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Abstract

Purpose—Locally-advanced non-small cell lung cancer (NSCLC) patients may experience 

dramatic changes in anatomy during radiotherapy and could benefit from adaptive radiotherapy 

(ART). Deformable image registration (DIR) is necessary to accurately accumulate dose during 

plan adaptation, but current algorithms perform poorly in the presence of large geometric changes, 

namely atelectasis resolution. The goal of this work is to develop a DIR framework, named 

Consistent Anatomy in Lung Parametric imagE Registration (CALIPER), to handle large 

geometric changes in the thorax.

Methods—Registrations were performed on pairs of baseline and mid-treatment CT datasets of 

NSCLC patients presenting with atelectasis at the start of treatment. Pairs were classified based on 

atelectasis volume change as either full, partial, or no resolution. The evaluated registration 

algorithms consisted of several combinations of a hybrid intensity- and feature-based similarity 

cost function to investigate the ability to simultaneously match healthy lung parenchyma and 

adjacent atelectasis. These components of the cost function included a mass-preserving intensity 

cost in the lung parenchyma, use of filters to enhance vascular structures in the lung parenchyma, 

manually-delineated lung lobes as labels, and several intensity cost functions to model atelectasis 

change. Registration error was quantified with landmark-based target registration error and post-

registration alignment of atelectatic lobes.
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Results—The registrations using both lobe labels and vasculature enhancement in addition to 

intensity of the CT images were found to have the highest accuracy. Of these registrations, the 

mean (SD) of mean landmark error across patients was 2.50 (1.16) mm, 2.80 (0.70) mm, and 2.04 

(0.13) mm for no change, partial resolution, and full atelectasis resolution, respectively. The mean 

(SD) atelectatic lobe Dice similarity coefficient was 0.91 (0.08), 0.90 (0.08), and 0.89 (0.04), 

respectively, for the same groups. Registration accuracy was comparable to healthy lung 

registrations of current state-of-the-art algorithms reported in literature.

Conclusions—The CALIPER algorithm developed in this work achieves accurate image 

registration for challenging cases involving large geometric and topological changes in NSCLC 

patients, a requirement for enabling ART in this patient group.

Introduction

High precision radiotherapy requires accurate knowledge of the target and surrounding 

normal tissues’ location and dose. The most commonly seen day-to-day change in patient 

anatomy during locally-advanced non-small cell lung cancer (NSCLC) treatment is tumor 

regression. Substantial regression of the visible tumor, sometimes greater than 80% of the 

total volume and ranging from 0.6% to 2.4% shrinkage per day, has been observed in 

patients treated with radiotherapy just a few weeks after the start of treatment1–4. Additional 

studies have similarly reported average tumor volume reductions of 24.7% halfway through 

treatment and 44.3% by the end of treatment5, 6.

For centrally located NSCLC tumors, atelectasis is a common co-pathology which often 

induces large positional changes6. As the tumor grows, the central airways can become 

obstructed, inducing a collapse of the dependent portion of the lung. In CT images, this 

pathology appears as a consolidation of affected low density lung tissue into a smaller region 

of frequently uniform, soft tissue intensity. Often, the tumor is located within or adjacent to 

the collapsed lung at the time of treatment planning and is indistinguishable from the 

atelectatic lung, making it difficult for the physician to accurately draw the tumor boundaries 

without additional information6. If the tumor regresses in response to the radiation, the 

airways may open again and fully or partially re-aerate the atelectatic lung. This causes 

substantial change to the treatment anatomy and possible positional shifts in the tumor4. 

Resolution of the non-tumor pathology may reveal errors in original tumor delineations (e.g. 

over- or under-estimation of tumor extent). Atelectasis appearance/resolution in conjunction 

with tumor regression is a prime indication for adaptive radiotherapy (ART)5, 7, 8.

