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Introduction

The renin-angiotensin system plays critical roles in maintaining normal cardiovascular 

functions and contributes to a spectrum of cardiovascular diseases. Classically, the renin-

angiotensin system is composed of angiotensinogen (AGT), renin, angiotensin-converting 

enzyme (ACE), angiotensin II (AngII), and two AngII receptors (AT1 and AT2 receptors).1,2 

AGT, a protein with 452 amino acids, is cleaved by renin to produce AngI. AngI is a 

decapeptide, which is then cleaved by ACE to produce AngII. AngII is an octapeptide, 

acting through binding to its receptors, AT1 and AT2 receptors. AT1 receptor is the major 

receptor for AngII to regulate many physiological and pathophysiological functions.3-6 In 

mice, AT1 receptor has two subtypes, AT1a and AT1b, which have more than 90% sequence 

homology, but distinctive distributions and functions.4,7-12 AT1a receptor is important for 

blood pressure regulation and contributes to atherosclerosis and aortic aneurysms,5,13,14 

whereas AT1b receptor has no evident contribution to these functions,15 but is associated 

with vasculature contractility.16,17 AT2 receptor is abundant during fetal development, but 

becomes low in most tissues after birth.18

In the past two decades, many new components in this system have been discovered. These 

include ACE2, a homologue of ACE, which converts AngII to Ang(1-7), or converts AngI to 

Ang(1-9).19,20 The G protein-coupled receptor Mas1 was identified as the receptor of 

Ang(1-7).21
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This review highlights some recent publications in ATVB that have provided insights into 

understanding the classic components of the renin-angiotensin system and its alternative 

components contributing to cardiovascular functions. We will focus on effects of this 

hormonal system on cardiac dysfunction, hypertension, atherosclerosis, and aortic 

aneurysms.22-29

Angiotensinogen

AGT is the only known substrate of the renin-angiotensin system to produce all downstream 

angiotensin peptides. AGT regulates blood pressure as demonstrated by multiple mouse 

models, including global AGT deficient mouse model and human AGT and renin transgenic 

mouse model.30-33 AGT was also implicated in atherosclerosis using a transgenic mouse 

model expressing both human angiotensinogen (Agt) and renin genes.34 Two recent studies 

have provided direct evidence that AGT regulates blood pressure and contributes to 

atherosclerosis through AngII-mediated mechanisms.35,36 These studies used multiple 

genetic manipulations including Agt hypomorphic mice, bone marrow transplantation, 

hepatocyte-specific Agt deficient mouse model, and adeno-associated viral infection to 

repopulate the manipulated Agt in vivo. These studies demonstrate that hepatocyte-derived 

AGT is the predominant source to regulate blood pressure and promote atherosclerosis. A 

pharmacological approach using antisense oligoneucleotides has also opened a door to 

directly target AGT for preventing high blood pressure and atherosclerosis.36

Renin

Renin is the rate-limiting enzyme of the renin-angiotensin system and the only enzyme 

known to cleave AGT. These properties make renin a potentially attractive target to inhibit 

the renin-angiotensin cascade and improve AngII-mediated cardiovascular dysfunctions.37,38 

Inhibition of renin reduces blood pressure and atherosclerosis in animal models.6,36,39-43 

Unfortunately, renin inhibitors in patients with cardiovascular diseases have not provided 

superior beneficial effects beyond the well-established ACE inhibitors or AT1 receptor 

blockers.44

Despite some disappointing findings in human studies of renin inhibition, it has not 

discouraged research to understand renin-related mechanisms of cardiovascular diseases. 

The juxtaglomerular cells of the kidney are the major source of renin production and 

secretion. As an important organ in blood pressure regulation and cardiovascular functions, 

renal denervation aiming to reduce sympathetic nerve activity has drawn significant 

attention, although there are conflicting findings that need further research.45-48 A recent 

study using pigs discovered that this approach reduced blood pressure and improved 

cardiovascular functions through its influence on kidney-brain-heart axis with profound 

changes of plasma renin activity, implicating the involvement of the renal renin-angiotensin 

system regulation in the process.49
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Angiotensin-converting enzymes (ACE)

