strain measurements simultaneously. The validation study (Section 3.1), where we compared 

our model results with the longitudinal strain, confirms this finding.

This highlights a major challenge in building accurate mechanics models of the 

myocardium. The choice of fiber field is very important, as it controls the amount of 

longitudinal and radial shortening during contraction. Unless the correct fiber field is used, 

strain measurements cannot be reproduced simultaneously in the model with the measured 

pressure volume relationships. Accurate measurements of the underlying ventricular 

microstructure are lacking, however, and therefore, rule-based methods42 are often the only 

alternative to prescribe muscle fiber field in subject-specific modeling of cardiac mechanics. 

Our fundamental knowledge of the myocardial architecture is based largely on early 

histological studies,43 which found that the muscle fiber orientation varies linearly across the 

myocardial wall with an angle α=60° at the endocardium α=−60° at the epicardium. This 

fiber field is often prescribed in ventricular models without questioning. On the other hand, 

diffusion tensor MRI (DT-MRI) is now becoming an important tool to measure fiber 

orientations and could potentially do so in vivo.64

More recent histological studies65 on the canine left ventricle have shown that the muscle 

fibers are more longitudinally oriented at the subendocardium and subepicardium than those 

obtained using DT-MRI, and such fiber orientation can better reproduce the longitudinal 

motions observed in the experiments.66 Our results support this finding.

A few hypotheses on the basis of cardiac muscle fiber orientation in the ventricles have been 

put forward. For example, it has been hypothesized that myocardial fiber orientations adapts 

to achieve a minimal fiber-cross fiber shear strain during the cardiac cycle.67 While our 

results showed that the active strain parameter γ varied a little with respect to the different 

fiber angle α prescribed in the model, they also show that the peak active strain γ is lowest 

when α lies between 60° and 70° in all 3 cases. This finding suggests that the tight range of 

α found here is optimal in the sense that the active shortening necessary to produce the same 

stroke volume is at its minimum.

4.4 | Fiber stress

As there is no direct way to measure myocardial fiber stresses, we have compared our results 

with other patient specific modeling studies. The range of reported values for humans are 

broad and are mostly confined to the LV. For example,10 reported fiber stress computed at 

ED (2.21±0.58 kPa) and ES (16.64±4.73 kPa) in normal humans, whereas Scardulla et al68 

conducted a stress analysis on healthy bi-ventricles and found that wall stress at ES was 

65.7±12.3 kPa in the LV and 23.6±14.2 kPa in the RV.

Our estimated average fiber stresses (Table 2) are well within the range of values reported in 

these studies. Fiber stress distributions at ED and ES (Figure 8) are also consistent in the 3 

subjects investigated here. Furthermore, our results also show small variations in fiber stress 

with respect to the choice of fiber field. Fiber stresses obtained from active strain and stress 
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formulations are also comparable during late diastole and early systole. A large difference in 

the fiber stress between these 2 formulations, however, can be found at late systole and 

during the isovolumic relaxation when the ventricles are in their most compressed state. In 

particular, the active stress formulation produces elevated stresses during this time interval. 

The same phenomenon was observed in a sensitivity analysis (A) on the initial passive 

material parameter a used to find the unloaded geometry. We found that the elevated stresses 

are always accompanied by very high hydrostatic pressure p, suggesting that the 

enforcement of incompressibility, which does not hold in vivo because of blood perfusion in 

the myocardial wall, is causing this artifact. Future studies are needed to examine the effect 

of compressibility to our results.

4.5 | Contractility

Higher value of the active strain parameter γ or the active stress parameter Ta indicates that 

the myocardium is contracting more forcefully, and our results also suggest that the LV 

generates a higher contractile force per myocardial volume than the does RV. One of the 

underlying mechanisms that modulate the contractile forces is calcium dynamics, 44,47 and 

while Ta and γ cannot be directly compared with the calcium concentration because of the 

difference in units, their time traces have similar shapes when compared with the calcium 

transient. This finding is independent of the prescribed fiber field and the initially assigned 

passive material parameter a, as shown in. Further investigation of these estimates is needed, 

but we hypothesize that these measurements may provide useful biomarkers. Due to the 

observed consistent results in normal patients, even for wide-ranging PV loops, these 

estimates of contractility could therefore potentially serve as important diagnostic estimates 

in cases where disease alters myocardial contractility.