Image registration can potentially provide the required level of precision to support highly 

accurate assessment of delivered dose9, but existing registration algorithms are not designed 

to deal with the magnitude of day-to-day anatomical changes observed in some locally-

advanced NSCLC patients. Registration in these situations is a challenging and largely 

unresolved problem due to the presence of tumor regression and atelectasis along with other 

conditions such as pneumonia and pleural effusion10. In many cases itis unclear whether 

observed shrinkage is of both the tumor and subclinical disease or is only a decrease in 

image intensity caused by the reduction in tumor density. Therefore, it is important to 

accurately track adjacent healthy tissue as clinically-significant changes occur, rather than 
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just the gross tumor surface, in order to appropriately accumulate dose throughout 

treatment11. When pneumonia or pleural effusion either appears or resolves during the 

course of treatment, a fundamental assumption of current registration algorithms is violated, 

namely, that one-to-one correspondence exists between the two images being registered such 

as the planning and weekly images. While atelectasis does not cause new anatomy to appear, 

the tissue becomes so greatly changed in appearance that the anatomical correspondence can 

no longer be recognized by common algorithms. These dramatic topological changes of 

mass and density, up to 24% and 66% of baseline mass and density, respectively, have been 

shown to induce clinically-significant changes in target and OAR doses when the original 

treatment plan is unaltered12. Thus, the conditions which contribute to registration failure are 

the same which necessitate ART.

Under favorable conditions, i.e. when no large geometric changes occur and the tumor is 

located in the lung parenchyma away from the mediastinum, current DIR algorithms used 

during plan adaptation produce average landmark errors in the range of 1-5 mm in lung 

tissue13. When tumor regression, atelectasis resolution, and other non-tumor pathologies 

such as pleural effusion and inflammation which commonly accompany the former are 

present, registration accuracy has not been measured directly, but anecdotally has been 

found to be “challenging at best”3. With centrally located tumors, atelectasis resolution, or 

regression of an invasive tumor which does not displace adjacent normal tissue, feature-

based algorithms that depend on contours tend to fail14, 15. Algorithms currently used 

perform poorly since they were not designed to handle the previously discussed cases. This 

work presents a registration method, named the Consistent Anatomy in Lung Parametric 

imagE Registration (CALIPER) algorithm, specifically designed to solve the problem of 

changing tissues, potentially leading to more accurate ART and improved local control and 

patient survival rates. “Consistent Anatomy” refers to identifying and registering anatomical 

structures or features that are identifiable in the input images, described in detail in the next 

few sections. “Parametric” reflects our use of a B-spline transformation model which greatly 

reduces the number of parameters needed to describe relatively complex deformations.

Methods and Materials

Overview

The goal of this investigation was to develop a multi-resolution image registration 

framework to handle large geometric changes in the thorax. To facilitate the development of 

the CALIPER algorithm, the importance of different components (e.g. atelectasis resolution 

model, vessel registration, lobe label registration, etc.) on registration accuracy was 

evaluated in a clinical CT dataset.

Imaging Datasets

Helical CT image sets curated for use in the registrations of this work were gathered from 

locally-advanced NSCLC patients enrolled in various longitudinal CT imaging protocols at 

Virginia Commonwealth University. Anonymized images of 18 patients were selected from 

this database using MIM Maestro (MIM Software, Cleveland, OH). Prerequisites for patient 

selection were multiple CT studies, either breath-hold or 4DCT, during the course of 
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radiotherapy and the presence of atelectasis. One image pair per patient was selected for 

registration that included a baseline image obtained around the start of treatment and another 

acquired mid-treatment. When multiple mid-treatment images were available, the image at 

the time of greatest atelectasis change was selected to present the greatest challenge to the 

image registration algorithm.

In-plane image resolution ranged from 0.98 – 1.37 mm with slice thickness of 2 – 3 mm. 

Both images for a given pair had the same voxel dimensions except for two patients. Tumor 

stage ranged from IB to IIIB with 50% of tumors occurring in the lower right lobe of the 

lung. Mean (SD) tumor volume at the time of baseline imaging was 109.6 (89.2) ml. 56% of 

patients experienced whole lobe collapse, while the atelectasis for the remaining 44% only 

affected a portion of the lobe. Atelectasis volume at the time of baseline imaging was 232.42 

(181.55) ml. Patients were divided into three groups based on a classification scheme from a 

previous work12. Briefly, this scheme was based on the degree of atelectasis volume and/or 

topology change observed between baseline and mid-treatment images: full resolution for 

volume changes > 80% (22% of patients), partial resolution for volume changes between 

80% and 20% (50% of patients), and no resolution for changes less than 20% or 15 ml (28% 

of patients).

