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Abstract

The United States is in the midst of an opioid addiction and overdose crisis precipitated and 

exacerbated by use of prescription opioid medicines. The majority of opioid prescriptions are 

dispensed to patients with comorbid mood disorders including major depressive disorder (MDD). 

A growing body of research indicates that the endogenous opioid system is directly involved in the 

regulation of mood and is dysregulated in MDD. This involvement of the endogenous opioid 

system may underlie the disproportionate use of opioids among patients with mood disorders. 

Emerging approaches to address endogenous opioid dysregulation in MDD may yield novel 

therapeutics that have a low or absent risk of abuse and addiction relative to μ-opioid agonists. 

Moreover, agents targeting the endogenous opioid system would be expected to yield clinical 

benefits qualitatively different from conventional monaminergic antidepressants. The development 

of safe and effective agents to treat MDD-associated endogenous opioid dysregulation may 

represent a distinct and currently underappreciated means of addressing treatment resistant 

depression with the potential to attenuate the on-going opioid crisis.

Introduction

In 2017, the World Health Organization classified depression as the single largest contributor 

to global disability worldwide (7.5% of all years lived with disability), with over 300 million 

affected. It is estimated that prevalence has increased over 18% between 2005 and 20151. 

This increase represents the chronicity of the disorder: when people become depressed, cure 

is elusive, and the condition often follows a relapsing and recurring natural history.
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Major depressive disorder (MDD) is composed of low mood, diminished capacity to 

experience enjoyment, weight and sleep alterations, fatigue, negative assessments of self, 

cognitive dysfunction with notable difficulties with concentration and decision-making, and 

recurrent thoughts of death or suicide2. Depression becomes more treatment resistant with 

subsequent episodes, with 50% of those recovering from a first episode having an additional 

episode, and 80% of those with two or more episodes having another recurrence3. Response 

rates (more than 50% symptomatic improvement) even in community samples and treated 

open-label with antidepressants, is only reached in 50% of participants, while full remission 

(more than 75% symptomatic improvement) is only achieved in 30-35% of individuals using 

first-line antidepressants (serotonin-selective reuptake inhibitors –SSRI’s)4. For patients who 

are non-responsive to two interventions (SSRI and cognitive behavioral therapy or adjuvant 

treatment), remission rates with subsequent therapy only range from 10-25%5.

Over the last 60 years there has been minimal progress in bringing antidepressants with 

novel mechanisms of action from the laboratory to the clinic. Since the introduction of 

tricyclic antidepressants in the 1950’s, virtually all FDA-approved antidepressants inhibit the 

metabolization of serotonin, norepinephrine, or both. Some exceptions achieve similar 

biochemical results through inhibitory presynaptic receptor blockade, or varying degrees of 

postsynaptic receptor activation. Given the inadequate results observed in both controlled 

trials and in clinical practice with currently available pharmacotherapeutics, there is an 

urgent need to explore novel therapeutic targets.

Complicating the treatment of MDD and contributing to its chronicity are its frequent 

comorbidity with anxiety disorders6 and elevated medical comorbidity7. Deliberate use of 

opioid agonists to self-medicate symptoms of depression is likely a substantial contributor to 

the current opioid crisis. More than half of all opioid prescriptions for pain in the United 

States are written for people with comorbid depression and anxiety – i.e., the 16% of 

Americans who have mood disorders receive 51% all opioids prescribed in the United 

States8.

Here we develop the premise that targeting the endogenous opioid system may offer an 

opportunity to improve outcomes for therapeutically complex patients not responding 

adequately to currently available antidepressants. While the use of opioid agonists for the 

treatment of melancholic depression dates back millennia9, 10; overdose and safety risks 

have profoundly limited opioid drug development for depression. This review summarizes 

current animal and human literature supporting the implication of the opioid system in the 

regulation of functions thought to be disrupted in, and at the core of, depressive 

symptomatology, such as alterations in stress responses, anxiety, social bonding, and 

hedonic and appetitive behaviors. This evidence has energized interest in modulating the 

endogenous opioid system in an effort to treat MDD and its comorbid conditions, including 

suicidal ideation. Furthermore recent translational and clinical efforts posing novel 

mechanisms to reduce risk of abuse while maintaining clinical efficacy, are starting to show 

promising results and have the potential to advance the treatment of opioid dysregulation 

across psychiatric conditions.
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Endogenous opioid pharmacology