In contrast to the rate-limiting and substrate-specific properties of renin, ACE is not sensitive 

to AngII concentration changes, and it is an enzyme that cleaves not only AngI, but also 

many other substrates including bradykinin (a vasodilator) and N-acetyl-Ser-Asp-Lys-Pro (a 

hemoregulatory peptide).50-53 There is a highly consistent literature demonstrating that ACE 

inhibition reduces blood pressure and atherosclerosis in animal models.6,54,55 ACE 

inhibitors are one major class for treatment of hypertension, cardiovascular dysfunctions and 

diabetic nephropathy in patients.56-60 Recent studies have also added new mechanistic 

insights into guiding the use of ACE inhibitors. It was found that high serum concentration 

of homocysteine decreased anti hypertensive effect of enalapril, an ACE inhibitor, in chronic 

hypertensive patients.61

ACE is ubiquitously present in many cell types, tissues, and organs.62,63 Leukocyte or 

smooth muscle cell-derived ACE contributed to atherosclerosis as demonstrated by bone 

marrow transplantation and cell-specific depletion of ACE respectively in a mouse model,
54,64 although their effects were less potent than pharmacological inhibition of ACE 

systemically.6 ACE is abundant in endothelial cells.65 However, depletion of ACE in this 

cell type had no effects on atherosclerosis.64 Global genetic depletion or pharmacological 

inhibition of ACE reduced blood pressure,6,66 but depletion of ACE in leukocyte, 

endothelial cells, or smooth muscle cells did not affect blood pressure.54,64 Despite a well-

known enzyme discovered half century ago67,68 with impressive success of its inhibitors in 

clinical patients,69 it is still a long road to define mechanisms by which ACE contributes to 

multiple cardiovascular functions, including its cellular source that influences blood pressure 

regulation.

Angiotensin II

As the major bioactive peptide of the renin-angiotensin system, there are broad views of 

mechanistic insights into understanding how AngII contributes to multiple cardiovascular 

physiological and pathophysiological functions. We provide a brief review of the following 

diseases published recently in ATVB. For most of these studies, the approach employed was 

chronic subcutaneous infusion of AngII.70,71

Cardiac Dysfunction

AngII induces several forms of cardiac dysfunction including hypertrophy, arrhythmia, and 

ventricle function failure.72,73 Basigin is a transmembrane glycoprotein that has multiple 

functions.74 In a mouse model of transverse aortic constriction, genetic reduction of basigin 

led to less cardiac hypertrophy, fibrosis, and heart failure.75 Deficiency of smooth muscle 

stromal interaction molecule 1, an endoplasmic reticulum Ca2+ sensor, also prevented 

AngII-induced cardiac hypertrophy.76 These findings are consistent with that renin-

angiotensin inhibition is crucial for improving cardiac dysfunction.

Hypertension

There are many factors contributing to hypertension.77-79 Salt intake is believed to be a 

critical factor for high blood pressure.80 AngII is also a well recognized contributor to high 
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blood pressure.81,82 However, high salt intake suppresses the renin-angiotensin system, 

whereas low dietary salt increases AngII production.83,84 In accord with the paradox 

between salt intake and the renin-angiotensin regulation, dietary salt intake in blood pressure 

regulation and its consequent cardiovascular events have also been inconsistent, as reported 

in both human studies and animal models,85-91 implicating complex molecular mechanisms 

involved in salt versus AngII-mediated hypertension and related cardiovascular 

dysfunctions.

Batchu and colleagues found that Axl, a receptor tyrosine kinase, in T-lymphocytes exerted a 

significant role in AngII-mediated blood pressure regulation.78 This finding is consistent 

with reports by Harrison’s group that T lymphocyte-mediated immune response contributed 

to AngII-induced high blood pressure,92,93 although this needs to be validated in human 

studies. In addition to immune cells, smooth muscle cells are a critical cell type in AngII-

mediated blood pressure regulation. Smooth muscle 22α is a cytoskeleton-associated protein 

in smooth muscle cells. Smooth muscle 22α deficiency in mice reduced AngII-induced high 

blood pressure and senescence of vascular smooth muscle cells.93,94 These phenotypes were 

proposed to be associated with many mediators including p53 dependent pathway.95 

Activation of the α7 subtype of nicotinic acetylcholine receptors (α7nAchR) inhibited 

