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Abstract

Background—This study evaluated the psychometric properties of a new, comprehensive 

measure of knowledge about genomic sequencing, the University of North Carolina Genomic 

Knowledge Scale (UNC-GKS).

Methods—The UNC-GKS assesses knowledge in four domains thought to be critical for 

informed decision making about genomic sequencing. The scale was validated using classical test 

theory and item response theory in 286 adult patients and 132 parents of pediatric patients 

undergoing diagnostic whole exome sequencing (WES) in the NCGENES study.

Results—The UNC-GKS assessed a single underlying construct (genomic knowledge) with good 

internal reliability (Cronbach’s alpha = 0.90). Scores were most informative (able to discriminate 

between individuals with different levels of genomic knowledge) at one standard deviation above 

the scale mean or lower, a range that included most participants. Convergent validity was 

supported by associations with health literacy and numeracy (rs=0.41–0.46). The scale functioned 

well across subgroups differing in sex, race/ethnicity, education, and English proficiency.
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Discussion—Findings supported the promise of the UNC-GKS as a valid and reliable measure 

of genomic knowledge among people facing complex decisions about WES and comparable 

sequencing methods. It is neither disease- nor population-specific, and it functioned well across 

important subgroups, making it usable in diverse populations.
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Rapidly evolving genetic testing practices have begun to include panels of dozens of genes 

in some clinical scenarios, or even more comprehensive tests ranging from thousands of 

genes to the entire genome or exome (e.g., whole exome sequencing, or WES).1 Genome-

scale tests (“genomic sequencing”) are more complex than single gene tests in important 

ways. For instance, they yield a wide spectrum of potential results, many of which have 

uncertain meaning. Providing informed consent for genomic sequencing requires that people 

have knowledge that includes, but goes beyond, knowledge needed for informed consent for 

single gene testing.2,3 People with greater knowledge of the nature of genes and their effects 

on health, how genes are inherited in families, and the potential benefits, harms, and 

limitations of genomic sequencing are better equipped than their less knowledgeable peers to 

make informed decisions about undergoing sequencing, comprehend the meaning and 

limitations of their results, and take appropriate actions upon learning these results4,5. Yet, 

many people currently offered genomic sequencing have inadequate knowledge and 

misconceptions about basic genetics2,6 and are unfamiliar with genomic sequencing. The 

unique and complex issues raised by genome-scale tests are not well-covered by existing 

knowledge measures. Having a validated, comprehensive measure of genomic knowledge 

could help identify knowledge gaps and reduce the chance that people’s decisions and 

responses to genomic sequencing are based on false assumptions, unrealistic expectations, or 

misconceptions.

To meet the need for a valid way to assess genomic knowledge, we conducted the present 

study to evaluate a new measure, the University of North Carolina Genomic Knowledge 

Scale (UNC-GKS). We conceptualized “genomic knowledge” as encompassing four 

domains: the structure and function of genes, how they are inherited, their relation to health, 

and potential benefits, harms, and limitations of WES—a sequencing method that identifies 

variants in the subset of the genome that encodes the genes. These domains are based on our 

clinical experiences with patients offered sequencing and reflect a pragmatic approach that is 

highly relevant to typical research applications of genomic sequencing. The domains are also 

consistent with a framework discussed by Smerecnik and colleagues7 that includes 

awareness knowledge (knowing that there are genetic risk factors for disease), how-to 
knowledge (knowing how those risk factors influence risk for developing a disease), and 

principles knowledge (knowledge of pathways through which genes are theorized to 

influence health). Our comprehensive definition allows evaluation of the extent to which 

people have a basic working knowledge they can use to evaluate pros and cons, risks, 

uncertainties, and alternatives to genomic sequencing.
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The UNC-GKS was also designed to address several limitations in existing measures. First, 

many existing knowledge measures focus on testing for mutations in a single genee.g., 8 or 

are specific to a particular diseasee.g., 9,10. However, genome-scale tests, in addition to 

becoming increasingly common, raise unique and complex issues not well-covered by these 

kinds of existing measures. Moreover, because the UNC-GKS is general rather than disease-

specific, scores can be compared across populations affected by different diseases. The 