The endogenous opioid system comprises a family of peptides known as β-endorphin, the 

enkephalins, dynorphins and their G-protein-coupled receptors known as μ, δ and κ and the 

non-opioid receptor, nociceptin (NOP), previously referred to as opioid receptor-like 1 

receptors. β-endorphin, as well as drugs similar to morphine, act primarily at μ-opioid 

receptors. The naturally occuring Met- and Leu-enkephalins have high affinity for δ-opioid 

receptors, but also high affinity for μ-opioid receptors. The endogenous peptide dynorphin, 

as well as peptides related to dynorphin, primarily act on κ-opioid receptors. Nociceptin/

orphanin FQ is the endogenous peptide for NOP receptors11. Furthermore, both human12–17 

and rodent studies18–21 have characterized the expression of these peptides and their 

receptors in limbic and paralimbic regions centrally involved in the modulation of affective 

states, neuroendocrine and autonomic stress responses, mood and motivational processes. 

These processes are disregulated in MDD in the anterior cingulate cortex (ACC), prefrontal 

cortex, medial thalamus, anterior hypothalamus, nucleus accumbens, amygdala, 

periaqueductal gray and ventral tegmental area (See Figure 1), and as such are a logical 

target for drug development (See9 for a review). Additionally, opioid peptides are expressed 

both in the central and peripheral nervous systems22, and the endogenous opioid system 

plays critical roles in several physiological functions such as pain processing, response to 

and regulation of stress, gastrointestinal transit, respiration, endocrine, and immune 

functions23.

Activation of μ-opioid receptors is primarily known for their analgesic effect. In addition, 

several lines of evidence have demonstrated a role of μ-opioid receptor function in the 

regulation of behaviors important for the success of species such as appetite and 

reproduction24–26. It is also centrally involved in responses to social stimuli, whether 

modulating the distress of social rejection27, 28 or mediating positive responses to social 

acceptance and affiliative behavior29–31. δ-opioid receptors also play a role in pain 

modulation32–35. In addition, κ-opioid receptors are associated with pain modulation36–38, 

and of particular interest in peripherally mediated nociception such as pruritus39. In 

nonclinical studies, activity at NOP receptors has been associated with pain mechanisms and 

several behaviors linked to psychological stress40, 41.

Preclinical evidence of opioid system involvement in depression

Most of the studies discussed below utilize a paradigm of behavioral despair known as the 

forced swim test. In this paradigm rats (or mice) are placed in a narrow, inescapable cylinder 

of water. At first there is vigorous activity that ceases and the rat only does the necessary 

movements to keep the head above water. This immobility is interpreted to be a state of 

behavioural despair, and that the rat has learned escape is impossible. The immobility time is 

indicative of a depressive-like effect in that most drugs that have antidepressant effects in 

humans reduce immobility time42.

Preclinical evidence has suggested that activation of μ-opioid receptors has antidepressant-

like effects43, 44. In mice, opioids (morphine, codeine, levorphanol, methadone, and 

tramadol) decreased immobility in a tail suspension test43 (another commonly used rodent 
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assay similar in concept to the forced swim test). In another study utilizing mice in the 

forced swim test, both morphine and agmatine (an endogenous aminoguanidine) decreased 

immobility time and these effects were blocked by pretreatment with naloxone (a μ-opioid 

receptor antagonist)45. In rats, buprenorphine (a partial μ-opioid receptor agonist) also 

reduces immobility46, 47. In addition, the role of β-endorphins in the pathophysiology of 

MDD has been reviewed48. Interestingly, it has been reported that naltrexone (an opioid 

receptor antagonist) enhances the effects of antidepressants in both the forced swim test and 

the tail suspension test as well as a foot shock-induced behavioral despair paradigm49. The 

reason or mechanism by which this occurs is currently unknown and suggest a complex 

system that requires further study.

Although primarily limited to preclinical data that has yet to translate to the clinic, activity at 

δ-opioid receptors may also have antidepressant-like effects. In one of the earlier studies 

examining the role of this system, administration of exogenous enkephalins had 

antidepressant-like effects in the forced swim test50. Furthermore, in one of the first studies 

examining the role of δ-opioid receptors, δ-opioid receptor-null mice exhibited depressive-

like behaviors51. Both the administration of enkephalinase inhibitors, which would increase 

the synaptic concentrations of enkephalins, as well as direct δ-opioid receptor agonists 

induce antidepressant-like effects in animal models52. All this has led to the hypothesis that 

deficits in these mechanisms may be implicated in the pathophysiology of depression, 

potentially through their effects on the mesolimbic dopamine system that is associated with 

the rewarding effects of food and sex, and more recently has also been associated with 

depression53; however direct evidence is lacking in humans. Lastly, increases in brain 

derived neurotrophic factor (BDNF) mRNA expression in rat frontal cortex, hippocampus, 

and basolateral amygdala have been observed after a single administration of a δ-opioid 

receptor agonist54, a mechanism that appears critical in the response to antidepressants 

through their effects on neuronal BDNF levels and BDNF-mediated neuroplasticity55, 56.

