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Abstract

With the advent of modern day high-throughput technologies, the bottleneck in biological 

discovery has shifted from the cost of doing experiments to that of analyzing results. clubber is our 

automated cluster-load balancing system developed for optimizing these “big data” analyses. Its 

plug-and-play framework encourages re-use of existing solutions for bioinformatics problems. 

clubber’s goals are to reduce computation times and to facilitate use of cluster computing. The 

first goal is achieved by automating the balance of parallel submissions across available high 

performance computing (HPC) resources. Notably, the latter can be added on demand, including 

cloud-based resources, and/or featuring heterogeneous environments. The second goal of making 

HPCs user-friendly is facilitated by an interactive web interface and a RESTful API, allowing for 

job monitoring and result retrieval. We used clubber to speed up our pipeline for annotating 

molecular functionality of metagenomes. Here, we analyzed the Deepwater Horizon oil-spill study 

data to quantitatively show that the beach sands have not yet entirely recovered. Further, our 

analysis of the CAMI-challenge data revealed that microbiome taxonomic shifts do not necessarily 

correlate with functional shifts. These examples (21 metagenomes processed in 172 min) clearly 

illustrate the importance of clubber in the everyday computational biology environment.
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1 Introduction

Fast-paced growth of high performance computing (HPC), coupled with the recent 

appearance of new cloud computing solutions, created a new scope of possibilities for 

applications in today’s science. At the same time, more advanced and less expensive high 

throughput experimental assays have led to exponential growth of new biological datasets. 

Having access to sufficient computational resources to deal with the growing “big data” is 

therefore essential not only for computational, but also for experimental biology research 

labs, particularly those working in genomics. Less than two decades ago the first human 

genome took 13 years and $2.7 billion to sequence [1]. Today sequencing a genome takes a 

day and $1000, with costs projected to go even lower in the near future. Recent projects like 

the 1000 Genomes Project [2] and others currently under way [3], [4] will provide the field 

with an unprecedented amount of data, opening up new possibilities to significantly improve 

current models and tools.

These developments come at a cost, as traditional HPC is quite expensive both in purchase 

and maintenance. Research labs espouse different models for dealing with this computing 

need – some have their own computational power, others share machines across an institute 

or outsource their computing to collaborators. Although usability varies significantly across 

setups, compute nodes rarely reach the often-targeted utilization rates of 75–85 % consistent 

workload. Usage usually peaks with a specific high priority project running on the cluster 

for a limited time or with short-term jobs submitted through a web interface, where timing 

and responsiveness are essential. Cloud computing offers new alternatives, but is not always 

an adequate replacement for traditional HPC. The nature of cloud solutions often creates 

new challenges, such as the transfer of enormous amounts of data to and from the remote 

cloud storage.

Both from time and performance points of view, there is a clear advantage in making use of 

all available computational resources when necessary. However, this is a considerable 

challenge as the, often distributed and setup-disparate, clusters have distinct runtime pre-

requisites. Ideally all resources would “speak” the same language, i.e. have a shared 

common base (OS, executables, job scheduler, etc.) Existing tools [5], [6] for bringing 

together disjoint computational resources and for distributing jobs among them require 

significant IT-related knowledge to get up and running. Moreover, none of these were 

designed explicitly for evaluations and approaches common in computational biology. Their 

capability is mostly limited to retrieval of job results from compute clusters and does not 

extend to downstream processing. Thus, post-processing and publishing of results is not 

automated and has to be dealt with individually.

Here we describe our novel clubber (CLUster-load Balancer for Bioinformatics E-

Resources) framework, available at http://services.bromberglab.org/clubber. clubber is 

designed specifically to facilitate and accelerate common computational biology 
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experimental workflows and used in conjunction with existing methods or scripts to 

efficiently process large-scale datasets. Using clubber is as simple as downloading and 

installing Docker [7], a software container platform available for every environment, and 

using a single command to run the Docker-cloud clubber container [8]. From there, any 

interaction for basic configuration, job submission, monitoring and displaying results is 

achieved via the clubber web interface. Note that clubber can also be run from command-

line using an interactive console, or from within a Python project by importing the clubber 
package. Due to our method’s modular design, all of its main components (Manager, 

