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SUMMARY

Adrenergic stimulation of brown adipose tissue (BAT) induces acute and long-term responses. The 

acute adrenergic response activates thermogenesis by uncoupling oxidative phosphorylation and 

enabling increased substrate oxidation. Long-term, adrenergic signaling remodels BAT, inducing 

adaptive transcriptional changes that expand thermogenic capacity. Here, we show that the 

estrogen-related receptors alpha and gamma (ERRα, ERRγ) are collectively critical effectors of 

adrenergically stimulated transcriptional reprogramming of BAT. Mice lacking adipose ERRs 

(ERRαγAd−/−) have reduced oxidative and thermogenic capacity and rapidly become hypothermic 

when exposed to cold. ERRαγAd−/− mice treated long term with a β3-adrenergic agonist fail to 

expand oxidative or thermogenic capacity and do not increase energy expenditure in response to 

norepinephrine (NE). Furthermore, ERRαγAd−/− mice fed a high-fat diet do not lose weight or 

show improved glucose tolerance when dosed with β3-adrenergic agonists. The molecular basis of 

these defects is the finding that ERRs mediate the bulk of the transcriptional response to 

adrenergic stimulation.
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Graphical abstract

INTRODUCTION

Brown adipose tissue (BAT) specializes in the regulated production of heat, also known as 

“adaptive” or “non-shivering” thermogenesis (Cannon and Nedergaard, 2004). To fulfill this 

function, BAT is rich in mitochondria and expresses the mitochondrial uncoupling protein 1 

(Ucp1). Upon exposure to cold, local release of the adrenergic agonist norepinephrine (NE) 

induces thermogenesis by activating Ucp1, which generates heat by dissipating the 

mitochondrial proton gradient and allowing high rates of substrate oxidation. The capacity 

of BAT to convert stored chemical energy to heat is important for the defense of body 

temperature in cold environments and may also serve to expend energy at times of caloric 

excess, as in “diet-induced thermogenesis,” and thus counteract obesity (Cannon and 

Nedergaard, 2004). Importantly, the thermogenic capacity of BAT shows plasticity: it can be 

expanded in response to repeated or prolonged exposure to cold or attenuated and even lost 

in response to thermoneutral environments, aging, obesity, or denervation of the tissue 

(Dulloo and Miller, 1984; Ouellet et al., 2011; Saito et al., 2009; Yoneshiro et al., 2011). 

Although it is well recognized that adrenergic stimulation is the main signal that drives the 

expansion of thermogenic capacity, the transcription factors that transform this signal into 

long-term adaptive changes in energy expenditure remain poorly defined.

The estrogen-related receptors (ERRα, ERRβ, and ERRγ) are closely related members of 

the nuclear receptor family. They have no known endogenous ligands and, despite their 

name, do not bind estrogen (Giguere et al., 1988). Several features of ERRs suggest that 

these receptors could play important roles in the adrenergic-driven remodeling of BAT. First, 

they are highly and preferentially expressed in BAT vs. white adipose tissue (WAT), with 

ERRα being the most abundant, followed by ERRγ and then ERRβ (Bookout et al., 2006; 

Gantner et al., 2014). Second, ERRs are strongly activated by PGC-1α and Gadd45γ, two 

regulators that are induced by cold in BAT (Gantner et al., 2014; Puigserver et al., 1998). 
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Finally, ERRs directly regulate the transcription of genes important for oxidative and 

thermogenic capacity. ERRα controls genes encoding factors of mitochondrial biogenesis, 

tricarboxylic acid (TCA) cycle, lipid oxidation, and angiogenesis (Arany et al., 2008; Huss 

et al., 2004, 2015; Mootha et al., 2004; Schreiber et al., 2004). ERRγ shares many ERRα 
targets and when overexpressed can induce Ucp1 expression and oxidative capacity in brown 

adipocytes (Dixen et al., 2013; Dufour et al., 2007; Gantner et al., 2014). However, whole-

body ERRα KO mice show no defects in the transcriptional response to adrenergic 

stimulation, even though they have decreased BAT mitochondrial content and are sensitive to 

cold (Luo et al., 2003; Villena et al., 2007). The physiological roles of ERRγ or ERRβ in 

BAT are not known.

To address the role of adipose ERRs in BAT physiology and specifically the transcriptional 

remodeling that takes place in response to adrenergic stimulation, we have generated adipose 

tissue-specific knockout mice lacking different combinations of ERRs. Because young mice 

grown at regular vivarium temperatures need BAT function to effectively defend their body 

temperature, we have bred and raised WT and ERRAd−/− at thermoneutrality. This approach 

minimizes confounding factors such as increased adrenergic tone in mice that have BAT 

defects (Schulz et al., 2013). Here, we show that mice lacking either ERRα alone or both 

ERRβ and ERRγ in adipose tissue have minor changes in their BAT, whereas mice lacking 

ERRα and ERRγ (the two main isoforms in BAT) have severe defects in oxidative and 

thermogenic capacity. Remarkably, when mice are treated with a β3-adrenergic agonist, the 

transcriptional response of BAT is virtually entirely dependent on ERRs. Mice lacking 

adipose ERRα and ERRγ also fail to enhance their oxidative and thermogenic capacity, 

even though adrenergic cytoplasmic signaling is preserved. Our findings show that ERRs are 

essential for BAT remodeling in response to adrenergic stimulation and suggest that ERR 

activation may sensitize BAT to adrenergic signals and lead to increased energy expenditure.