It has been established that activation of κ-opioid receptors produces aversive and 

depressive-like states in humans57 opposite to that of μ- and δ-opioid receptor activation. In 

addition, the depressive-like effects of a κ-opioid receptor agonist have also been 

characterized both behaviorally and neurochemically in rats58. In preclinical studies κ-

opioid receptor activation increases immobility in the forced swim test59 and elevates brain 

reward thresholds60, 61, indicative of an anhedonic depressive-like effect. Conversely, 

administration of a putative κ-opioid receptor antagonist reverses these effects indicative of 

an antidepressant-like effect59, 61. Additional preclinical studies have also demonstrated the 

ability of κ-opioid receptor antagonists to have antidepressant-like effects62 as well as 

reduce repeated forced swim stress-induced immobility63 and decrease anhedonia-like 

responses in a cocaine withdrawal paradigm64. Together, these data suggest a potential 

utility of κ-opioid antagonists in the study and treatment of depression58.

As noted above, recent studies have begun to elucidate the role of NOP receptors in 

mediating mood, and are exploring the utility of NOP antagonists for depression65. NOP and 

N/OFQ are located in areas that are crucial to mood control including but not limited to 

amygdala, hippocampus, thalamus, and cortical processing areas66. There is now good 

evidence from animal work for a role for the N/OFQ–NOP system in emotional disorders66 
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including anxiety67 and depression68, 69. For example, NOP receptor antagonists reduce 

immobility time in mice in the forced swim test68, and NOP receptor knockout mice display 

an antidepressant-like phenotype in the forced swim test70. In preclinical studies examining 

the novel NOP antagonist LY2940094, there was a transient increase in prefrontal serotonin 

concentrations as well as a dose-dependent reduction in immobility in the forced swim 

test71. Together, both results are similar to the effects of known SSRIs approved for the 

treatment of depression.

Human evidence of opioid regulation of mood

There are well-known species differences in the distribution of opioid receptors in the brain. 

In general, there is relatively less δ-opioid receptor binding in the human brain compared to 

the rat brain, and relatively more κ-opioid receptor binding72. As such, it is prudent to be 

careful in extrapolating results from rodent data to humans, and human mechanistic studies 

are highly desirable.

A number of different approaches have been used to investigate the mechanisms underlying 

opioid receptors and function in humans. Among them, the use of selective radioligands and 

positron emission tomography (PET) (See Figure 2), as well as genetic and pharmacological 

approaches, have resulted in major contributions to the field, particularly as it relates to the 

processing of emotions and social cues. These measures show receptor availability under 

baseline conditions, which reflects their concentration, minus receptor occupancy by the 

endogenous ligand –which for endogenous opioid systems is thought to be very low-. In 

addition, PET studies involving experimental challenges have allowed for the quantification 

of neurotransmitter release. Under these kinds of experimental conditions, reductions in in 
vivo receptor availability after an acute challenge are thought to reflect neurotransmitter 

release and competition between the radiotracer and the endogenous ligand for the receptor 

sites, providing an indirect measure of presynaptic function.

μ-Opioid receptors are widely distributed in the brain, and their location ostensibly overlaps 

with regions implicated in emotion regulation14. The μ-opioid receptor selective radiotracer 

[11C]carfentanil has been commonly used to investigate the link between opioid 

neurotransmission and emotion regulation. In initial studies, Zubieta et al. used in vivo 
measures of μ-opioid receptors during a sadness induction paradigm, a stimulus, which does 

not activate objective measurements of stress (i.e., cortisol or ACTH release) but induces a 

temporary low mood state. This emotional challenge was associated with reductions in 

endogenous opioid neurotransmission in a widespread network of regions implicated in 

emotion regulation73, which were associated with increases and reductions in negative and 

positive affect, respectively.