The focus of this investigation is deformable image registration of lung parenchyma in the 

presence of atelectasis resolution. Thus, rigid displacements were removed prior to 

application of the CALIPER algorithm. Within the MIM software, rigid registration was 

performed using the standard fusion tool to align the mid-treatment scan to the baseline scan 

based on bony anatomy. Since the initial fusion used the entire image volume, additional 

adjustment of the rigid registration was done using the box-based alignment tool to focus the 

fusion on the lungs and mediastinum for improved alignment in the region of interest for this 

work. The rigidly registered images were exported from MIM using in-house MATLAB 

extensions which converted the DICOM images to Meta Image format.

Lobe Labels

Contours for all thoracic structures including individual lobes were delineated by radiation 

oncologists using the MIM software and were reviewed for consistency between image pairs 

by a single experienced radiation oncologist who was not involved in the initial contouring. 

Adjustment of contours was occasionally necessary, particularly for the fissures of the right 

middle lobe. Contours were saved to binary masks in Meta Image format using in-house 

MATLAB extensions for MIM. Once extracted from the database, the binary masks of 

individual lung lobes were combined to form the lobe labels used for the registrations of this 

work. The lobe label images consisted of each voxel within a given lung lobe being assigned 

an integer value. Lobe values were chosen to maximize the intensity difference between 

adjacent lobes and to provide the largest value to the atelectatic lobe, thus giving atelectasis 

the greatest influence on the registration.

Since the location of atelectasis varied from patient to patient, lobe label values were 

assigned on a per-patient basis. An example of a lobe label pair used for registration is 

shown in Figure 1. Left lung lobes were given an intensity of either 3 or 5, while right lobes 

were assigned values of 1, 3, and 5. A value of 5 was preferentially assigned to lower lobes 
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and 3 to upper lobes due to the increased geometric changes along the diaphragm due to 

breathing and lung capacity differences between images. In the majority of lobe label 

images, the highest value of 5 was assigned to the lower lobes of both lungs due to the 

atelectasis occurring in one of the lower lobes. In cases where the left and right lungs came 

within a few voxels of each other, usually in the anterior of the chest, reassignment of the 

contralateral lobe values was necessary to prevent possible mis-registration from adjacent 

lobes having the same value. The manual assignment of lobe values assured the atelectatic 

lobe of each patient had the greatest influence on the lobe label portion of the registrations.

Vesselness Measure Images

Enhancement of lung vasculature has been used to improve the accuracy of lung image 

registration, particularly in contrast-poor regions16, 17. Here, we used a filter approach which 

enhances tubular structures. The Jerman vesselness measure filter was used to generate the 

vesselness measure (VM) images for all registration CTs, as it tends to provide more 

consistent enhancement at bifurcations and across varying vessel diameters18. The 

vesselness filter parameters were optimized based on visual inspection of the agreement 

between vessels in the original image and the resulting VM trees. VM images for all patients 

were created using the optimal parameters and a mask which only included healthy lobes 

and excluded atelectasis to assure correspondence between structures of VM image pairs. A 

resulting VM image is shown in Figure 1.

Landmark Sets

Using landmarks as a validation measure provides clinically-meaningful validation of a 

registration19, 20. Therefore, the registrations of this work were assessed primarily by 

landmark registration error. Physician-specified landmark correspondences were obtained 

for all image pairs of the study cohort using the isiMatch software developed by the Imaging 

Sciences Institute of the University Medical Center Utrecht (Utrecht, Netherlands)21. 

Landmark sets had a mean (SD) of 169 (31) landmarks per patient. The typical distribution 

of landmarks throughout the lungs is shown in Figure 2. The landmark sets were matched by 

an experienced physician. Due to the large geometric changes of the patient cohort of this 

study, the automatic matching feature of the isiMatch software was rarely available for use 

by the observer, so all points were matched manually.