AngII-induced senescence in cultured vascular smooth muscle cells and wild type mice, but 

not in mice with α7nAchR deficiency. This effect was associated with sirtuin 1 activity since 

inhibition of sirtuin 1 abrogated this effect.96 microRNA-143 and 145 are abundant in 

vascular smooth muscle cells and regulate myogenic tone.97 Depletion of these two 

microRNAs did not affect AngII-induced high blood pressure, but caused more severe 

arterial wall disruption, vascular remodeling and inflammation.98 Another recent study 

identified ftlinecellular repressor of E1A-stimulated genes as a mediator of AngII-induced 

vascular remodeling.99 From these recent studies, we can gather that AngII-mediated 

hypertension is a complex process that involves a large spectrum of molecules and many cell 

types.

Atherosclerosis

Atherosclerosis is a complex disease involving diverse mechanisms including disordered 

lipoprotein metabolism, inflammation, endothelial dysfunction, reactive oxygen species, and 

endoplasmic reticulum stress.29,100-103 Animal models are a common tool to study these 

mechanisms and exploring potential therapeutic targets. For example, application of drugs 

using nanoparticles holds promise to optimize drug delivery and efficacy. In apolipoprotein 

E deficient (Apoe−/−) mice fed a high fat diet and infused with AngII, nanoparticles 

containing pioglitazone, an antidiabetic drug that also had peroxisome proliferator-activated 

receptor-γ agonistic effects, was injected intravenously on a weekly base for 4 weeks. 

Although pioglitazone administration did not change atherosclerotic lesion size and 

macrophage content, it reduced Ly-6C high monocytes, matrix metalloproteinase activity, 

and cathepsin activity.104

In addition to mouse models, rabbits have been frequently used to study atherosclerosis. In 

one study, infusion of AngII to Watanabe heritable hyperlipidemic rabbits led to high death 

rate (50% for AngII 100 ng/kg/min and 92% for AngII 200 ng/kg/min) due to acute 
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myocardial infarction with coronary plaque erosion, rupture, and thrombosis.105 Since 

plaque rupture and thrombosis are high risk complications in humans,106 this model would 

be optimal to study mechanisms related to the human disease. In another study, Honda and 

colleagues infused AngII to Japanese White rabbits when they were fed a high cholesterol 

diet and injured using balloon catheter to femoral arteries.107 This procedure also led to 

atherothrombotic occlusions. Ezetimibe, a lipid-lowering drug used in patients, profoundly 

decreased this fatal pathology, providing rationale to determine its extended effects in 

patients.107

Thoracic Aortic Aneurysms

Thoracic aortic aneurysms (TAA) manifest as profound dilation of the thoracic aorta, 

accompanied by compromise of aortic wall integrity, dissection or rupture.108-112 Many 

genetic disorders are involved in this disease process including fibrillin-1,113,114 

transforming growth factor (TGF)-β ligands and receptors,115-120 smooth muscle cell-

specific isoforms of α-actin (encoded by Acta2) and myosin heavy chain (encoded by 

Myh11).109 In addition to these genetic manipulations, infusion of AngII also leads to TAA, 

predominantly localized to the ascending aortic region.121-124

The aortic wall is composed of the intima, media, and adventitia. Among the cell types of 

the aorta, smooth muscle cells are the most abundant cell type and have been the most 

frequently studied cell type in the development of TAA. Vascular smooth muscle cell 

phenotypes are associated with aortic aneurysm formation and its pathological process.

Components of TGF-β signaling pathways are important for maintaining aortic wall 

integrity. However, its effects on TAA and abdominal aortic aneurysm (AAA) formation are 

controversial. Inhibition of TGF-β by neutralizing antibodies augmented aortic rupture rate 

and aortic dilation in both abdominal and thoracic aortic regions in AngII-infused mice,
125-127 but attenuated development of TAA in a Marfan mouse model.114 To explore the 

conflicting findings in different mouse models and different locations of aortic aneurysms, a 

recent study determined mechanisms of TGF-β signaling in AngII-induced TAA and AAA, 

combined with smooth muscle cell-specific TGF-β receptor 2 deficiency.128 Systemic TGF-