Several studies have linked baseline measures of μ-opioid receptor availability to the 

prediction of antidepressant treatment response. For example, Zubieta et al.74 found that 

reductions in μ-opioid receptor availability were associated with poor treatment response to 

an SSRI, as well as higher plasma levels of stress hormones (cortisol and ACTH), while an 

exaggerated sadness-induced opioid release in the rostral anterior cingulate cortex (ACC) 

predicted SSRI non-response. Similar sadness-induced exaggerated responses in the rostral 
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ACC were also observed in patients with borderline personality disorder75, a clinical 

diagnosis characterized by severely disrupted affective processing and typically poor 

response to existing antidepressant medications.

In a later study, the same group investigated the role of opioid neurotransmission in the 

formation of placebo responses in patients with MDD76. This investigation followed-up on 

growing evidence linking the opioid system to placebo analgesia77–80. This study involved 2 

placebo lead-in phases followed by an open antidepressant administration. The 2 oral 

placebos were identical, but described as having either active or inactive fast-acting 

antidepressant-like effects. Patients were studied with PET and the μ-opioid receptor–

selective radiotracer [11C]carfentanil after each 1-week inactive and active oral placebo 

treatment. In this sample, reduced baseline μ-opioid receptor availability in the nucleus 

accumbens predicted a lack of response to SSRI antidepressant medication76. Furthermore, 

the capacity to activate endogenous opioid neurotransmission in response to expectations of 

improvement elicited by the administration of the oral placebo, predicted the response to 

both oral placebo and antidepressant treatments, explaining up to 40% of the variance in 

treatment responses. This evidence suggests that μ-opioid receptors are not only involved in 

the neurobiology of normal and pathological emotional, hedonic, and stress processing, but 

also the response to both pharmacological and cognitive mechanisms of treatment response.

In addition, human neuroimaging studies have established a link between opioid 

neurotransmission and the processing of social cues. Initial evidence suggested that social 

rejection and physical pain shared similar neural pathways81. These studies supported the 

hypothesis that the μ-opioid receptor system could be involved in regulating other forms of 

non-painful stressor (i.e., social “pain”). This hypothesis was first tested in healthy 

volunteers using a social feedback task in response to social rejection and acceptance cues 

and the quantification of regional μ-opioid receptor availability. Greater opioid release in 

regions involved in emotion regulation during social rejection was significantly associated 

with higher scores in resiliency traits as well as reduced negative affect, consistent with an 

adaptive role of endogenous opioid neurotransmission on these processes28, 82. Not 

surprisingly, in a follow-up study, patients with depression, compared to controls, had 

reduced opioid release in similar regions82. This evidence suggests that the endogenous 

opioid system, in particular μ-opioid receptors, plays a key role in the processing of social 

cues which seems to be particularly altered in patients with MDD (See Figure 3).

At the genetic level, several studies have investigated the relationship between variations 

within the human μ-opioid receptor gene (OPRM1) and depression-related traits and 

symptoms. The best studied genetic variant in the OPRM1 gene is a single-nucleotide 

polymorphism that changes the amino acid at position 40 in the N-terminal domain of the 

receptor from asparagine to aspartate [Asn40Asp, A118G, rs1799971;83]. Animal studies 

have suggested that the G118 allele is associated with loss of function of the receptor, lower 

surface receptor expression, decreased forskolin-induced cAMP activation, and lower 

agonist-induced MOPR activation84, 85. In a human PET study, 118G allele carriers (G-

carriers), compared to A/A homozygotes, had an overall brain reduction of baseline μ-opioid 

receptor availability in regions implicated in pain and affective regulation. G-carriers also 

reported higher trait neuroticism and depression scores, which were inversely correlated 
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with the in vivo brain measures of receptor concentrations86. G-carriers have also shown 

blunted cortisol responses to stressors, but greater cortisol responses to naloxone 

administration, suggesting differences in receptor affinity in G allele carriers87. Furthermore, 

G-carriers had greater reactivity to social rejection in the dorsal ACC and anterior insula, 

where the dorsal ACC activity in response to social rejection further mediated the 

relationship between the A118G polymorphism and dispositional sensitivity to rejection88. 

Therefore, G-carriers, possibly through a lower expression of μ-opioid receptors and a 

reduced capacity to release endogenous opioids, may have greater vulnerability for 

depressive-like symptoms and poorer treatment responses to SSRI treatment74, 86.