UNC-GKS can also be used in populations affected by diseases for which disease-specific 

measures do not exist. A second issue addressed by the UNC-GKS relates to the 

sociodemographic diversity of most patient populations. Given recognized subgroup 

differences in knowledge and views of genomic sequencing,11,12 it is often useful to 

compare knowledge scores across subgroups in a study’s sample. However, these 

comparisons are only informative if observed subgroup knowledge differences reflect real 

differences rather than measurement artifacts. It is rare to see formal analyses investigating 

the psychometric functioning of a knowledge measure across different subgroups. Finally, 

some existing knowledge measures assess agreement or disagreement with statements about 

genetics or genomics13—a common approach for measuring beliefs or attitudes that may, 

but does not necessarily, correspond to knowledge. Studies in educational testing and 

knowledge assessment more often use items with multiple choice or true/false response 

options that can be unambiguously scored as correct or incorrect14,15.

Accordingly, our goal was to develop a measure that met the following criteria: (1) it covers 

domains of knowledge relevant to the complex decision contexts created by genome-scale 

sequencing; (2) it applies to a broad range of contexts and populations rather than being 

specific to a particular disease or population; (3) it has adequate validity and reliability 

across important sociodemographic subgroups; and (4) it uses a true/false response scale. No 

existing measures meet these criteria. We note that a recently introduced measure of basic 

knowledge about genetics and genetic causes of disease16 used true/false response options; 

however, it was evaluated in a sample with little diversity and analyses did not examine the 

psychometric functioning of its items across subgroups, so it is unclear whether the measure 

can assess knowledge with similar validity and reliability across important subgroups. 

Moreover, it does not include items about genomic sequencing and implications of potential 

sequencing results. The UNC-GKS includes those types of items, and we examined its item 

functioning across subgroups varying by sex, race/ethnicity, education, and English language 

proficiency. Consequently, the present study was expected to yield a new tool for research 

with diverse populations offered genomic sequencing.

Methods

Participants

Participants were enrolled in the North Carolina Clinical Genomic Evaluation by Next-

generation Exome Sequencing (NCGENES) study, which is investigating the performance 

and best use of WES in the diagnosis and clinical care of patients with suspected genetic 

disorders3. Adult and pediatric patients evaluated at a UNC-affiliated hospital or at Vidant 

Medical Center (Greenville, NC) were eligible for NCGENES if they had symptoms or an 

illness with a possible genetic etiology (as determined by the referring physician) and if they 
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were in one of these diagnostic groups: hereditary cancers, cardiovascular disorders (mainly 

cardiomyopathies), neurodevelopmental disorders, congenital disorders, retinopathies, or 

selected other disorders (e.g., mitochondrial disorders). Adult patients and parents of 

pediatric patients sequenced in NCGENES completed study measures including the UNC-

GKS. Participants also included a small sample of guardians of adult patients whose 

cognitive or physical functioning precluded completion of study procedures; however, none 

were included in the present sample. We recruited 418 participants (286 adult patients, 132 

parents) for the present study’s sample between August 2012 and December 2014. All 

completed study measures in English.

Procedures

Eligible individuals were contacted by study staff to schedule a study visit and then were 

mailed an appointment letter, consent and HIPAA forms, educational brochures designed for 

the study, and an intake questionnaire that included the UNC-GKS. Potential participants 

then met with a certified genetic counselor who obtained informed consent for sequencing. 