Database, Web Interface) can run separately on different environments/machines. Further, 

clubber can be easily configured to use any of the databases or webservers and thus to 

directly integrate into existing external services. Results can be accessed directly from the 

clubber web interface, either as downloadable files or as searchable data tables (given an 

appropriate output format). A RESTful [9] API provides programmatic access to the jobs 

managed by clubber, enabling other frameworks to monitor individual job progress and 

retrieve and display the final results. Very importantly, the clubber API facilitates integration 

into existing and new web services; i.e. tasks submitted through a web interface can be 

simply “handed over” to clubber and results queried once available. clubber can be set up on 

a dedicated server to be accessible by all members of a research group or by a selected few 

authenticated via a built-in user authentication module.

Existing workflow frameworks like Galaxy [10] and Nextflow [11] allow users to create 

computational pipelines to process and analyze biological data. Although both environments 

are highly usable, they have some limitations. Galaxy, for example, requires some time for 

setup of all components and limits the selection of available tools to those for which 

corresponding plugins have been written. Nextflow, on the other hand, has limited data 

filtering and visualization capabilities. Further, both tools can be configured to run jobs on a 

remote cluster, and Galaxy additionally provides means to make results accessible via a web 

interface. However, in both cases, jobs are submitted sequentially to only one previously 

configured cluster. Distributing jobs to multiple resources requires manual interaction and, 

potentially, adaptation of the necessary submission scripts. This leads to extensive 

computation times, directly correlated with the amount of processed data.

We designed clubber to deal with the challenges of growing datasets, which are particularly 

obvious in genome research. The current clubber package includes built-in methods to 

simplify parallelized job submission, e.g. splitting a single multi-sequence input file to 

submit parallel jobs, each containing a user-defined number of sequences. All of these 

features make clubber an essential tool for processing and analyses of vast amounts of 

biological data in a parallel, efficient, and (very) fast fashion.

2 Methods

clubber works in all environments and integrates seamlessly with existing workload 
managers

We made clubber available as a ready-to-launch Docker image. Adding a computing 

resource (an HPC cluster) requires only a valid username and password combination for a 

user who is eligible to submit jobs on this specific resource. Note that there is no need for 
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any additional software to be installed on these resources. The standalone clubber python 
installation has only two requirements: (i) access to a MySQL database (version 5.x) and (ii) 

availability of python (version 3.x). The optional web interface additionally requires access 

to a webserver with installed PHP module (version 5.6.x). Detailed installation instructions 

and sources can be found online [8]. Figure 1 illustrates the clubber workflow. clubber’s 

three components, Manager, Database, and Web Interface, are independent from each other. 

The Manager accesses registered clusters via Secure Shell (SSH) and communicates with the 

Database using MySQL queries. The Web Interface interacts with the Database to register 

jobs, monitor their progress and retrieve results.

clubber bundles computational resources, providing an interface for a simple centralized 
submission

clubber can be used in two different ways: through an interactive web interface or via 

command-line. First, a clubber project is created, defining basic parameters like project 

name, selection of clusters to use and the environment variables necessary for job 

submission. Projects can contain binaries or database files required by the associated jobs. 

Note that single jobs can be submitted without creating a project; these will automatically be 

assigned to a default project with no environment variables set. After a project has been 

created and automatically initiated on the specified clusters, jobs can be submitted using the 

web interface or from command-line. Additional environment and job specific variables are 

defined in a simple syntax described in the clubber documentation. The manager uses an 

auto balancing approach to automatically distribute new jobs between registered clusters. 

Three factors determine how many jobs are submitted to each cluster during the auto 

balancing process. These are, in decreasing priority: (i) the cluster workload, (ii) the 

expected queuing time and (iii) the average job runtime. Cluster workload is calculated as a 

percentage of total possible workload, with 100 % representing a fully occupied cluster. The 

expected queuing time and the average job runtime are normalized to a [0,1] range, with one 

representing the maximum amount of time spent in either queue or run state, respectively, 

over all jobs of the same project among all active clusters. Both factors are set to one by 

default and are updated automatically during the progression of a project. In order to obtain 

the cluster specific load balancing factor (LBF) they are combined with the respective 

cluster workload (Eq. 1).