Despite strong preclinical evidence, little is known about the role of δ-, κ- and NOP 

receptors in the neurobiology and the mechanisms involved in the response to treatment in 

mood disorders. The localization of δ-opioid receptors in the amygdala is consistent with 

their modulation of fear and anxiety states89, whereas localization in the cortex and 

hippocampus is consistent with their potential antidepressant effects54. On the other hand, 

and consistent with its role regulating reward, pain, and emotional processing, κ-opioid 

receptors are present in the deep layers of cortical regions and in the striatum, hippocampus, 

amygdala, and thalamus90, where NOP receptors are also localized66. However, the lack of 

availability of specific δ-, κ- and NOP- agonists or antagonists for human administration, as 

well as the limited availability of selective radiotracers, has limited the understanding of 

these systems in clinical populations. A selective δ-opioid receptor antagonist [[11C]-

methyl-naltrindole91] and several selective κ-opioid receptor radioligands (e.g. agonist 

ligands: [11C]-GR89696, [11C]-GR103545; antagonist ligands: [11C]-MeJDTic, [11C]-

LY2795050 or [11C]-LY2459989)92, are available for human use, but yet have not been 

applied to mood disorders. The failure of initial proof-of-concept clinical studies using δ-

opioid receptor agonists51, as well as a higher risk of producing convulsions51, might have 

discouraged clinical mechanistic studies. Similarly, the use of the NOP receptor antagonist 

radiotracer [11C] (S)-3-(2′-fluoro-6′,7′-dihydrospiro[piperidine-4,4′- thieno[3,2-c]pyran]-1-

yl)-2-(2-fluorobenzyl)-N-methylpropanamide (NOP-1A) has been successfully validated for 

use in human PET studies93, 94, as well as clinical populations95. Still, the mechanisms 

through which NOP receptors modulate mood or anxiety disorders in humans, as suggested 

in clinical studies71, 96 are currently unknown.

Clinical evidence in MDD

The initial clinical studies to formally evaluate opioidergic agents in the treatment of 

depression took place during the 1970’s and early 1980’s, just a few years following the 

initial identification of the endogenous opioid peptides97, 98. At least 4 studies were 

conducted utilizing intravenous infusions of various doses of synthetic endorphin peptide 

preparations99–102. Two additional studies evaluated synthetic opioids103, 104. Overall, the 

majority of subjects in these clinical trials experienced substantial improvements in 

depressive symptoms within hours of administration. The most convincing evidence of a 

significant improvement in depressive systems was reported from a placebo-controlled 

crossover study of a single intravenous dose of β-endorphin in ten subjects with either 

unipolar or bipolar depression100. Interpretation of these early studies is limited by small 

patient sample, limited controls, brief duration of dosing, and no probes of mechanism, 
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including CNS penetration, to confirm clinical observations. However, as a composite, they 

represent the first formal experimental assessment of the “opium cure” following centuries 

of its use based on empiric experience.

In subsequent decades, there have been numerous clinical studies evaluating buprenorphine 

in the treatment of depression105–110. Buprenorphine is a μ-opioid receptor partial agonist 

and thus offers potential safety advantages compared with a full μ-opioid agonist111. In 

addition to its activity at μ-opioid receptors, buprenorphine is a κ-opioid receptor antagonist 

and may confer antidepressant activity by blocking this receptor58. Although only one 

included a placebo control112, these studies uniformly reported substantial clinical 

improvements in patients with treatment resistant depression, including patients who were 

unresponsive to electroconvulsive therapy. The mean buprenorphine dose evaluated in these 

studies was low, sub-euphoric, ranging from 0.2 to 1.2 mg per day. Consistent with this 

report, low dose buprenorphine (0.2 mg sublingual), reduced emotional reactivity and 

improved negative affect in volunteers with a range of depression severity symptoms in a 

laboratory setting113. Direct assessment of drug effects in this study revealed no evidence of 

drug high or euphoria.

Overall the clinical experience provides evidence that low dose buprenorphine may have 

therapeutic activity in the treatment of depression and that this activity does not require or 

derive from a frank euphoric effect of the drug.

In addition to antidepressant effects, exposure to opioids may also provide benefit to acutely 

suicidal patients. In a recent multicenter placebo-controlled study evaluating very low doses 

of buprenorphine (median dose 0.44 mg/day) in acutely suicidal patients, compared to 

placebo, buprenorphine led to a significant reduction in suicidality114. Effects were observed 

both in patients with depression or borderline personality disorder and were apparent when 

buprenorphine was used as either monotherapy or augmentation to standard antidepressant 

pharmacotherapy.