Accuracy of the landmarks was estimated and improved through an in-house quality 

assurance procedure prior to use in quantifying registration accuracy. When points were 

identified as being incorrectly matched, the observer was asked to review and adjust the 

specified points. The quality assurance loop was repeated until all point pairs appeared to be 

correctly matched.

Image Registrations

The registration framework was implemented using the elastix registration software22. A 

third-order B-splines based transformation model was used with a stochastic gradient 

descent optimizer and a hybrid cost function utilizing both intensity-based and feature-based 

metrics. A multi-resolution registration was implemented which moved from coarse (126 

mm) to fine (8 mm) B-spline grid spacings in five resolutions for added robustness of the 
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optimizer to local minima. The cost function was comprised of a linear combination of up to 

five components: a healthy lobe registration, atelectatic lobe registration, vesselness measure 

registration, lobe label registration, and a transformation penalty. Components were turned 

off/on by removing/including them in the cost function to form the 20 registrations 

investigated in this study. The ability of several similarity metrics to correctly register 

atelectasis changes was tested.

The standard sum of squared intensity differences (SSD) and mutual information (MI) 

metrics, included in the elastix software, were selected due to their wide-spread use in 

mono- and multi-modal image registration, respectively. The sum of squared tissue volume 

differences (SSTVD) similarity metric17, 23–25, which assumes mass, but not density, is 

preserved by the transformation was recently added to elastix and included in this 

investigation for its ability to handle intra-fractional density changes of lung parenchyma 

due to respiration. Finally, a hybrid SSD/SSTVD metric referred to as the sum of squared 

regional volume differences (SSRVD) was developed in-house which weights the density 

changes by the average volume change of the region of interest, rather than the voxel-wise 

weighting of SSTVD. By weighting intensity in proportion to the average volume change of 

a region, it was suspected that the metric could better handle atelectasis changes when 

homogeneous high-intensity collapse expands to low intensity heterogeneous lung 

parenchyma.

A total of 20 registrations were performed per patient, each using a different permutation of 

the cost function, as described in Table 1. Briefly, all registrations used SSTVD within the 

healthy lung parenchyma (lungs minus atelectatic lobes), as SSTVD yielded the highest 

registration accuracy of all metrics in computational phantom tests. Registrations were 

performed with and without the co-registration of both the corresponding lobe label images 

and vesselness measure images using a basic SSD similarity metric. Finally, one of several 

metrics was used to register the atelectatic lobes: SSTVD, SSRVD, SSD, MI, or none. All 

registrations also used a bending energy penalty on the transformation to reduce the 

likelihood of non-physical deformations occurring. The various cost function components 

were linearly combined to create the full cost function which was minimized using the 

adaptive stochastic gradient descent optimizer available in elastix.

Registration parameters were manually optimized for each registration separately using an 

image pair from a subject with full resolution of atelectasis. In particular, the relative 

weights for each of the cost function components had to be determined. It was anticipated 

that the optimal parameters for this subject, representing the largest geometric and 

topological changes present in the study cohort, would translate to accurate registrations for 

the remaining 17 patients. In addition to landmark-based registration error, the dice 

similarity coefficient (DSC) was calculated for the atelectatic lobe since the goal of this 

work was to obtain high registration accuracy throughout the entire lung volume, not just in 

the healthy parenchyma. During optimization of the registration parameters, a tradeoff 

between landmark error and atelectasis DSC was apparent, and the optimal parameters 

which maximized both accuracy metrics simultaneously were selected. The 20 registrations 

using optimized parameter sets were performed for all 18 patients.
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Statistical Analysis

Statistical analyses were carried out to quantify how each of CALIPER’s cost function 

components affected registration results. For all tests, the Wilcoxon signed-rank test was 

performed due to the small sample sizes involved.