β neutralization augmented AAA, but had no effects on TAA. In contrast, smooth muscle 

cell-specific TGF-β receptor 2 deficiency augmented TAA, but had no apparent effects on 

the abdominal aorta.128 This study emphasizes the distinctive mechanisms between TAA 

and AAA.129

MicroRNA-21 was identified as a critical modulator of proliferation and apoptosis of 

smooth muscle cells during development of AAA. Overexpression of microRNA-21 reduced 

AAA and inhibition of this microRNA augmented AAA in two common mouse models.130 

A recent study discovered that in mice with Smad3 heterozygous background aortic miR-21 

expression was increased by AngII infusion and systemic microRNA-21 deletion 

exacerbated AngII-induced TAA formation.131 This study, combined with studies using 

TGF-β receptor 2 genetically manipulated mice, provides evidence for the importance of 

TGF-β mediated mechanisms in the development of TAA.
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In addition to components that are important for maintaining the aortic wall structure and 

integrity, embryonic origins of smooth muscle cells determine their phenotypes and 

functions. Embryonic origins of smooth muscle cells in the aorta are complex.132 A recent 

study provided evidence that smooth muscle cells in the ascending aortic region were 

derived from two embryonic origins, with second heart field contributing to the outer layers 

and cardiac neural crest for the inner medial layers.133 This study adds new insights into 

understanding mechanisms of TAA from an evolutionary viewpoint.134

Besides critical roles of smooth muscle cells, inflammation is a feature of TAA. Contractile 

dysfunction in smooth muscle cells is present in aortas of patients with sporadic thoracic 

aortic aneurysm and dissection, and is associated with activation of nucleotide 

oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3)-caspase-1 

inflammasome.135 A recent study reported that NLRP3 or caspase-1 deficiency in mice 

significantly reduced AngII-induced contractile protein degradation and aortic aneurysm 

formation in both thoracic and abdominal aortic regions.135

Abdominal Aortic Aneurysms

AAA is defined as pathological dilation of the abdominal aorta. Same as individuals 

afflicted with TAA, aortic rupture is a fatal consequence of AAA.110,112,136,137 There are 

three commonly used mouse models to study AAA: perfusion of elastase into the infrarenal 

aorta,138 peri-aortic application of calcium chloride,139 or subcutaneous infusion of AngII.
70,140 Modifications of these mouse models have also provided mechanistic insights. For 

example, co-administration of β-aminopropionitrile with AngII,141,142 co-administration of 

TGF-β neutralizing antibody with AngII125 or administration of TGF-β neutralizing 

antibody to mice with elastase-induced AAA,25 or application of calcium chloride with 

phosphate-buffered saline onto the infrarenal aorta.143

Hypercholesterolemia augments AngII-induced AAA.144,145 Therefore, Apoe−/− mice and 

low-density lipoprotein receptor deficient mice are the two commonly used mouse models 

for AngII-induced AAA studies.70,71,140 Although AngII-infused mouse model has become 

a popular model to study AAA, breeding mice to a hypercholesterolemic background has 

hampered its more broad use.146 A recent study provided a rapid approach for increasing 

plasma cholesterol and AngII-induced AAA incidence in C57BL/6 mice by applying a gain-

of-function mutation of mouse PCSK9 protein using an adeno-associated viral method,147 

which was also frequently used in atherosclerosis studies.148-150

Inflammation as well as extracellular matrix disruption and remodeling are important 

features of AngII-induced AAA.112,145,151-154 Publications describing AngII-induced AAA 

were featured in a recent ATVB Highlights,112 including molecules that promote 

inflammation involving not only macrophages, but also T and B lymphocytes,155-164 

oxidative stress,165-167 and many other factors.112,145,168

In addition to extensive studies to define molecular mechanisms of AAA, some recent 

studies have emphasized the importance of studying sex differences.29,169-171 One study 

used the four core mouse model to generate gonadal male mice with XX or XY 

chromosomes. This study found that gonadal male mice with an XY chromosome 
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complement exhibited diffuse aortic aneurysms, whereas XX chromosome complement 

exhibited focal aortic dilation. Orchiectomy attenuated AngII-induced TAA and AAA in 