4.6 | Elastance

End-systolic elastance is widely recognized as an important determinant of systolic function.
57 However, its use in clinical practice is limited due to the need for invasive measurements 

of pressure and volume in response to varying loading conditions.

In the present work, we have simulated a change in loading condition by perturbing only the 

ES pressure (keeping all other quantities fixed) and computing the ES elastance from the 

slope of the resulting pressure-volume relationship. This approach has previously been 

applied to obtain LV ES elastance,9 but has not been applied to find RV ES elastance in 

biventricular geometries.

The resulting LV ES elastances range from approximately 1.0 to 2.0 kPa/mL. These values 

are higher than previous measurements in healthy human hearts, which range from 0.26 to 

0.4 kPa/mL. 69

There are few reported values of normal human RV elastance. However, 70 reported values 

of the maximal RV elastance in the range of 0.32 to 1.23 mmHg/mL/m2 in normal humans. 

Using a body surface area of 2 m2(typical in humans), this range translates to 0.08 to 0.32 

kPa/mL. Our estimated value of approximately 0.2 kPa/mL is well within this range. It 

should be noted here that our estimated values of ES elastance do not take into account any 

physiological responses of the tissue, such as a change in active tension in response to an 
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increased load. As such, these values represent only a local estimate of the elastance, since 

all other quantities were held fixed during the perturbation of the pressure. Because of these 

limitations, our elastance estimate will make most sense in the active strain formulation as a 

force-length dependence is implicitly included in this formulation. No such relation is, 

however, included in the simple active stress model here. Correspondingly, the active stress 

does not change as the load is perturbed, which may lead to an underestimation of the 

elastance.

4.7 | Limitations and future directions

In this work, we clearly see a variability of model-data fit with respect to choice of the fiber 

angle, suggesting that the fiber field can be calibrated to better fit the data. Here, we have 

only prescribed a linear transmural fiber angle variation that has opposite signs at the endo- 

and epicardium in both LV and RV. Dissection studies, however, generally found that the 

fibers are more circumferentially oriented at the subepicardium and more longitudinally 

orientated at the subendocardium in the RV.71 This suggests that one should also consider 

nonsymmetric fiber fields across the wall as well as different fiber field in the LV and RV. 

We seek to investigate these issues in future studies, possibly together with in vivo measures 

of fiber angles.

As noted above, the constants that balance the terms of the cost functional (14) were 

adjusted based on a previous study28 of a single LV, where an L-curve type analysis was 

performed to estimate an optimal set of weights. Since the present study also considers the 

RV and the current cost functional form differs from the LV case, it is likely that these 

differences may affect the optimal choice of weight parameters. Hence, although the chosen 

parameter values gave good results for our applications here, there may exist even better 

choices.

While we were able to obtain stress measures across a small cohort of healthy subjects that 

were both internally consistent as well as in broad agreement with other published studies, 

the effect of our modelling assumptions remains to be determined. Here we used an 

incompressible model of the myocardium, even though it is well known that the 

myocardium is compressible due to perfusion of blood. Future studies should investigate the 

role of compressibility and, in particular, how fiber stress is altered when the material is 

allowed to compress. We clearly see stress effects related to the hydrostatic term in our 

model, and this will be investigated more closely in future studies.

Residual stresses are hypothesized to be important in stress estimation in soft biological 

tissue,72 and can be incorporated into the finite element model.55,73 Because it has been 

shown in a previous study that residual stresses have little effects on ventricular function,74 

they were not considered in the present study. Nevertheless, the effect of including residual 

stresses in the estimation of fiber stress and contractility remains to be investigated in future 

studies.

The late diastolic pressure-volume curve is fitted by estimating 1 material parameter, while 

fixing the remaining parameters to previously reported values.21 This is a limitation in our 

study, and future studies will be geared towards reducing the need for fixing these model 
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parameters by incorporating more clinical data or by revising the constitutive model. In 

particular, the incorporation of diastolic strains may be useful in more clearly defining 

material properties.

The simple estimation of unloaded configuration using only 1 iteration of the backward 

displacement method can be used with different initial material parameters and still 

recapitulate the end-diastolic volumes with different optimized material parameters. Several 

studies have jointly estimated the unloaded left ventricular geometry and material 

parameters, 9,21,75 but estimation of the unloaded configuration with biventricular 

geometries is not a well-posed problem, since buckling of the RVFW might occur. More 

work on formulating well-posed algorithms for determining the unloaded configuration 

should be considered in future studies.