Results

Rigid Registration

Rigid registrations based on bony anatomy of the thorax resulted in mean (SD) translations 

and rotations of 4.10 (2.94) cm and 2.43° (1.27°), respectively, across all 18 image pairs to 

bring anatomy into starting alignment for the CALIPER algorithm. The large geometric 

changes present in the patient cohort were evident in the starting displacements prior to 

deformable registration but after rigid alignment. Across all patients, the mean (SD) of 

initial landmark errors were 9.93 (5.48) mm, 18.19 (11.73) mm, and 30.67 (18.71) mm for 

mean, 90th percentile, and maximum landmark errors, respectively. The mean (SD) 

atelectasis starting DSC was 0.607 (0.233). Over 44% of patients had initial mean landmark 

displacements greater than 1 cm, and 50% of patients had DSC less than 0.7.

Deformable Registration

Registration results are reported in Table 1. Figure 1 also shows the best registration result, 

as complementary color overlays of the deformed mid-treatment images and the baseline 

counterparts, obtained for patient 12. The equivalent of Figure 1 for all 18 patients of this 

study can be found in the supplementary material online. Figure 3 shows box plots of mean 

landmark error for each registration, while Figure 4 shows the same plot for DSC. A clear 

improvement of both accuracy metrics is noticeable between registrations which used lobe 

labels (registrations 6-10 and 16-20) from registrations which did not. The registrations 

using the full cost function of SSTVD for the healthy lobes, SSD for the lobe label and 

vesselness measure image, and one or none of the atelectatic lobe metrics were found to 

have the highest accuracy. For these registrations (16 through 20), the mean (SD) of mean 

landmark error was 2.50 (1.16) mm, 2.80 (0.70) mm, and 2.04 (0.13) mm for no change, 

partial resolution, and full atelectasis resolution, respectively. The mean (SD) atelectatic lobe 

DSC score was 0.91 (0.08), 0.90 (0.08), and 0.89 (0.04), respectively. These results 

demonstrate sub-slice thickness mean accuracy and excellent alignment of the atelectatic 

lobe for all degrees of atelectasis resolution. Plausibility of the resulting transformations was 

assessed by calculating the spatial Jacobian of the deformation vector field. Representative 

coronal views of the spatial Jacobian map within the lungs and atelectasis for the best 

registration for each patient are provided in the supplementary material online.

Distance from Pathology Investigation

The effect of distance from pathology on registration error was examined. When using the 

full cost function (registration 16-20), mean and 90th percentile errors were found to have 

minimal variation with distance from tumor and atelectasis, as shown in Figure 5. Large 

variability was present for landmarks within 10 mm of either the tumor or re-expanding 

lung, likely due to the small number of landmarks per patient in this region. Mean error was 
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largely unaffected by increasing distance, whereas maximum landmark error increased. 

Since, in Figure 5, the landmarks are cumulative with increasing distance from pathology 

(i.e. the ipsilateral region contains all landmarks in the ipsilateral lung, including the 

landmarks of the 50 mm region, etc.), the increasing max error indicates that the largest 

errors occurred far from atelectasis.

Utility of Cost Function Components

Registrations involving the lobe label SSD component (6 through 10 and 16 through 20) 

were compared against registrations without a lobe label component (1 through 5 and 11 

through 15) to determine to impact of adding the co-registration of label images on accuracy. 

Mean registration error and DSC score were 4.75 mm and 0.679 without the lobe label and 

2.68 mm and 0.907 with the lobe label. Statistically significant improvements in mean 

landmark error (p=1.355E-5), 90th percentile landmark error (p=2.735E-6), and atelectatic 

lobe DSC (p=0) occurred when the lobe label component was used. The change in 

maximum error was not significant (p=0.177). Adding the VM component to the cost 

functions of both label registrations and non-label registrations did not result in statistical 

changes in accuracy metrics.

The inclusion of an intensity-based similarity metric within the atelectatic lobe was 

compared to exclusion of the extra cost function component. When no metric was used, the 

mean landmark registration error was 2.58 mm and the mean atelectatic lobe DSC was 0.877 

for the registration including all other components (registration 16). When any of the four 

candidate metrics were added, landmark error dropped to 2.51 mm and the DSC increased to 

0.907. These differences were not significant for mean (p=0.95), 90th percentile (p=0.94), 

and max errors (p=0.97) or for DSC (p=0.49). Despite the inconclusive statistical tests, the 

slight decrease in error and increase in DSC suggested that one of the four atelectatic lobe 

metrics may be useful, especially since registration speed was not hindered by the additional 

cost component. The SSRVD metric gave similar results to SSTVD without providing any 

noticeable advantages; however, there may be special cases where SSRVD could be useful, 

such as in noisy images (e.g., low dose CT) where SSTVD may be sensitive to spurious 

intensity variation.