RESULTS

ERRs Act Collectively and in a Redundant Manner to Protect BAT Oxidative Capacity In 
Vivo

We recently showed that ERRs act redundantly to preserve mitochondrial function in 

primary brown adipocytes (Gantner et al., 2016), suggesting that ERRs may collectively 

control brown adipocyte oxidative and thermogenic function in vivo. To test this notion, we 

generated three lines of mice lacking different combinations of ERRs specifically in adipose 

tissue: mice lacking just ERRα, the most abundant ERR in adipose tissue (ERRαAd−/−); 

mice lacking ERRβ and ERRγ, the two ERRs that are highly enriched in BAT compared 

with WAT (ERRβγAd−/−); and mice that lack ERRα and ERRγ, the two most abundant 

ERRs in BAT and WAT (ERRαγAd−/−) (Dixen et al., 2013; Gantner et al., 2014). To 

minimize the effect of thermal stress at standard vivarium temperatures, all mice were born 

and raised at thermoneutrality (30°C). Loss of ERRs in BAT was confirmed at the mRNA 

level for all three isoforms (Figure 1A) and at the protein level for ERRα and ERRγ (Figure 

1B); ERRβ protein could not be detected reliably in WT BAT with currently available 

antibodies. Decreases in ERR mRNA were also observed in inguinal WAT, but not skeletal 

muscle, confirming that the adiponectin promoter-driven knockout was tissue specific 
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(Figures S1A and S1B). Notably, ERRβ mRNA was nearly undetectable in the BAT of 

ERRαγAd−/− mice, suggesting that double knockout of ERRα and ERRγ results in the 

practical loss of all three ERRs (Figure 1A). We next measured the mRNA levels in BAT of 

known ERR target genes involved in the TCA cycle and oxidative phosphorylation (OxPhos; 

Dufour et al., 2007; Schreiber et al., 2004; Villena et al., 2007). Loss of ERRα alone 

(ERRαAd−/−) showed decreases in many but not all of these genes, whereas loss of ERRβ 
and ERRγ (ERRβγAd−/−) had no significant effect (Figure 1C). However, the parallel loss 

of ERRα and ERRγ (ERRαγAd−/−) resulted in larger decreases and in all tested ERR 

targets, consistent with ERRs complementing each other in regulating gene expression in 

BAT (Figure 1C). Similarly, ERRαAd−/− and ERRβγAd−/− mice showed minor defects in 

BAT OxPhos protein and mtDNA content, but ERRαγAd−/− mice displayed a dramatic loss 

of BAT OxPhos complexes I–IV and a ~60% reduction in mtDNA content (Figures 1D–1F). 

These data show that ERRs display robust redundancy in protecting BAT oxidative capacity 

in vivo. Thus, to test the collective role of ERRs in adipose tissue function, we focused on 

studying BAT function in the ERRαγAd−/− mice, which showed pronounced defects in 

oxidative capacity.

Loss of ERRα and ERRγ Impairs BAT Thermogenic Capacity without Affecting 
Adipogenesis or BAT Identity

BAT is characterized by its brown color, the presence of small multilocular lipid droplets, a 

high density of mitochondria, and the expression of Ucp1 (Cannon and Nedergaard, 2004). 

In mice lacking adipose ERRα and ERRγ, the interscapular BAT depot was paler than WT 

BAT (Figure 2A) and showed notably increased lipid accumulation (Figure 2B). Electron 

microscopy imaging revealed sparse BAT mitochondria that were often malformed and with 

few visible cristae (Figure 2C). The abnormal mitochondrial structure was coupled with 

decreased expression of genes important for mitochondrial morphology and cristae structure 

(Figure 2D). Importantly, loss of adipose ERRs did not result in decreased expression of 

markers of BAT differentiation (Prdm16, Zic1, Lhx8, Ebf2) or adipogenesis (Pparg, Fabp4), 

indicating that the lipid accumulation and changes in mitochondria were not secondary to 

defects in the program of development or differentiation of BAT (Figure 2E). In support of 

the dramatic decrease in expression of TCA genes and OxPhos complexes I–IV shown in 

Figure 1, other genes of these pathways were also significantly reduced (Cox7a1 and Cs) in 

ERRαγAd−/− BAT (Figure 2F). ERRαγAd−/− BAT also displayed decreased expression of 

genes important for fatty acid oxidation (Figure 2G) and increased expression of genes that 

regulate fatty acid biosynthesis and storage (Figure 2H), which may contribute to the 

increase in lipid accumulation. Additional lipid metabolism genes and other pathways, such 

as creatine metabolism, were also altered in ERRαγAd−/− mice (Figures S2A and S2B). 

Finally, the expression of two hallmark genes essential for thermogenesis, Ucp1 and Dio2, 
was severely defective in BAT of ERRαγAd−/− mice (Figure 2I). Ucp1 protein levels were 

also dramatically decreased (Figure 2J), in a manner consistent again with largely redundant 

roles of ERRs (Figure S2C). The decreased Ucp1 expression suggested that thermogenic 

activity would be greatly reduced. Indeed, when exposed to 4°C, ERRαγAd−/− mice were 

very cold intolerant and became hypothermic in less than 2.5 hr (Figure 2K). These findings 

show that adipose ERRs are required to maintain proper oxidative and thermogenic capacity 

in BAT and to defend body temperature upon acute cold exposure.
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To gain insights into the level at which ERRs control mitochondrial content and thermogenic 

function, we next assessed the expression levels of other transcriptional regulators of 

oxidative metabolism and thermogenesis genes. The two nuclear transcriptional co-

regulators that drive mitochondrial biogenesis and Ucp1 expression in BAT, Ppargc1a and 

Ppargc1b (Puigserver et al., 1998; Uldry et al., 2006), were moderately up- and down-

regulated, respectively, at the mRNA level (Figure 2L); assessment of their protein 

expression showed a trend for both co-regulators to be at higher levels in ERRαγAd−/− than 

WT BAT (Figure S2D). The mRNA levels of other regulators of BAT oxidative capacity and 

Ucp1 were not altered (Nrf1 and Gadd45γ), moderately (320%) decreased (Gabpa), or 

increased (Irf4) (Figure 2L). The small changes in the expression of these regulators are thus 

unlikely to explain the dramatic loss of mitochondrial structure and proteins. On the other 

hand, we observed decreases in the expression of nuclear genes that encode regulators of 

mtDNA expression, such as Tfam, Tfb2m, Polrmt, and most notably the ERR targets Sirt3 
and Endog (Giralt et al., 2011; McDermott-Roe et al., 2011; Figure 2M), suggesting that the 

loss of ERRs is sufficient to compromise expression of genes important for mitochondrial 

biogenesis and thermogenesis even when other known nuclear transcriptional regulators of 

these programs are largely unaffected.