(1 − workload) × 0.5 + (1 − queuingfactor) × 0.3 + (1 − runtimefactor) × 0.2 (1)

clubber communicates with clusters exclusively via encrypted SSH. The rsync [12] utility 

and Secure Copy (SCP) are used to transfer files to and from the clusters. Since some of the 

inquiries sent to the many clusters take minutes to process, all communication is threaded to 

avoid blocking faster transactions. This architecture enables clubber to efficiently distribute 

and retrieve jobs in a highly parallelized fashion.

To track and update current job states clubber relies on a relational database. This approach 

results in very robust job exception handling, both regarding errors on remote clusters and 

exceptions like lost connections on the machines running the clubber manager. The database 
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also allows independent services, which use clubber as a job manager, to monitor current job 

states and retrieve results. Job success is continuously and extensively validated, ensuring 

that a project with millions of jobs is completed correctly even after allowing for power 

failures and compute node breakdowns. Once a job is identified as finished, the validation 

pipeline ensures that the expected results are present and correctly retrieved from the 

clusters. In case of errors, jobs are reset and re-sent out for computation. A detailed logging 

and notification module tracks these processes and notifies the user if specific jobs produce 

recurring errors.

clubber is designed to be used with existing software tools

Our plug-and-play framework makes it possible to use any existing tools or scripts within 

the clubber environment. User-defined specific pre- and post-processing actions can also be 

re-used with clubber projects. This allows for manipulation of input data prior to batch 

processing (e.g. converting fastq to fasta format) and for automatic processing of job results 

once they have been retrieved from the clusters. In its initial release, clubber includes two 

built-in methods for specific pre- and post-processing to simplify parallelized job 

submission. They allow to automatically split a single multi-sequence input file to submit 

parallel jobs and merge results once all jobs have been computed. The number of sequences 

used for each parallel job is user-defined. We expect that with increasing use of clubber 
(available as Git repository hosted on bitbucket) [8], the community will produce a larger 

repertoire of common pre- and post-processing tools, e.g. file conversion, filtering, etc., 

commonly applied in every-day computational biology.

3 Results and Discussion

clubber significantly reduces the “real-world” compute time by parallelizing and 
optimizing the workload distribution across available resources

We evaluated clubber performance by measuring the time required to complete one thousand 

individual jobs, requiring 1-min CPU time each. Note, that these jobs did not require any 

data to be transferred to remote clusters. The evaluation was performed in various scenarios. 

We compared the required time at different cluster workloads when using clubber with one 

to five separate clusters available vs. a standard job submission (Figure 2). A standard job 

submission is defined as a manual submission of a single shell script running all thousand 

jobs on a single local HPC cluster. Note that workloads for remote clusters registered with 

clubber are conservatively estimated to be consistently at 50 %; the actual gain in 

computation efficiency could be substantially higher. Also note that 0 % workload is here 

defined as the ability to run at most 100 jobs in parallel. For the (ideal, but also rare) case of 

no (0 %) workload on the local cluster, only two additional registered clusters, both 

exhibiting a workload average, reduce the overall computation time by approximately 50 %. 

The total gain in computation time is directly correlated to the current workloads on the 

remote clusters. clubber’s auto-balancing job submission ensures that clusters with a low 

workload are preferentially selected, optimizing and reducing to a minimum the total 

required computation time. As expected, the more clusters are registered with clubber the 

less effect single clusters with a high load have on the final computation time. The advantage 

of using clubber is particularly obvious in a scenario where only one cluster is available for 
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computation vs. having two clusters – a local and one additional remote cluster. Using 

clubber speeds up computation by up to 100 %. Note that simply logging into another 

cluster and submitting job subsets is tedious task, which would not, even in the best case 

scenario, achieve similar speed up – as one cluster finishes, the other is still only somewhat 

through its assigned computation.

clubber facilitates fast evaluation of millions of sequences

Our recent work required a total of 19.4 million bacterial sequences to be analyzed for all-

to-all pairwise similarity using BLAST [13]. We estimated that our single local cluster of 

640 compute cores in its entirety would have taken roughly 4 months to perform the 

computation. This estimate is based on a 24 day-long 3,797,793 job BLAST run against the 

19.4 M sequence database. Using clubber to run on three additional clusters (800, 1536, and 

3120 cores, respectively; of varied load, but no more than 50 % of any one cluster available 

at any given time), speeds up this time to a bit over 2 months (70 days, a factor of 1.8).