Finally, in this study, we only considered 3 normal subjects, and in the future, we would like 

to apply this framework to more individuals and use it to study larger cohorts as well as 

patients with cardiac pathology.

5 | CONCLUSION

Patient-specific simulations can now be assembled via adjoint-based data assimilation 

techniques, using no more than a few hours on a regular laptop. From these simulations, we 

are able to extract information about myocardial contractility and fiber stress that shows low 

variability in the modeling choices that we make. Validation of these models should be the 

main objective in the years to come in order to translate cardiac computational modeling into 

clinical utility.
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APPENDIX A

SENSITIVITY TO UNLOADED CONFIGURATION

The choice of initial material parameter a in the unloading algorithm will influence the 

estimated unloaded configuration. A softer material will result in a lower unloaded volume; 

hence, the optimized material parameter will be softer to compensate for the greater volume 

increase from the reference to the end diastolic state. In the results presented in this study, 

the value a=1.291 kPa was chosen based on a parameter set used in other studies.21

To analyze the sensitivity of the results to the choice of material parameters used to unload 

the geometry, we unloaded the geometries using 4 different material parameters, ie, a = 0.5, 

1.0, 2.0 and 4.0 kPa, and evaluated the corresponding model outputs. The resulting 

optimized material parameters, unloaded cavity volumes, and value of the mismatch 

functional during the passive phase are shown in Table A1.

For a more visual presentation, the LV and RV filling curves are presented to the left in 

Figure A1 for the different choices of unloaded configuration. From these results, it is clear 

that even though the different choices results in very different unloaded geometries and 

passive material parameters, the mismatches between simulated and measured volumes are 

very small in all cases, except for a=0.5, which hit the lower bound (of 0.05 kPa) set in the 

optimization.
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TABLE A1

Optimized material parameters in kPa for different choice of unloaded configuration

Patient ID Initial a aLV aRV data (passive)
V0

LV V0
RV

CASE1 0.5 0.05 0.321 0.000551 36.2 53.8

CASE1 1 0.165 0.699 7.13e-08 40.4 56.6

CASE1 2 0.64 1.49 1.81e-07 45.9 60.5

CASE1 4 1.92 2.91 2.46e-07 52.8 65.4

CASE2 0.5 0.05 0.29 0.000447 34.5 46.9

CASE2 1 0.168 0.736 8.06e-08 38.9 50.7

CASE2 2 0.642 1.79 3.27e-07 44.9 56.1

CASE2 4 2.03 4.01 9.79e-07 52.8 63.3

CASE3 0.5 0.05 1.03 0.00417 40.3 49.4

CASE3 1 0.0895 1.9 8.24e-07 44.8 52.8

CASE3 2 0.48 3.71 2.61e-06 50.8 57.5

CASE3 4 1.86 7.03 6.69e-06 59 63.5

Fiber stress and active strain are fairly consistent despite different unloaded geometries and 

material parameters (Figure A1). However, elevated fiber stresses can be seen during late 

systole for higher initial values of a. Furthermore, the magnitude of the active strain is 

increased in response to stiffening of the material.

FIGURE A1. 
To the left, we show the passive-filling curves with volume in mL on the x–axis and pressure 

in kPa on the y–axis with different unloaded volume resulting from different material 

parameters used to estimate the unloaded geometries. Middle and right panels show average 

time traces of estimated active strain and Cauchy fiber stress, respectively, for different 

choices of unloaded configuration. Top row shows the results in the left ventricle (LV) while 
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bottom row shows the results in the right ventricle (RV). Here, the values a=0.5, 1.0, 2.0 and 

4.0 kPa are used to unload the ventricles. ED, end-diastole; ES, end-systole
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FIGURE 1. 
Left: finite element mesh of a biventricular geometry reconstructed from MR images 

separated into 3 material regions, namely, left ventricle free wall (blue), septum (green), and 

right ventricle free wall (right). Right: myocardial fiber orientation are assigned using the 