Adipose ERRs Are Essential for the Remodeling of BAT Induced by β3-Adrenergic 
Agonists

Adrenergic stimulation of BAT promotes tissue remodeling by enhancing mitochondrial 

biogenesis and Ucp1 expression, thereby increasing long-term oxidative and thermogenic 

capacity (Cannon and Nedergaard, 2004). To determine if ERRs are required for BAT 

remodeling in response to adrenergic stimulation, mice were injected with the β3-specific 

adrenergic agonist CL316,243 or PBS as a control, for 10 days. As expected, WT mice 

treated with CL316,243 had darker BAT depots (Figure 3A; lower left panel) and decreased 

lipid accumulation, relative to WT mice treated with PBS (Figure 3B; lower left panel). 

These responses to CL316,243 treatment were completely dependent on ERRs, as PBS- and 

CL316,243-treated ERRαγAd−/− mice had similar pale color and high lipid content in their 

BAT depots (Figures 3A and 3B). Moreover, CL316,243 treatment resulted in mitochondrial 

changes, such as increased cristae density, in WT but not in ERRαγAd−/− mice (Figure 3C). 

Instead, mitochondria from ERRαγAd−/− mice treated with CL316,243 appeared to form 

abnormal circle-shaped cristae structures (Figure 3C; lower right panel). mtDNA content 

increased upon CL316,243 treatment in both WT and ERRαγAd−/− mice but remained very 

low in ERRαγAd−/− mice (Figure 3D). In WT BAT, CL316,243 treatment also elicited 

greater than 2-fold increases in protein expression of OxPhos complexes I and II and smaller 

but significant increases in complexes III and IV. These increases were considerably blunted 

in the BAT of ERRαγAd−/− mice (Figures 3E and 3F). Finally, the ability of CL316,243 to 

induce Ucp1 protein (Figure 3G) and Ucp1 mRNA (Figure 3H) in WT BAT was largely lost 

in the BAT of ERRαγAd−/− mice. Notably, the defects in the response to CL316,243 were 

not due to impaired adrenergic signaling. Primary brown adipocytes isolated from 

ERRαγAd−/− mice displayed full induction of hormone-sensitive lipase (HSL) 

phosphorylation and of lipolysis upon NE or CL316,243 stimulation (Figures S3A and 

S3B). Moreover, acute treatment of mice with CL316,243 induced the phosphorylation of 

HSL, the MAPK p38, and the transcription factor ATF2 in ERRαγAd−/− mice (Figures S3C 
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and S3D). Finally, CL316,243 induced lipolysis in ERRαγAd−/− BAT explants as efficiently, 

if not better than in WT BAT explants (Figure S3E).

To obtain an unbiased view of the contribution of ERRs to the β3-adrenergic-induced 

remodeling of BAT, we next used RNA sequencing to compare the global transcriptional 

changes induced by 10 days of CL316,243 treatment in WT and ERRαγAd−/− BAT depots. 

CL316,243 enhanced the expression of 1,024 genes in WT mice but only 352 genes in 

ERRαγAd−/− mice (applying cut-offs of 1.5-fold increase and p < 0.05; Figures 4A and 4B). 

Strikingly, only 219 of the 1,024 genes induced by CL316,243 in WT mice were 

significantly induced in ERRαγAd−/− BAT depots, showing that ERRs are required for the 

vast majority (380%) of the transcriptional adaptation to chronic β3-adrenergic stimulation 

(Figures 4A and 4B). Moreover, the absolute levels of 109 of the 219 genes induced in both 

WT and KO mice were significantly lower in ERRαγAd−/− BAT relative to WT BAT 

(Figures 4Aii and 4Bii). Overall, 389% of the genes induced by CL316,243 in WT BAT 

were dependent on ERRs for their full induction. Pathway analyses of the differentially 

expressed genes identified “mitochondrial dysfunction” and “oxidative phosphorylation” as 

the top two canonical pathways regulated by CL316,243 in WT BAT; neither of these 

pathways was significantly regulated by CL316,243 in ERRαγAd−/− BAT (Table 1). Of the 

top pathways regulated by CL316,243 in WT BAT, “Fatty-acid β-oxidation” remained 

preserved and became the top regulated pathway in ERRαγAd−/− BAT (Tables 1 and S1). 

Thus the loss of ERRs selectively altered the nature of the CL316,243-induced response by 

affecting specific and highly regulated pathways, rather than just attenuating CL316,243-

induced responses across all pathways. Notably, the role of ERRs in the CL316,243-induced 

transcriptional remodeling extended beyond the predicted regulation of mitochondrial, 

OxPhos, and TCA cycle genes. Among the 20 genes highest induced by CL316,243 in WT 

BAT, 14 genes rely on ERRs for their induction and these include genes of lipid, 

phospholipid, and glycosphingolipid synthesis, as well as signaling proteins, a K+ channel, a 

carbonic anhydrase, and proteins of unknown function (Figure S4A).