The vesselness measure cost function component was not found to have a significant impact 

on landmark error for mean (p=0.052), 90th percentile (p=0.11), and max (p=0.66) errors or 

for the atelectatic lobe DSC score (p=0.14). This could be the result of the SSTVD cost 

accurately matching vessels within lung parenchyma already, rendering the VM cost 

ineffective, or gains in accuracy averaging-out across the patients of this study. However, 

qualitative improvements were evident for many patients in the study cohort, as illustrated in 

Figure 6. This discrepancy may be due to our choice of ground truth. Landmark error may 

be biased against reflection of VM improvements as landmark placement is primarily made 

on high-contrast, easily-identifiable vessel bifurcations, which should be more easily 

registered with SSTVD. The addition of the VM component to SSTVD-based registration 

has been shown in other studies to improve registration accuracy particularly near the 

periphery of the lung, where vessels are small and of low contrast17. Despite the fact that the 
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addition of the VM component did not noticeably affect the performance of our algorithm 

when included, we recommend including it for these reasons.

Discussion

Comparison to Literature

The optimized registrations were performed on all 18 atelectasis resolution subjects. While 

mean registration error of less than 2 mm was achieved only for a subset of patients, 

excellent improvement of alignment of the atelectatic lobes resulted from the addition of the 

lobe label cost function component with DSC > 0.9 in most cases. Considering that the 

starting DSC was, on average, 0.6, the improvements provided by the CALIPER algorithm 

of this work are non-trivial.

Permutations of the CALIPER algorithm of this work were able to achieve mean landmark 

errors of 2.5 – 2.6 mm when averaged across all patients. The CALIPER variant with the 

highest accuracy (2.51 mm mean TRE, 5.22 mm 90th percentile TRE, 0.907 DSC) was 

achieved using MI similarity metric for the atelectatic lobe in combination with SSTVD for 

healthy lobes, and SSD for the lobe label and VM images. This degree of accuracy was 

comparable to registration algorithms recently reported in the literature, summarized in 

Table 2. In the table, studies are listed in order of increasing relevance to the registrations 

performed in this work. The first eight studies register inhale to exhale phases of 4DCT 

scans in which the only changes present are slight density and geometric differences due to 

respiration. The next two are longitudinal registration studies but with the caveat that high 

resolution images (slice thickness < 1.25 mm) were used for which lower registration 

accuracy is to be expected compared to standard resolution scans (2-3 mm slice thickness). 

The final three studies are most comparable to the algorithm developed here, though still 

none of the reported results in the literature include atelectasis resolution or other substantial 

large geometric changes. While multiple studies report accuracy on the order of 1 mm, 

several considerations must be made when comparing to the results reported in this work.

The presence of extensive tissue changes such as atelectasis resolution, pleural effusion, and 

radiation-induced damage is known to result in decreased registration accuracy or 

registration failure for current state-of-the-art algorithms26–28. Over 60% of the studies 

summarized in Table 2 report accuracy of registration between different respiratory phases 

of a 4DCT study. The DIRlab dataset was commonly used which consists of inhale-to-

exhale image pairs where the tumor is sometimes not within the lung volume at all and 

where no atelectasis or other non-tumor pathology is present19. For such cases, topology is 

preserved and large geometric changes are absent; the registration must only account for 

periodic respiratory motion and slight changes in lung density, as mass is preserved as well.

The studies using longitudinal data also had important differences with the current work. 