Deepwater oil spill metagenome analysis using mi-faser—Our lab’s recently 

created web service [14], mifaser [15], uses clubber to rapidly annotate gigabytes of 

genomic sequence read data for the molecular functionality encoded by the “read-parent 

genes” without the need for assembly. For every input metagenome, mi-faser computes a 

function profile – a list of Enzyme Commission (EC) numbers and the associated read 

abundances. To illustrate clubber functionality, we ran mi-faser on 16 beach sand 

metagenomes from four phases of the Deepwater Horizon oil spill [16] (BioProject 

PRJNA260285) study – Pre-oil, two samples of Oil, and Recovery phases (available at 

http://services.bromberglab.org/mifaser/example). Analysis of this data (73GB sequence 

reads) using the mi-faser web interface with a clubber back-end was done in only 1 h, with 

clubber distributing a total of 4.5 k jobs among three compute clusters. Note that running 

these jobs using only our local cluster (640 cores) with an average workload (unavailability 

of nodes) of 30 %, took 170 min – 3-fold slower than clubber.

For further analysis, we removed sample-specific functions and normalized the individual 

entries of the function profile vectors by the total number of annotated reads. We found that 

microbiome functional profiles of samples from different phases significantly differ from 

each other (Figure 3, non-metric multidimensional scaling (NMDS) analysis [17]; P < 0.001, 

permanova test [18]). Interestingly, the samples from the Oil phases show higher variation 

than the samples from the Pre-oil phase and the Recovery phase, suggesting that “normal” 

ecosystem microbiomes are functionally more consistent than those in the disturbed 

ecosystems. The samples from Oil phases are functionally closer to the samples from the 

Recovery phase than to the Pre-oil phase, indicating that the beach sands have likely not 

entirely recovered.

Regardless of the significant differences between phases, the fraction of housekeeping 

functions (compiled from [19]) was highly consistent across samples (22.1±0.5 %); e.g. 
DNA-directed RNA polymerase (2.7.7.6) is the most abundant function in all samples (about 

4~5 %). As the number of reads encoding a particular functionality is highly correlated to 

the number of individual cells performing said functionality, these results are not very 
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surprising – all bacterial phyla, no matter how different, carry housekeeping genes. This 

finding serves as a confirmation of mi-faser’s accuracy, while highlighting its ability to 

estimate functional diversity in a non-taxon dependent level.

Critical Assessment of Metagenomic Interpretation (CAMI) challenge analysis 
using mi-faser—We further used mi-faser to evaluate a high complexity data set from the 

CAMI [20] challenge. The data set contains a time series of five Hiseq samples (15 Gbp 

each) with small insert sizes sampled from a complex microbial community. With clubber 
optimizing job submissions, the total computation time for 500 M sequence reads was only 1 

h 59 min. Note that the CAMI challenge did not evaluate runtimes for the submitted tools/

predictions, but they note that this evaluation is a necessary feature of future method 

development [20]. Metagenome comparative analysis revealed that the microbiome 

functional profiles remain highly consistent (Table 1), regardless of a clear community 

composition shift (Table 2). Interestingly, these results indicate that, over time, microbial 

species were exchanged, while maintaining the same functional capacity. Thus, the time 

effect on the microbial community is not as striking as what the taxonomical changes would 

suggest. This example highlights the fact that inferring microbiome function from its 

taxonomy composition is misleading. Thus, metagenomic analysis tools such as mi-faser are 

essential for a deeper understanding of microbiome functional potentials. Note that clubber 
is uniquely responsible for allowing our lab to make the mi-faser web interface available to 

the general public for the purposes of extremely fast (and accurate) functional annotation of 

millions of raw sequence reads.