To gain insights into the global roles of BAT ERRs, we next analyzed the RNA-sequencing 

data to define genes and pathways whose expression is affected by ERRs, by comparing WT 

and ERRαγAd−/− BAT of PBS- or CL316,243-treated mice (Figures 4C and 4D). The top 

ERR-regulated pathways were “oxidative phosphorylation,” “mitochondrial dysfunction,” 

and “TCA cycle,” i.e., the same pathways that were induced by CL316,243 in WT BAT 

(Tables S2 and 1). Notably, a heatmap representation of ERR-dependent gene expression 

shows that the levels of many of these genes were enhanced by CL316,243 in WT BAT 

(Figure 4C). Furthermore, ERRs affected the expression of a broader set of genes in 

CL316,243-treated than in PBS-treated mice, suggesting that ERR signaling was enhanced 

by the β3-adrenergic agonist (Figure 4D). In summary, there was a high correlation between 

ERR dependency and CL316,243 induction of gene expression, consistent with the notions 

that (1) the majority of the transcriptional changes induced by CL316,243 require ERRs and 

(2) ERR signaling is enhanced by CL316,243.
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ERRs Contribute to the CL316,243-Induced Browning of Inguinal WAT

In addition to its effects on BAT, β3-adrenergic stimulation leads to the appearance of 

brown-like adipocytes in inguinal WAT (ingWAT), a process known as browning or beiging 

(Granneman et al., 2005; Guerra et al., 1998). Therefore we assessed the ability of 

CL316,243 to induce browning of ingWAT in WT and ERRαγAd−/− mice. CL316,243 

treatment led to the prominent appearance of multilocular adipocytes in the ingWAT of WT 

mice but had minimal effects on the adipocytes of the ingWAT of ERRαγAd−/− mice (Figure 

5A). CL316,243 also significantly increased the protein levels of all five OxPhos complexes 

in WT ingWAT (Figures 5B and 5C), a response that was blunted in ERRαγAd−/− mice. 

Similarly, CL316,243 treatment dramatically induced Ucp1 protein and mRNA in WT 

ingWAT (nearly 100-fold) but had notably more modest effects (310-fold) on Ucp1 
expression in ERRαγAd−/− ingWAT (Figures 5D and 5E). Similarly blunted responses to 

CL316,243 were seen for several other genes involved in the TCA and OxPhos (Figure 5F). 

The reduced response to CL316,243 was not due to impaired β3-adrenergic signaling, as 

primary inguinal white adipocytes isolated from these mice displayed full induction of HSL 

phosphorylation and lipolysis upon NE or CL316,243 stimulation (Figure S5). In summary, 

the ingWAT of ERRαγAd−/− mice showed impaired “browning,” as assessed by histological 

analysis and measurements of mitochondrial protein and Ucp1 expression, suggesting that 

ERRs also contribute to the remodeling of ingWAT driven by β3-adrenergic signaling.

Adipose ERRs Are Important for the Acute Enhancement of Whole-Body Metabolism by β-
Adrenergic Stimulation

Adrenergic activation of BAT enhances whole-body energy expenditure (Xiao et al., 2015). 

To determine the relative significance of adipose ERRs to whole-body metabolism, we 

tested the acute metabolic response of WT and ERRαγAd−/− mice to adrenergic agonists, 

using indirect calorimetry. Notably, ERRαγAd−/− and WT littermates treated with PBS 

showed no differences in oxygen consumption, body temperature, or respiratory exchange 

ratio (RER), suggesting that the decreased oxidative and thermogenic capacity of 

ERRαγAd−/− mice is not important for whole-body metabolism in a thermoneutral, basal 

state (Figures 6A–6C and S6A). An injection of CL316,243 led to a dramatic increase in 

oxygen consumption in WT mice but had a minimal effect, similar to injection of PBS, in 

ERRαγAd−/− mice (Figure 6D), demonstrating that ERRs are required for the metabolic 

response to CL316,243. There were no differences in physical activity between the groups 

(Figures S6B and S6D). Parallel to the increase in oxygen consumption, CL316,243 caused 

a small but significant and sustained (over 36 hr) increase in basal body temperature of WT 

mice that was not seen in ERRαγAd−/− mice (Figure 6E). CL316,243 also led to a 

significant decrease in the RER of WT mice, consistent with increased lipid metabolism 

(Figures 6C and S6C). The RER of CL316,243-treated ERRαγAd−/− mice was not 

significantly different from that of WT and ERRαγAd−/− mice injected with PBS (Figure 

6C, S6A, and S6C), although it is possible that a CL316,243-induced increase in adipose 

tissue lipolysis may have increased lipid utilization in other tissues, such as skeletal muscle. 

Interestingly, WT mice treated with CL316,243 for 10 days displayed a mild, but significant, 

increase in oxygen consumption even on the day after the injection (during the active phase, 

32–44 hr after an injection [Figure 6F]), suggesting a prolonged effect of chronic β3-

adrenergic stimulation on whole-body energy expenditure. Again, this was not seen in 
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ERRαγAd−/− mice. Overall, our data show that ERRs are required for the metabolic 

response to β3-adrenergic stimulation.

The β3-adrenergic agonist CL316,243 is a pharmacologic agent that acts selectively and 

potently on adipose tissue. To test the relative significance of ERRs in a more physiological 

context, we next compared the metabolic response of WT and ERRαγAd−/− mice to the 

native agonist, NE, which activates a wider range of adrenergic receptors, including β1 and 

α1 types (Nedergaard and Cannon, 2014). NE was administered to naive mice (treated with 

PBS), as well as to mice with “trained” BAT (treated with CL316,243 for 10 days). NE 

injection evoked significantly higher oxygen consumption rates in WT mice than in 

ERRαγAd−/− mice, in both PBS- and CL316,243-treated groups (Figures 6G and 6H), 

showing that adipose ERRs are important for whole-body oxidative and thermogenic 

capacity in a physiological context. Furthermore, the difference in maximal oxygen 

consumption rates between WT and ERRαγAd−/− mice treated with NE was more 

pronounced in mice that had received CL316,243 for 10 days relative to mice treated with 

PBS (Figure S6E), supporting the notion that CL316,243-dependent remodeling of adipose 

tissues increased the thermogenic capacity in WT but not in ERRαγAd−/− mice.