Despite evidence of the antidepressant activity of opioids and the urgent need for 

antidepressant agents with novel mechanism of action, the routine use of μ-opioid receptor 

full and partial agonists in clinical practice is necessarily limited by the potential for abuse 

and dependence.

To address this tension between dependency and efficacy, and given reports that 

buprenorphine results in rapid resolution of symptoms108, 114, dose-finding efforts must be a 

priority in the study of re-purposed and newly developed opioidergic molecules for 

neuropsychiatric conditions. In addition to studying clinical effect and safety outcomes, 

studies must assess changes in physiology (e.g., pupillometry, skin conductance), circuitry 

(fMRI, magnetoencephalography), molecular activity and receptor occupancy (PET) at a 

variety of doses to determine the optimal dose range at which both target engagement and 

clinical effects are observed.

An alternate strategy to modulate the endogenous opioid system in the treatment of MDD – 

while avoiding the potential for abuse and dependence – has focused on developing agents 

that selectively target other, non-μ-opioid receptors that are predicted by animal studies to 
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yield antidepressant activity. Selective δ-opioid receptor agonists52, nociceptin71, and κ-

opioid receptor antagonists58 have been introduced into the clinic; however, reports of 

clinical efficacy with these agents in patients with MDD have yet to appear in the published 

literature.

An emerging approach designed to address endogenous opioid dysregulation in the context 

of depression while minimizing opioid abuse and dependence is to simultaneously 

administer both a μ-opioid receptor agonist and an antagonist with opposing pharmacologic 

activities of similar magnitude and pharmacokinetics. Co-administration of a μ-opioid 

antagonist to counteract the μ-opioid agonist effects of an agonist results in a combination 

with lower intrinsic potential for abuse and dependence. In an animal model, the 

combination of buprenorphine and naltrexone, in an attempt to reduce the reinforcing effects 

of μ-agonism and potentiating k-antagonism, resulted in antidepressant-like responses in 

mice, while eliminating locomotor and rewarding effects115. In humans, and using a similar 

approach, antidepressant activity following daily dosing of buprenorphine combined with 

samidorphan, a μ-opioid receptor antagonist, has been reported in a small one-week pilot 

study in patients with MDD with a previous inadequate response to standard 

antidepressants116. In this study, the antidepressant effects observed were greater in patients 

treated with a 1:1 buprenorphine:samidorphan ratio associated with maximal μ-opioid 

receptor blockade as compared to a 8:1 ratio associated with partial μ-opioid receptor 

blockade. This result suggests that greater μ-opioid activity is not necessarily linked to 

greater antidepressant activity. A follow-up larger phase 2 multi-week clinical study of the 

1:1 buprenorphine:samidorphan ratio confirmed the pilot study finding, reporting significant 

benefits versus placebo117.

The mechanism of action of the opioid agonist-antagonist combination is not precisely 

understood and requires further examination. It is possible that very subtle μ-opioid 

modulation by the combination may be sufficient to ameliorate dysregulated or impaired 

endogenous opioidergic tone in depressed patients. An alternative, but not mutually 

exclusive, explanation is that the buprenorphine:samidorphan combination is acting as a 

functional κ-opioid receptor antagonist as the intrinsic κ-opioid receptor antagonism of 

buprenorphine is unaffected by samidorphan. Finally, the μ-opioid effects of both the agonist 

and the opposing antagonist may both contribute and function together to constrain 

endogenous opioid tone within a desirable range.

OTHER CNS Disease Considerations

Post-Traumatic Stress Disorder (PTSD)

Beyond the treatment of depression, it is reasonable to consider applications of opioid 

receptor modulation to the broader range of stress-related psychiatric conditions marked by 

negative affect, anxiety, social rejection, and altered pain sensitivity. PTSD is a candidate 

disorder that may benefit from modulation of the opioid system. Indeed, in a recent survey 

of PTSD researchers, opioid receptor drugs were ranked in the top 5 therapeutic targets for 

PTSD worthy of further study118.