Nielsen et al. used lymphoma patients for which large tumors were absent from the lung 

volume29. Neither Cazoulat et al. nor Stützer et al. included patients with atelectasis, though 

the images used by Cazoulat did contain some tumor regression16, 28. The difference in 

difficulty from intra-fraction to longitudinal registration is illustrated by Stützer’s finding of 

an increase in mean registration error of their algorithm from 1.0 mm using the DIRlab data 
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to 2.9 mm using longitudinal data28. Additionally, 2 of the 5 studies using longitudinal data, 

and had high-resolution CTs available with slice thicknesses less than 1.5 mm. 4 patients of 

this study’s cohort had 2 mm slice thickness, while the remaining 14 image pairs had 3 mm 

slice thickness29, 30. Finer resolution input data can easily result in lower TRE, seen in the 

development of the CALIPER algorithm as accuracy decreased when moving from high-

resolution computational phantoms to lower-resolution clinical data.

Large geometric changes, absent from most studies of Table 2, occurred within image pairs 

of this studies patient cohort. Yin et al. reported an average change in lung volume between 

images being registered of 3.6% (maximum of 7.2%)25. The longitudinal registration study 

of Vlachopoulos et al. consisted of patients with similar volume changes of 4.34% ± 2.8% 

on average30. The set of 6 patients used in the study by Cazoulat et al. experienced a mean 

lung volume change of 8.0% and a mean tumor volume change of 29.5%16. Across the 18 

patients with atelectasis resolution used in the current work, mean (SD) lung volume change 

was 9.5% (8.8%) for all lobes combined and 10.6% (8.7%) for the healthy lobes. Tumor 

regression was also substantial, with a mean (SD) change in GTV volume of −39.2% 

(26.7%). Despite the more challenging registration problem presented by the patient cohort 

selected for this study, the CALIPER algorithm resulted in accuracies similar to healthy lung 

registrations of the studies listed in Table 2.

Limitations

The CALIPER algorithm was successful in the majority, but not for all, of the patient cases. 

The primary reason for failed registration was a dramatic change in atelectatic lobe shape 

coupled with poor initial overlap. In such cases, an insufficient number of image samples 

mapped between the corresponding atelectatic lobes preventing the optimizer from correctly 

deforming the region corresponding to the atelectasis. Only 5 patients experienced at least 

one failed registration. For Patient 5, all registrations which included an atelectatic lobe 

similarity metric without including the lobe label component failed, amounting to 50% of 

the registrations. With the exception of cases where atelectatic lobe volume change is 

accompanied by dramatic shape change, registration failure may be prevented by initial rigid 

or affine alignment of the atelectatic lobe masks rather than alignment of bony anatomy as 

was done for the patients of this study.

Patient 4 had all registrations run to completion, but large landmark errors were observed. 

The ipsilateral lung in this case was too misaligned initially for both the SSTVD metric in 

the healthy lobes and the intensity metrics for the atelectatic lobe. The lobe label component 

was not able to improve the results, despite the contralateral lung appearing well-aligned. As 

such, Patient 4 was excluded from the results except for the failure rate column of Table 2. 

Two completed registrations of Patient 1 were also flagged as failures due to their outlying 

mean landmark errors in excess of 3 cm.

While residual errors for some patients and subsets of landmarks remained large, further 

investigation was warranted. The landmarks comprising the 10% largest errors for each 

registration were investigated to determine their location within the lungs. For half of the 

patients, over 75% of the landmarks comprising the largest errors resided in the ipsilateral 

lung, as expected. Eight patients experienced between 25% and 50% of the worst errors in 
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the contralateral lung. In one patient, none of the largest errors were in the ipsilateral lung. 

These results indicated that the pathology was the primary contributor to registration error in 

only half of the patients. It was clear that registration error near pathology was larger for 

some patients than others, though not necessarily based on the degree of atelectasis 

resolution.

The registration algorithm developed in this study was designed for CT-to-CT image 

registration. As adaptive radiotherapy techniques continue to evolve, online plan adaptation 

based on daily cone beam CT (CBCT) images is becoming more pertinent. Some work has 

already been done on CBCT-to-CT image registration for ART in proton therapy35. Future 

work should involve extending the CALIPER algorithm to CBCT image registration.