ERRs Are Required for CL316,243-Induced Weight Loss and Improved Glucose Tolerance 
in HFD Mice

The mice studied earlier were fed a chow diet and were fairly lean. CL316,243 treatment 

induced a decrease in the adiposity of WT mice that was not seen in ERRαγAd−/− mice, but 

it did not result in significant changes in body weight (Figures S6F and S6G). CL316,243 

has been shown to confer greater metabolic improvements in mice fed a high-fat diet (HFD) 

compared with chow diet (Xiao et al., 2015). Hence, we next put WT and ERRαγAd−/− mice 

on an HFD before evaluating the effects of CL316,243 treatment. WT and ERRαγAd−/− 

mice had a similar food intake (Figure S7A), and after 18 weeks on the HFD, similar body 

weights and glucose tolerance (Figures 7A and 7B). Subsequent treatment of the mice with 

CL316,243 (14 injections over 4 weeks, given every other day, since we observed sustained 

effects of CL316,243 on energy expenditure [Figure 6F]) led to significantly higher body 

weight loss in WT mice than in ERRαγAd−/− mice (Figures 7C and 7D), with WT mice 

losing on average 320% and ERRαγAd−/− mice losing just 3.7% of their body weight. 

CL316,243 treatment also improved glucose tolerance in WT mice (Figure 7E) but had no 

effect in ERRαγAd−/− mice (Figure 7F), revealing that adipose ERRs are required for the 

beneficial metabolic effects of β3-agonists.

DISCUSSION

Deciphering the transcriptional networks that regulate BAT development and function is 

important for developing therapeutic strategies to increase energy expenditure via non-

shivering thermogenesis for the treatment of obesity. In the last several years, there has been 

much progress in understanding transcriptional mechanisms that control the commitment of 

stem cells to the brown/beige preadipocyte lineage and/or the differentiation of 

preadipocytes to mature brown or beige adipocytes (Lynes and Tseng, 2015; Wang and 

Seale, 2016). Once differentiated, however, brown adipocytes require additional signals and 
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factors to maintain and expand their thermogenic capacity (Cannon and Nedergaard, 2004; 

Peirce et al., 2014). Notably, exposure to cold and pharmacologic administration of β3-

adrenergic agonists can enhance the thermogenic capacity and/or energy expenditure in both 

rodents and humans (Cannon and Nedergaard, 2004; Cypess et al., 2015; van der Lans et al., 

2013; Yoneshiro et al., 2013). We show here that ERRs perform a central and essential role 

in mature brown adipocytes in determining both the basal thermogenic capacity and the 

ability to expand this capacity. Although past studies revealed a role for ERRα in building 

the high basal mitochondrial content of BAT (Villena et al., 2007), the current study provides 

multiple lines of evidence that highlight that ERRs, collectively, play a substantially more 

important role than previously appreciated. First, double deletion of ERRα and ERRγ in 

mature adipocytes resulted in an extreme loss of mitochondrial content, with the remaining 

mitochondria having abnormal cristae and overall morphology and almost no Ucp1 protein; 

in comparison, mice lacking just ERRα (the most abundant BAT ERR isoform) had a milder 

reduction in mitochondrial content, and their mitochondria had normal morphology, 

oxidative function, and Ucp1 expression (Villena et al., 2007). Second, mice lacking adipose 

ERRα and ERRγ show remarkable defects in their adaptive response to adrenergic 

stimulation, failing to remodel their transcriptome, expand their thermogenic capacity, and 

attain the metabolic benefits of β3-adrenergic agonists.

ERRα and ERRγ have been shown to bind similar sites on the genome and to regulate 

overlapping sets of genes (Dufour et al., 2007; Huss et al., 2015), suggesting that a certain 

degree of redundancy in their action is to be expected. Recent studies have also highlighted 

the complimentary roles of ERRs in determining the oxidative capacity in primary brown 

adipocytes and in the heart (Gantner et al., 2016; Wang et al., 2015). Yet, the extent to which 

mice lacking either just ERRα (ERRαAd−/−) or ERRβ and ERRγ together (ERRβγAd−/−) 

maintain their mitochondrial content and OxPhos levels, despite a substantial loss of total 

ERR protein, is surprising. This functional compensation is seen without an upregulation of 

the remaining ERR isoforms, suggesting that BAT, at least in young mice, expresses ERRs at 

much higher levels than necessary for maintaining basal oxidative function. It will be 

interesting to assess ERR expression in the BAT depots of mice and humans at different 

ages, to establish if this high ERR reserve diminishes with age, as BAT function declines.

A most striking finding in our study is the key role of ERRs in the adrenergic response of 

BAT. This was unexpected, based on studies of the ERRα KO mouse, which showed normal 

induction of gene expression in response to adrenergic stimulation (Villena et al., 2007). 

Importantly, adrenergic signaling, judged by phosphorylation of HSL, p38, and ATF2 and 

induction of lipolysis, is intact in BAT lacking ERRs, suggesting that ERRs act downstream 

of such signals to effect the transcriptional changes elicited by adrenergic stimulation. ERRs 

likely integrate adrenergic signaling in more than one way. PGC-1α and PGC-1β, whose 

expression and/or activity are increased via cAMP, protein kinase A (PKA), and p38 

signaling, are potent co-activators of all three ERRs (Gantner et al., 2014; Huss et al., 2002; 

Kamei et al., 2003; Schreiber et al., 2003). Moreover, Gadd45γ, whose expression is also 

induced by adrenergic signaling in a cAMP- and PKA-dependent manner, activates p38 and 

ERRβ/γ-dependent transcription in a PGC-1 independent manner (Gantner et al., 2014). 

Notably, although the absence of ERRs does not block adrenergic signaling, it may lead to a 

partial activation of the pathway in the basal state. We observed higher levels of phos-pho-
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p38, phospho-ATF2, and PGC-1α in the absence of adrenergic stimulation. The underlying 

mechanisms are not clear.