Peciña et al. Page 9

Mol Psychiatry. Author manuscript; available in PMC 2019 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A recent observational study in veterans diagnosed with PTSD, chronic pain, and opioid use 

disorder found that twice as many veterans who received buprenorphine compared to 

moderately high-dose opioid therapy experienced improvement in post-traumatic symptoms 

(PTS)119. Tramadol, an atypical analgesic with μ-opioid and non-opioid mechanisms, was 

found to benefit male veterans with combat-related PTSD120. However, given the relatively 

high rates of chronic pain among veterans121, a challenge to the interpretation of veteran 

treatment studies in PTSD is disentangling antinociceptive properties from its other 

neuropsychiatric effects such as anxiolytic, improved mood, and enhanced resilience to 

stress. In addition to μ-opioid receptor targets, selective κ-opioid receptor antagonists may 

provide a neurobiological rational approach for anhedonic symptoms and reward-related 

dysfunction associated with PTSD and trauma-related conditions. A NIH funded trial of a 

selective κ-opioid receptor antagonist in patients with a broad range of depressive, anxiety, 

and trauma-related pathology was recently completed and results are pending 

(NCT02218736).

Besides investigations in individuals with chronic PTSD, opioids are being used in PTSD 

prevention trials in at-risk trauma victims. For example, in an animal model of PTSD, 

morphine prevented the development of stress-enhanced fear learning122. Clinically, the use 

of morphine during early resuscitation and trauma care significantly lowered the risk of 

PTSD in injured U.S. military personnel123. In a similar study with civilians, administering 

opioids after traumatic injury has been associated with lower rates of PTSD symptoms in 

prospectively followed samples using a naturalistic design124, 125.

Obsessive Compulsive Disorder (OCD)

Abnormalities in amygdalo-cortical and cortico-striatal circuitry are established in OCD126. 

These areas of the brain, rich in dopaminergic structures and their anatomical targets as well 

as opioid receptors, are a rational target for opioid modulation for patients with SSRI-

resistant OCD. The prevalence of OCD in opioid-dependent patient samples was found to be 

four times higher than the general population; and there are reports of OCD symptom 

worsening during methadone taper127, 128. A small placebo and lorazepam-controlled 

randomized trial in SSRI-resistant OCD found that once-weekly oral morphine administered 

for 2 weeks was more effective than placebo, while lorazepam was not129. There is also 

open-label evidence for the atypical analgesic tramadol in OCD130. While conflicting, these 

reports suggest abnormal functioning of the opioid system in OCD and repetitive-like 

behavior syndromes, which by their very nature provide repetitive rewards.

Other Applications

A linkage between endogenous opioid dysfunction and borderline personality disorder has 

been proposed based on multiple lines of evidence. Evidence includes alterations in plasma 

levels of opioid peptides, impairment in resiliency and social attachment, (i.e., opioid-related 

behaviors) and a high incidence of opioid dependency among individuals with borderline 

personality131, 132. Moreover, there is a high rate of self-injurious behavior (i.e., “cutting”), a 

common feature of borderline personality disorder, that is thought to stimulate endogenous 

opioid release and has been associated with decreased levels of β-endorphin in cerebrospinal 

fluid133. Using PET imaging, Prossin et al75 provided confirmation of the borderline 
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personality - endogenous opioid hypothesis by demonstrating significant abnormalities in μ-

opioid receptor levels at baseline and exagerated endogenous opioid release following 

sadness induction in patients with borderline personality disorder, compared to controls. Use 

of opioid agents to address underlying endogenous abnormalities may represent an 

important future therapeutic strategy.

Endogenous opioid dysregulation has also been implicated in autism spectrum disorders, 

which are associated with impairments in social behavior and attachment, repetitive 

stereotypies, and motor hyperactivity134. Therapy with opioid antagonists have improved 

hyperactivity and restlessness symptoms with unclear effects on other core features of 

autism such as abnormal social behavior135. Further research is needed to identify patient 

subsets who might best benefit from an endogenous opioid system directed treatment.

Future Directions

Drugs with novel mechanism of action, rapid onset of action, and improved safety profiles 

are needed for mood, anxiety, and stress-related conditions that have not responded to 

conventional monoaminergic modulation. It is established that full opioid agonists can 

induce euphoria and lead to dependence. However, as we noted, the endogenous opioid 

system is dysregulated and impaired in MDD and plays a critical role in motivation, social 

attachment, and resiliency. Thus, treatment of endogenous opioid dysregulation in MDD has 

the potential to provide clinical benefits that are distinct and may extend beyond benefits 

conferred by conventional antidepressants. Clinical studies of very low (i.e., sub-euphoric) 

doses of opioid agonists, and opioid agonist-antagonist combinations indicate that 

therapeutic benefit is attainable in the treatment of MDD while minimizing or avoiding 

abuse liability. Finally, agents that largely bypass μ-opioid receptors and specifically 

function as either δ-opioid receptor agonists, κ-opioid receptor antagonists, or NOP agonists 

may produce antidepressant effects without risk of addiction.