LDRB algorithm42 with an angle +α and −α prescribed on the endocardium and 

epicardium, respectively. Here showing the fiber architecture for α ranging from 30° to 80° 

with increments of 10°, where the absolute value of the fiber angle is used as color map
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FIGURE 2. 
To the left, we see the model-personalization pipeline. The image-based geometry 

corresponds to some image frame taken at mid-diastole. An estimate of the unloaded 

geometry was found by applying 1 iteration of the backward displacement method using 

a=1.291 kPa according to Asner et al,21 followed by an estimation of a by minimizing the fit 

of the end-diastolic volumes (EDV). During systole, both cavity volumes and 

circumferential strain were used in the optimization to determine the amount of active 

contraction in terms of the active control, which are, respectively, γ and Ta in the active 

strain and active stress formulation. To the right, we show a comparison of the unloaded 

geometry for CASE 3. The upper figure shows the resulting unloaded, zero pressure 

geometry in red and the the original image-based geometry in transparent, while the bottom 

figure shows the unloaded geometry, inflated to the target pressure in the image-based 

geometry, and the original image-based geometry in transparent for comparison
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FIGURE 3. 
Results of the gradient-based minimization of model-data mismatch for different choice of 

fiber angles. Left: simulated (color lines) and measured (black circles) pressure volume (PV) 

loops in the left ventricle (LV, top row) and right ventricle (RV, bottom row). Center: 

simulated (color lines) and measured (black circles) circumferential strain in the left 

ventricle (top row), right ventricle (middle row), and septum (bottom row). Right: average 

values of cost functional for the volume (top row) and strain (bottom row), for each choice 

of fiber angle
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FIGURE 4. 
Validation of the model-personalization process using simulated and measured longitudinal 

strain that was not used in the optimization. Upper, middle, and lower panel show the 

longitudinal strain curves for different choice of fiber angles in the left ventricle (LV), right 

ventricle (RV), and septum, respectively. ED, end-diastole; ES, end-systole
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FIGURE 5. 
To the left, average traces of the active strain parameter γ in (3) in the left ventricle (LV, top) 

and right ventricle (RV, bottom) for different choice of fiber angle. To the right, average 

traces of Cauchy fiber stress in the LV (top) and RV (bottom) for different choice of fiber 

angle. The fiber angles were defined symmetrically across the wall with a negative angle on 

the epicardium and a positive angle on the endocardium ranging from 30° to 80° with 

increments of 10°. On the x–axis, we plot the normalized time with respect to end-diastole 

(ED) and end-systole (ES). Horizontal dotted lines indicate timings of opening of the aortic 

and mitral valve
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FIGURE 6. 
Comparison of fiber stress and cardiac contraction using the active strain and active stress 

approach using 60° fiber angle. To the left, average traces of the active stress (top) parameter 

Ta in (8), and the active strain (bottom) parameter in 3. The active stress parameter, with unit 

kPa, is plotted on a logarithmic scale for easier comparison with the active strain parameter. 

To the right, estimated Cauchy fiber stress using the active stress (top) and active strain 

formulation (bottom). On the x–axis, we plot the normalized time with respect to end-

diastole (ED) and end-systole (ES). Horizontal dotted lines indicate timings of opening and 

closing of the aortic valve. LV, left ventricle; RV, right ventricle
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FIGURE 7. 
Results obtained using different mesh resolutions as listed in Table 1. To the left and right, 

respectively, the active strain and fiber stress traces, in the left ventricle (LV, top) and right 

ventricle (RV, bottom) estimated using the coarse and refined geometry. ED, end-diastole; 

ES, end-systole

Finsberg et al. Page 31

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 8. 
Snap shots of the end-diastolic and end-systolic configuration and the estimated fiber 

stresses shown as colormap. ED, end-diastole; ES, end-systole
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TABLE 2

Average LV and RV fiber stress and end-diastole and end-systole

Patient ID LV (ED) RV (ED) LV (ES) RV (ES)

CASE1 5.76 4.87 48.3 19.2

CASE2 4.04 3.57 54.4 22.7

CASE3 9.94 8.34 40.3 18.2

Average ± std 6.58 ± 2.48 5.59 ± 2.01 47.65 ± 5.74 20.03 ± 1.91

Abbreviations: ED, end-diastole; ES, end-systole; LV, left ventricle; RV, right ventricle.
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TABLE 3

LV and RV end-systolic elastances estimated by perturbation of model at the end-systolic state.

Patient ID LV, kPa/mL RV, kPa/mL

CASE1 1.96 ± 0.06 0.23 ± 0.02

CASE2 1.94 ± 0.14 0.18 ± 0.01

CASE3 1.52 ± 0.07 0.21 ± 0.01

Average values and standard deviation with respect to varying fiber angle are shown.
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