Once activated, ERRs are likely direct positive regulators of many adrenergically induced 

genes. Although some of the pathways induced by β3-adrenergic agonism (e.g., 

mitochondrial function, oxidative phosphorylation, and TCA cycle) were known to be 

regulated by ERRs (Hock and Kralli, 2009; Villena and Kralli, 2008), our RNA sequencing 

data show a much broader set of adrenergic responses, extending beyond the control of 

mitochondrial biogenesis, that rely on ERRs. Some of the highly induced genes, such as 

Ucp1, Dio2, and Fndc5 (Figure S4), have ERR response elements and are regulated by 

ERRs (Debevec et al., 2007; Dixen et al., 2013; Gantner et al., 2016; Wrann et al., 2013), 

suggesting that others are also direct targets. Notably, there are adrenergically induced genes 

that are not dependent on ERRs, consistent with adrenergic signaling being intact, and ERRs 

not required for all components of the adrenergic response. In particular, the induction of the 

FAO pathway is retained. Ingenuity Pathway Analysis for regulators of the genes in the FAO 

pathway suggests that this may be due to Pparα, whose expression is increased by 

CL316,243 in the BAT of ERRαγAd−/− mice, and Klf15, which is modestly increased in the 

BAT of ERRαγAd−/− (Figure S4). Even though the induction of FAO genes is retained, FAO 

is likely defective in ERRαγAd−/− BAT, owing to the mitochondrial impairment. Finally and 

importantly, we do not expect that all genes and proteins whose expression is reduced in the 

BAT of ERRαγAd−/− mice are direct ERR targets. Loss of mitochondria and mitochondria-

derived signals, as well as of the further actions of direct ERR targets (e.g., a potential 

paracrine function of Fndc5), may contribute to the loss of adaptive responses to adrenergic 

stimulation. In addition, the decrease in mitochondrial content likely contributes to the post-

translational loss of expression of many mitochondrial proteins whose stability requires 

proper localization, including Ucp1.

The thermogenic capacity of BAT can be harnessed to increase energy expenditure and 

counteract obesity and obesity-related metabolic dysfunction (Lee et al., 2014). Consistent 

with this notion, when treated with the β3-adrenergic agonist CL316,243, WT mice 

increased their energy expenditure, lost weight, and showed improvements in glucose 

homeostasis. ERRαγAd−/− littermates were defective in all three responses, demonstrating 

the importance of ERR-controlled pathways in adipose tissue for the effects of β3-adrenergic 

stimulation on energy balance. Nonetheless, ERRαγAd−/− mice were not prone to obesity in 

the absence of CL316,243 administration, whether on chow or HFD diet. This was 

irrespective of gender, as similar findings were seen in female and male mice fed a HFD 

(Figure S7). On the one hand, this finding is not surprising, because our studies were 

performed at thermoneutrality, when BAT receives minimal adrenergic stimulation (Xiao et 

al., 2015). Other mutant mice with BAT thermogenic defects are also not prone to obesity 

(Emmett et al., 2017; Lee et al., 2016). On the other hand, BAT thermogenic capacity has 

been proposed to be important for diet-induced thermogenesis, i.e., the ability to increase 

energy expenditure in response to caloric excess, as in HFD (Feldmann et al., 2009; Kazak 

et al., 2017). There can be many explanations as to why ERRαγAd−/− mice do not show 

increased obesity. First, diet-induced thermogenesis, the basis of which is less well 

understood than cold-induced thermogenesis, may involve signals and pathways that are 

sufficiently retained in ERRαγAd−/− mice. Second, minor differences in vivarium 
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temperatures or in the length of time spent at thermoneutrality may explain the different 

outcomes seen with different models. In our study, mice were born, raised, and studied at 

thermoneutrality, to minimize the impact that standard vivarium temperatures have on mice 

with defective BAT (Schulz et al., 2013). Finally, the adrenergic system can be activated by 

stress, so additional differences in vivarium conditions housing may affect findings.

Even though loss of BAT may not always give rise to obesity, it is clear that increased BAT 

capacity, coupled to activation, as seen at standard vivarium temperatures for mice, can lead 

to protection from obesity (Cohen and Spiegelman, 2015). Indeed, mice with increased 

adipose PGC-1α/ERRα signaling, as seen in mice lacking the tumor suppressor folliculin, 

show elevated oxidative metabolism, resistance to hypothermia, and protection from HFD-

induced obesity (Yan et al., 2016). Although ERRs are nuclear receptors with no known 

endogenous ligand, crystallography studies show that they are amenable to drug design, with 

hydrophobic pockets that can accommodate synthetic ligands (Coward et al., 2001; Kallen et 

al., 2007; Wang et al., 2006). Synthetic agonists, such as GSK4716, can enhance the activity 

of ERRβ and ERRγ (Wang et al., 2006; Zuercher et al., 2005). Newer GSK4716-derived 

molecules can activate ERRγ and promote WAT browning (Xu et al., 2015), although the 

specificity of these ligands has not been tested yet in vivo. Our findings suggest that 

pharmacological activation of ERRs may be beneficial by increasing brown (and beige) 

adipose tissue thermogenic capacity. Moreover, increased ERR activity may sensitize 

adipose tissues to the action of adrenergic agonists. The concept of using β3-adrenergic 

agonists to pharmacologically activate BAT in humans was floated long ago but has been 

difficult to apply (Lee and Greenfield, 2015). Recently, mirabregon, a β3-adrenergic agonist 

used in the treatment of overactive bladder, was shown to activate BAT in humans, albeit at 

doses four times higher than that of the current US Food and Drug Administration–approved 

dose and with adverse effects on the cardiovascular system (Cypess et al., 2015). 

Administration of ERR agonists could prime the adipose tissue for a more effective response 

to β3-adrenergic agonism, thereby enabling the use of lower doses. Future studies will be 

needed to evaluate the potential of ERR agonists to enhance BAT thermogenesis and energy 

expenditure, alone or in combination with β3-adrenergic stimulation.