Biased opioid receptor ligands represent an emerging area of research. In contrast to existing 

opioidergic agents, biased opioid ligands bind selectively to activate intracellular G-proteins 

following receptor engagement, but fail to engage the beta-arresting signalling pathway136. 

Although research in this area remains at an early phase, discovery and development of 

biased opioid ligands may ultimately yield new therapeutic agents that retain the beneficial 

therapeutic properties of opioids in the treatment of depression and other psychiatric 

disorders while minimizing adverse properties such as respiratory depression and abuse 

potential.

Given the relatively rapid onset of opioids on symptoms of mood and anxiety, other 

treatment paradigms may also be explored in which these medications are not prescribed 

long-term, but as “rescue,” “prevention,” and synergistic medications. For example, the 

short-term use of opioids with κ-opioid receptor antagonism activity in the acute period 

post-trauma may have a role in preventing chronic PTSD symptoms. In patients who are 

stress-reactive and hospitalized for suicidal behaviour, co-prescribing low-dose 

buprenorphine along with a monoaminergic agent such as a SSRI may provide immediate 

relief and reduction in suicidal ideation, allowing time for the clinical effect of the 

antidepressant to evolve.
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Two major public health issues, the opioid addiction epidemic and major depression are 

linked by underlying endogenous opioid dysregulation. This linkage is manifest in the 

disproportionate use of opioids by patients with mood disorders who account for the 

majority of prescription opioid use in the United States. Emerging research is elucidating the 

mechanisms underlying dysregulation of the endogenous opioid system in depression and 

other mood disorders. This has led to increased understanding of the shared neural circuitry 

that mediates the perception of both emotional-social pain and nociceptive pain27.

Novel pharmacologic approaches based on this research may yield new treatments for 

depression targeting the endogenous opioid system with low or absent addictive potential. 

Given the involvement of the endogenous opioid system in social attachment, resiliency, and 

hedonic tone, these treatments would be expected to confer clinical benefits that are distinct 

from monoamine-based therapies, particularly in patients who are inadequately responsive 

to standard antidepressants. Further research is required.

The use of μ-opioid receptor agonists by individuals with mood disorders may reflect either 

deliberate or inadvertent self-medication of social and emotional pain. This phenomenon 

would exacerbate the opioid addiction crisis. Ultimately, the development of targeted 

therapies, with low risk for abuse, to address mood-related endogenous opioid dysregulation 

would represent a much needed alternative to highly addictive μ-opioid receptor agonists and 

thereby provide a new and distinct opportunity to contribute to addressing the on-going 

opioid addiction crisis.
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Figure 1. 
Areas of opioid receptor gene expression (μ= OPRM1; δ= OPRD1; κ= OPRK1; NOP= 

ORL1) in the human brain (Donor: H0351.1015, 55 yrs, Male, White or Caucasian). The 

cortical gene expression patterns are displayed on an inflated cortical surface (outer and 

inner surfaces of the left hemisphere). Subcortical structures of the brain are represented 

from the frontal view, and subcortical as well as brainstem structures are shown in the side 

view. The color bar displays expression values using z-score normalization.

Image credit: Allen Institute; http://www.brain-map.org).
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Figure 2. 
Positron Emission Tomography (PET) baseline measures of opioid receptor binding in 

humans [images averaged across a group of subjects (n<20 for all groups)]. Images are 

color-coded according to the scale shown so that highest concentrations of the radiotracer 

are represented by red and lowest concentrations by black/purple. Binding maps in the 

coronal (top) and axial (bottom) view show greatest binding in the striatum and insular 

cortex for all radiotracers, except for the δ-opioid receptor antagonist: N1′-([11C]methyl) 

Naltrindol.

Left: μ-opioid receptor agonist: [11C]; Carfentanil; δ-opioid receptor antagonist: N1′-
([11C]methyl) Naltrindol; κ-opioid receptor antagonist: [11C] LY2795050; nociceptin 

receptor: [11C]NOP-1A.

Reproduced with permission137–139. NOP receptor agonist: [11C]NOP-1A, images provided 

by Rajesh Narendran.
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Figure 3. 
Measure of changes in μ-opioid receptor availability in vivo with positron emission 

tomography (PET) during social rejection (not being liked by others) and acceptance (being 

liked by others). Compared to depressed patients, healthy controls showed greater rejection-

induced opioid release in the nucleus accumbens, amygdala and midline thalamus.

Reproduced with permission82.
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