Dealing with tool heterogeneity in clubber-accessible resources

Even though clubber is highly successful in facilitating HPC use, there may be still 

scenarios, which require manual interaction with the individual compute clusters. When 

creating a clubber project that includes binaries, the user has to validate these binaries on 

each of the cluster resources. When using pre-installed tools local to each resource, all 

installs have to be of the same version and produce identical results given identical input. To 

prevent erroneous results in these scenarios, clubber offers the option to automatically 

compare cluster environments and submit test jobs before starting a project run on different 

computing resources. Note that virtualization solutions, e.g. Docker, offer a simple solution 

to these problems by guaranteeing identical environments on every resource. In this scenario 

(planned for the next release of our software) clubber distributes a user provided Docker 

image to the clusters and relays job parameters when starting a Docker container.

Impact of dataset size on clubber performance

clubber was developed to process extremely large datasets using remotely accessed 

resources. The remoteness of these resources, thus, poses a bottleneck in transferring data 

between compute clusters. For the larger compute centers, it is safe to assume that an 

appropriately fast connection is available. For smaller set-ups, data transfer speeds may vary. 

In testing to evaluate the contribution of transfer times for our collection of clusters, some 

smaller and some larger ones, we found that times did not vary across remote and local 

machines and did not affect the relative performance. For all five of our clusters the transfer 

times varied by as little as 6 %, despite being located in different places of the world (New 
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Brunswick, NJ, USA and Garching, Germany); the speed of transfer of 1Gb of data was 146 

± 8 s. Note that jobs requiring large data transfers would necessarily be slowed down, but 

roughly in equal measure for local or remote machines. The slow-down is especially visible 

in cases where the computation time for a single job is fairly short. Increasing the number of 

jobs processed reduces this initial impact as performance improves by use of additional 

resources.

Better resource management and faster processing speeds with clubber

Our clubber framework provides a simple way to bundle available, possibly heterogeneous, 

computational resources and to distribute computations minimizing the required processing 

time. This approach avoids long computation times associated with an overloaded local 

cluster when there are in fact additional resources available elsewhere. Simple job 

submission/monitoring and automated exception handling make clubber easy-to-use and 

ideal for handling projects with millions of jobs. Its ability to use cloud-computing services 

like Amazon Web Services (AWS) with clubber on-demand, additionally allows for 

temporary, large-scale increases in computational resources. With all of these features, web 

services, the bread-and-butter of the computational biology community, are made extremely 

responsive with clubber.

With the exponential growth of available data in computational biology waiting to be 

analyzed, bioinformatics, not experimental analysis, has unexpectedly become the progress 

bottleneck. By combining the available resources and using them in the most optimal 

fashion, clubber offers a new approach to tackling this challenge.
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Figure 1. 
The clubber pipeline. Jobs can be submitted either through a web interface or via command-

line to the clubber manager. These are registered and managed using a relational database. 

The manager uses an automated balancing approach to distribute jobs among available 

clusters; the manager daemon runs locally and communicates with available clusters, 

transferring completed job results and storing them locally or, optionally, in the database.
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Figure 2. 
Efficiency fold-change of clubber vs. standard job submission: Efficiency fold increase in 

submitting jobs using clubber as compared to a standard job submission. Primary cluster 

workload is varied between 0 % and 90 %, where 0 % workload is defined here as the ability 

to run at most 100 jobs in parallel (100 CPU cluster). Compute time is measured for a 

submission of 1000 jobs, each requiring 1-min CPU time and no data transfer. Active 

workloads for remote clusters registered with clubber are conservatively estimated to be 

consistently at 50 % of possible total. None of these clusters dropped below that threshold in 

our use experience. They have, however, gone significantly higher. Thus, the actual gain in 

computation efficiency could be even higher than that displayed.
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Figure 3. 
Microbiome functional capabilities of beach sand metagenomes from a study of the 

Deepwater Horizon oil spill (16) (BioProject PRJNA260285) differ across phases. The 

samples were collected from four phases, including Pre-oil phase (OS-S1, OS-S2, OS-S3 

and OS-S4), Oil phase 1 (OS-A, OS-B, OS-C and OS-D), Oil phase 2 (OS-E, OS-F, OS-G 

and OS-H) and Recovery phase (OS-I600, OS-I606, OS-J598 and OS-J604). The distances 

between samples in this non-metric multidimensional scaling (NMDS) graph represent the 

variation between sample function profiles. Samples from Pre-oil phase, Oil phases and 

Recovery phase localize separately. Oil phase samples are closer to Recovery phase samples 

than to Pre-oil phase samples.
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