In conclusion, we have demonstrated that ERRs are critical transcriptional regulators that 

control adipose tissue plasticity and orchestrate the adaptive remodeling induced by 

adrenergic stimuli. Our findings underscore the potential of targeting ERRs to expand 

energy expenditure capacity, which may be harnessed for the treatment of metabolic disease.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

Adipose ERRs collectively control brown fat oxidative and thermogenic capacity

Adipose ERRs are essential for BAT remodeling induced by β-adrenergic agonism

ERRs control the bulk of the transcriptional response to adrenergic stimulation

Mice that lack adipose ERRs show no metabolic benefits of β-adrenergic agonism
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Figure 1. ERRs Act Collectively and in a Redundant Manner to Promote BAT Mitochondrial 
Oxidative Capacity
(A) Relative ERR mRNA levels in BAT from WT or littermate mice with adipose-specific 

deletions of ERRα (ERRαAd−/−), ERRβ and ERRγ (ERRβγAd−/−), or ERRα and ERRγ 
(ERRαγAd−/−), expressed relative to the levels of each gene in WT BAT and normalized to 

Ppia. Numbers above bars represent Ct (threshold cycle) values for each ERR isoform in 

WT BAT.

(B) Western blot of ERRα, ERRγ, and RAN (ras-related nuclear protein; loading control).

(C) Relative mRNA levels of genes acting in the tricarboxylic acid (TCA) cycle and/or 

oxidative phosphorylation (OxPhos) and normalized to Ppia.

(D) Representative western blot of OxPhos complexes I–V and RAN (loading control) 

protein.

(E) Quantification of OxPhos complexes, based on blots of panel D (expressed relative to 

levels in WT BAT and normalized to RAN protein). (F) Relative mitochondrial DNA 

(mtDNA) copy number, normalized to gDNA in BAT of the same mice.

(A–F) Mice were born and raised at thermoneutrality (30°C) and euthanized at 12 weeks of 

age. Data are mean ± SD of 14 WT, 4 ERRαAd−/−, 6 ERRβγAd−/−, and 5 ERRαγAd−/− 

mice. *p < 0.05, **p < 0.01, ***p < 0.001 vs. WT BAT. WT data in panels A, C, E, and F 

are the accrued data of all WT littermates of ERRα floxed, ERRβγ floxed, and ERRαγ 
floxed mice. There were no differences between WT mice of the different cohorts. The same 

loading control (RAN) is presented in panels B and D. See also Figure S1, Table S3.
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Figure 2. Loss of ERRα and ERRγ Impairs BAT Thermogenic Capacity without Affecting 
Adipogenesis or BAT Identity
(A) Gross morphology of interscapular BAT depots from WT and ERRαγAd−/− mice.

(B) H&E staining of BAT at 400× magnification.

(C) Electron microscopy of mitochondria and surrounding lipid droplets in BAT. L, lipid 

droplet.

(D–I, L, and M) Relative mRNA levels of genes involved in mitochondrial morphology and 

cristae structure (D), adipogenesis and BAT identity (E), OxPhos and TCA cycle (F), fatty 

acid (FA) oxidation (G), FA biosynthesis and storage (H), thermogenesis (I), nuclear 

regulation of the mitochondrial oxidative metabolism program (L), and mitochondrial 

regulation of mitochondrial biogenesis (M).

(J) Western blot of Ucp1 protein and RAN (loading control).

(K) Body temperature of WT and ERRαγAd−/− female mice either at 30°C or moved from 

30°C to 4°C for 2.5 hr (n = 5). **p < 0.01, ***p < 0.001 vs. WT 4°C.

Mice were born and raised at thermoneutrality (30°C) and euthanized at 12 weeks of age. 

mRNA data are from male and female mice combined and normalized to Ppia (n = 7–18). 

Protein data shown here are from male mice. Data are mean ± SEM. *p < 0.05, **p < 0.01, 

***p < 0.001 vs. WT BAT. See also Figure S2 and Table S3.
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Figure 3. Effect of 10 Days’ Treatment with CL316,243 on BAT of WT and ERRαγAd−/− Mice
(A) Gross morphology of interscapular BAT from WT and ERRαγAd−/− mice. Upper panel: 

PBS (before and after dissection from surrounding WAT). Lower panel: CL316,243 (before 

and after dissection from surrounding WAT).

(B) H&E staining of BAT at 400× magnification.

(C) Electron microscopy of mitochondria and surrounding lipid droplets in BAT. L, lipid 

droplet; arrows point to abnormal cristae formations.

(D) Relative mtDNA copy number, normalized to gDNA (n = 9–19).

(E) Representative western blot of OxPhos complexes I–V, ERRα, ERRγ, and RAN 

(loading control).

(F) Quantification of OxPhos western blots, normalized to RAN protein levels (n = 6–9).

(G) Representative western blot of Ucp1 protein and RAN (loading control).

(H) Ucp1 mRNA, normalized to Ppia mRNA (n = 6–7).

Male mice were born and raised at thermoneutrality (30°C), treated with PBS or CL316,243 

for 10 days, and euthanized at 12 weeks of age. Data are mean ± SEM **p < 0.01, ***p < 

0.001 vs. WT in the same treatment; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. PBS in the same 
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genotype. The same loading control (RAN) is presented in panels E and G. See also Figure 

S3 and Table S3.
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Figure 4. Analyses of RNA Sequencing Data of BAT of WT and ERRαγAd−/− Mice Treated with 
CL316,243
(A) Heat maps of genes significantly induced (p < 0.05) by CL316,243 in WT and 

ERRαγAd−/− BAT, using a 1.5-fold cut-off. Minimum and maximum log transformed values 

are 39 and 6, respectively, with visual contrasts set to 2. (i) Genes induced significantly by 

CL316,243 in WT BAT only. (ii) Genes induced by CL316,243 in both WT and 

ERRαγAd−/− BAT, but expression is significantly higher in WT CL316,243 vs. ERRαγAd−/− 

CL316,243. (iii) Genes induced by CL316,243 in both WT and ERRαγAd−/− mice. (iv) 

Genes induced by CL316,243 in ERRαγAd−/− BAT only.