male mice.172

Angiotensin II Receptors

AT1a Receptor

AT1a receptor, a subtype of AngII receptor, is the major receptor for AngII-mediated 

cardiovascular functions in mice. Global deficiency of AT1a receptor ablates atherosclerosis 

and attenuates AngII-induced TAA and AAA.5,14,39,173,174 This effect was not attributed to 

the presence of AT1a receptor on leukocytes39,174 or smooth muscle cells,14,122 while 

endothelial cell-specific depletion of AT1a receptor had modest protective effects on AngII-

induced TAA, but not AAA and atherosclerosis.14,122 In agreement with these previous 

studies, using a well-established Marfan mouse model with genetic disruption of fibrillin-1 

expression, Galatioto and colleagues175 found that endothelial-cell specific deletion, but not 

smooth muscle cell-specific deficiency, of AT1a receptor, modestly attenuated TAA 

development and related aortic rupture.

AT2 Receptor

Although AT2 receptor remains low in most tissues and organs postnatally, many studies 

have reported increased presence of AT2 receptor under certain pathophysiological 

conditions as reviewed in a recent article.176 Genetic deletion of AT2 receptor in mice had 

no effects on general health and development,177 but promoted angiogenesis within ischemic 

muscle.178 A diabetic mouse model with a spontaneous mutation in the insulin 2 gene 

(Ins2+/C96Y) was bred with AT2 receptor deficient mouse model. Hindlimb ischemia was 

induced by ligating femoral artery. Depletion of AT2 receptor augmented blood flow 

reperfusion and collateral vessel formation that were associated with SH2 domain-

containing phosphatase 1 activity and vascular endothelial growth factor action.179

Alternative Pathways

This section introduces an enzyme, a bioactive peptide, and a receptor beyond the classic 

renin-angiotensin components.

Angiotensin-converting Enzyme 2 (ACE2)

ACE2 prevents atherosclerosis and aortic aneurysms, as demonstrated by deficiency of 

ACE2 accelerating atherosclerosis and AngII-induced AAA in hypercholesterolemic mice.
180,181 Recently, Moran and colleagues reported that ACE2 deficiency in Apoe−/− mice 

augmented incidence of AAA and aortic rupture rate. Of note, deficiency of ACE2 also led 

to spontaneous AAA formation in the absence of AngII. Resveratrol, a class of compounds 

produced by many plants, increased ACE2 and inhibited AAA growth in AngII-infused 

mice.182

Wu et al. Page 7

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Angiotensin (1-7) and Mas1

Recent studies have implicated that Ang(1-7) has protective effects on multiple 

cardiovascular functions through its interaction with Mas1.183 Many studies reported that 

Ang(1-7)/Mas1-mediated actions counteracted actions of AngII.180,184-186 For example, 

Ang(1-7) had vasodilation effect that was mediated by Mas1, whereas AngII had potent 

vasoconstriction effect.187 One study reported that Ang(1-7) induced nitric oxide-mediated 

vasodilation and increased telomerase activity of endothelial cells.187 In another study, low 

dose of Ang(1-7) increased angiogenesis and vasodilation through its interaction with Mas1, 

which had equivalent effects as same low dose of AngII. Among potential mechanisms, 

ERK1/2 was essential for Ang(1-7)-induced angiogenesis and vasodilation.186,188
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Summary

Although the major renin-angiotensin members were discovered more than a half century 

ago, this system still attracts a large number of research work in different fields. This 

implicates the importance of this hormonal system in physiological and 

pathophysiological functions, but also notes that there are many unknowns and 

conundrums of this system in our knowledge that require more extensive research work.

Wu et al. Page 20

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Introduction
	Angiotensinogen
	Renin
	Angiotensin-converting enzymes (ACE)
	Angiotensin II
	Cardiac Dysfunction
	Hypertension
	Atherosclerosis
	Thoracic Aortic Aneurysms
	Abdominal Aortic Aneurysms

	Angiotensin II Receptors
	AT1a Receptor
	AT2 Receptor

	Alternative Pathways
	Angiotensin-converting Enzyme 2 (ACE2)
	Angiotensin (1-7) and Mas1

	References