Conclusion

A deformable image registration algorithm was developed to address the outstanding 

problem of longitudinal registration in the presence of large geometric changes and non-

correspondences of intensity. The algorithm was tested on a set of 18 locally-advanced 

NSCLC patients presenting with atelectasis at the start of treatment and experiencing 

varying degrees of pathology resolution throughout the course of treatment. The algorithm 

included a lobe label cost function component for robustness to large geometric changes. A 

mass-preserving similarity metric was applied to the healthy parenchyma where tissue 

correspondences were not in question. Several similarity metrics were applied to the 

atelectatic lobe to enhance the likelihood of reasonable deformation, with mutual 

information providing the highest accuracy. Vessel-enhanced images were co-registered for 

fine improvements of the vasculature alignment. Accuracy comparable to registration results 

reported in the literature was obtained when using all components of the algorithm 

simultaneously.

While datasets exhibiting atelectasis resolution are often excluded from registration 

algorithm accuracy assessments, these challenging cases were the focus of this work. 

Patients experiencing large geometric changes during the course of radiotherapy are prime 

candidates for adaptive radiotherapy to account for the tissue changes, but accurate 

deformable image registration is a prerequisite. The registration algorithm described in this 

work may offer such patients the option of adaptive radiotherapy and enhanced precision of 

treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of input data and registration results. Input data to the CALIPER algorithm for one 

subject (Patient 12) is shown for (a) the baseline scan set as the fixed image of the 

registration and (b) the mid-treatment scan set as the moving image of the registration. The 

CT scans are shown in the left column, the lobe label images are shown in the middle 

column, and the vesselness measure images are shown in the right column. For the lobe label 

images, green voxels have a value of 5, red voxels have a value of 3, and blue voxels have a 

value of 1. (c) Complementary color overlays of the fixed (magenta) and moving (green) 
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images are provided to illustrate the degree of initial misalignment due to differences in lung 

volume and changes in pathology. (d) Finally, the resulting alignment of all three datasets 

after registration via the CALIPER algorithm is shown.
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Figure 2. 
Example of landmark distribution. The distribution of landmarks for a patient with partial 

lobar atelectasis of the right lower lobe (patient 17) is illustrated. Lateral views of the right 

lung lobes (top) and left lung lobes (bottom) are shown for the baseline (left) and mid-

treatment (right) images. The landmarks (spheres) were sampled throughout the lung 

parenchyma of all lobes and were primarily located on vessels.
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Figure 3. 
Mean target registration error (TRE) for all registrations averaged across patients. 

Registrations 1 – 5 use only the intensity of the CT image while the remaining registrations 

use some combination of co-registration: lobe label images, vesselness measure (VM) 

images, or both. For each combination of input data, one of five similarity metrics was used 

for registration of the atelectatic lobes. Boxes indicate the interquartile range (IQR) and 

median, while whiskers note the largest and smallest values within 1.5 × IQR. Circles 

indicate outlier points. TRE values for failed registrations are excluded.
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Figure 4. 
Mean Dice similarity coefficient (DSC) for all registrations averaged across patients. 

Registrations 1 – 5 use only the intensity of the CT image as input to the CALIPER 

algorithm, while the remaining registrations use some combination of co-registration 

images: lobe label, vesselness measure (VM), or both. For each combination of input data, 

one of five similarity metrics was used for registration of the atelectatic lobes. Boxes 

indicate the interquartile range (IQR) and median, while whiskers note the largest and 

smallest values within 1.5 × IQR. Circles indicate outlier points. DSC values for failed 

registrations are excluded.

Guy et al. Page 18

Med Phys. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Landmark error as a function of distance from pathology. Landmark error in various regions 

adjacent to the pathology of interest is shown for the full CALIPER algorithm variants 

(registrations 16-20) across all patients. Error bars indicate ± one standard deviation. 

Contralateral lung landmark error is included for comparison only. Investigated pathology 

regions were tumor (top), atelectasis (middle), and tumor and atelectasis combined (bottom).
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Figure 6. 
Qualitative improvements in vessel alignment. Vessel alignment appeared to improve from 

registration with no vesselness measure (VM) cost function component (top) to inclusion of 

the VM component in the cost function (bottom), despite minimal change to landmark 

registration error and atelectatic lobe dice similarity coefficient metrics.
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