(B) Venn diagram of genes significantly induced (p < 0.05) by CL316,243 in BAT. Sections 

i–iv correspond with genes displayed in heat maps (A).

(C) Heat maps of genes significantly reduced (p < 0.05) in ERRαγAd−/− vs. WT BAT, in 

PBS- and/or CL316,243-treated mice, using a 1.5-fold cut-off. Minimum and maximum log 

transformed values were 35 and 6, respectively, with visual contrasts set to 2. (i) Genes 

reduced in PBS-treated mice only. (ii) Genes reduced in both PBS- and CL316,243-treated 

ERRαγAd−/− mice. (iii) Genes reduced in CL316,243-treated ERRαγAd−/− mice only.

(D) Venn diagrams of genes significantly reduced (p < 0.05) in ERRαγAd−/− BAT. Sections 

i–iii correspond with genes displayed in heat maps (C).

Male mice were born and raised at thermoneutrality (30°C), treated with PBS or CL316,243 

for 10 days, and euthanized at 12 weeks of age (n = 3). See also Figure S4 and Tables 1, S1, 

and S2.
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Figure 5. Effect of 10 Days’ Treatment with CL316,243 on ingWAT of WT and ERRαγAd−/− 

Mice
(A) H&E staining of inguinal white adipose tissue (ingWAT) at 400× magnification.

(B) Representative western blot of OxPhos complexes I–V, ERRα, and RAN (loading 

control).

(C) Quantification of OxPhos complex levels, normalized to RAN protein levels.

(D) Western blot of Ucp1 protein and RAN (loading control).

(E and F) mRNA levels of Ucp1 and TCA/OxPhos genes, normalized to Ppia and expressed 

relative to levels in WT mice treated with PBS (n = 8–14).

Mice are from the same experiment as in Figure 3. Data are mean ± SEM *p < 0.05, **p < 

0.01, ***p < 0.001 vs. WT in the same treatment; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. 

PBS in the same genotype. The same loading control (RAN) is presented in panels B and D. 

See also Figure S5 and Table S3.
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Figure 6. Metabolic Responses to Adrenergic Stimulation in WT and ERRαγAd−/− Mice
(A) Oxygen consumption (VO2) in WT and ERRαγAd−/− mice injected with PBS for 10 

days, on the last day of injections.

(B) Core body temperature of WT and ERRαγAd−/− mice injected with PBS for 10 days, on 

the last day of injections.

(C) Average respiratory exchange ratio (RER) over 6 hr following a PBS or CL316,243 

injection.

(D) VO2 in WT and ERRαγAd−/− mice injected with CL316,243 for 10 days, on the last day 

of injections.

(E) Core body temperature of WT and ERRαγAd−/− mice injected with CL316,243 for 10 

days, on the last day of injections.

(F) Average VO2 over the day and night on the day after the last PBS or CL316,243 

injection (day, 20–32 hr after last injection; night, 32–44 hr after the last injection).

(G) Acute VO2 response to norepinephrine (NE) in WT and ERRαγAd−/− mice that had 

been treated with PBS for 10 days.

(H) Acute VO2 response to NE in WT and ERRαγAd−/− mice that had been treated with 

CL316,243 for 10 days.
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Male mice were born and raised at thermoneutrality (30°C), treated with PBS or CL316,243 

for 10 days, and euthanized at 12–14 weeks of age. NE responses were tested 2 days after 

the last PBS or CL316,243 injection. Data are mean ± SEM (n = 5–10). *p < 0.05, **p < 

0.01, ***p < 0.001, WT vs. ERRαγAd−/− for each condition; #p < 0.05, ##p < 0.01 vs. WT 

PBS. ZT = zeitgeber time. Different mice were used for calorimetry and telemetry 

experiments. See also Figure S6.
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Figure 7. Effect of Long-term Adrenergic Stimulation on Body Weight and Glucose Tolerance of 
HFD-fed WT and ERRαγAd−/− Mice
(A) Body weights of WT and ERRαγAd−/− mice fed a 60% high fat diet (HFD) for 18 

weeks (n = 12–18).

(B) Glucose tolerance test (GTT) of WT and ERRαγAd−/− mice fed a 60% HFD and before 

treatment. Values are presented as percentage of starting blood glucose (WT, 111.7 ±6.1 

mg/dL; ERRαγAd−/−, 107.1 ±3.7 mg/dL; p = 0.52), (n = 12–18).

(C) Body weights of WT and ERRαγAd−/− mice before and after treatment with PBS or 

CL316,243 (n = 6–9). ***p < 0.001.

(D) Body weight loss of WT and ERRαγAd−/− mice, expressed as percentage of body 

weight before treatment (n = 6–9). *p < 0.01; ***p < 0.001.

(E) GTT of WT mice treated with PBS or CL316,243. Values are presented as percentage of 

starting blood glucose (WT PBS, 74.3 ± 9.9 mg/dL; WT CL316,243, 99.4 ± 8.2 mg/dL; p = 

0.074). (n = 6–9). *p < 0.05, **p < 0.01, ***p < 0.001 vs. WT CL316,243.

(F) GTT of ERRαγAd−/− mice treated with PBS or CL316,243. Values are presented as 

percentage of starting blood glucose (ERRαγAd−/− PBS, 79.9 ± 4.9 mg/dL; ERRαγAd−/− 

CL316,243, 75.2 ± 6.2 mg/dL; p = 0.56) (n = 6–9).

Female mice were born and raised at thermoneutrality (30°C) and fed a 60% HFD starting at 

weaning. At 22 weeks of age, mice were given an intraperitoneal injection of PBS or 

CL316,243 every other day for 4 weeks. Mice were euthanized at 26 weeks of age. Data are 

presented as mean ± SEM.
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