At this meeting, consenting participants returned their completed intake questionnaire, 

completed health literacy measures, and had their blood drawn. Data for the present study 

came from the intake questionnaire, the literacy measures, and UNC Hospitals chart 

abstraction. Prior to completing the UNC-GKS, participants had the opportunity to read the 

mailed educational brochures, which provided an overview of genomic sequencing and 

potential sequencing results. They had not yet received the more specific, personalized 

information provided during informed consent procedures. Their intake UNC-GKS scores 

therefore may not reflect the level of genomic knowledge in the general public; instead, 

these scores approximate knowledge likely to be found in candidates for sequencing. The 

institutional review boards of the University of North Carolina and Vidant Medical Center 

approved the study protocols.

Measures

Development of UNC-GKS—The UNC-GKS was developed in an iterative process that 

gathered feedback on measure domains and on item content and clarity from a team that 

included certified genetic counselors and medical geneticists with extensive clinical 

experience educating patients, behavioral scientists with formal training in communication 

and measure development, and others with and without genetics expertise. This team 

identified four key domains for the measure: the structure and function of genes, how they 

are inherited in families, their relation to health, and strengths and limitations of WES. We 

viewed the latter domain as a potentially separate module that future users could adapt or 

replace for other sequencing contexts (e.g., newborn or population screening). We reviewed 

existing measures and adapted or drafted knowledge items with the goal of ensuring good 

content validity across the four domains and cohesion across the underlying construct of 

genomic testing knowledge17. Some items within each domain specifically addressed 

misconceptions that could affect informed decision making (e.g., A mother and daughter 
who look alike are more genetically similar than a mother and daughter who do not look 
alike). We used genetic terms that participants were exposed to throughout the study (e.g., in 

consent procedures, brochures, and counseling). Because the term “gene variant” was 

especially important, the instructions included the following reminder: “We are using the 
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term ‘gene variant’ to mean a version of a gene. Sometimes two people have the same 

version of a gene (they have the same gene variant) and other times two people have 

different versions of a gene (they have different gene variants).”

The resulting measure includes 25 items framed as statements and uses the response 

categories: true, false, and not sure/don’t know (with the latter provided to minimize 

guessing). The statements and correct answers appear in Table 1. We scored correct 

responses as 1 and incorrect responses and not sure/don’t know responses as 0.

Sociodemographic and medical characteristics—Sociodemographic variables came 

from clinical records or self-report in the intake questionnaire. They included participant 

sex, race/ethnicity, educational attainment, and annual household income. Nominating 

clinicians reported patients’ diagnosis or symptoms; this information was supplemented and 

confirmed during the informed consent session.

English proficiency—We used 3-item subscale of the Cultural Identity Scale18 to assess 

English proficiency in speaking, reading, and writing. Responses, ranging from 1 (Poor) to 4 

(Excellent), were summed to create a single score for which higher scores indicated greater 

proficiency (Cronbach’s alpha=0.90).

Health literacy—Study staff assessed general health literacy and genetics-related health 

literacy in person using the 66-item Rapid Estimate of Adult Literacy Measure19 and the 8-

item Rapid Estimate of Adult Literacy-Genetics6. For both scales, we created scores by 

summing the number of words a participant pronounced correctly; words that a participant 

pronounced incorrectly or skipped were not counted. Higher scores indicate greater general 

health literacy and genetics-related health literacy, respectively. REALM raw scores can be 

used to categorize people as having low health literacy (scores of 0–44, ≤ sixth grade reading 

level), marginal literacy (scores of 45–60, seventh to eighth grade reading level), and 

functional health literacy (scores of 61–66, ≥ ninth grade reading level)19. REAL-G scores 

of three or less have been interpreted as indicating low genetics-related health literacy (≤ 

sixth grade level)6.

Numeracy—We measured subjective numeracy with a validated 3-item version of the 

Subjective Numeracy Scale20–22. Items assess perceived numerical aptitude and preference 

for numbers on a scale from 1 (Not at all good/helpful) to 6 (Extremely good/helpful). 
Summing responses yields a single score for which higher scores indicated stronger 

preference for numerical over textual information and greater perceived ability to perform 

mathematical tasks (Cronbach’s alpha=0.89). We measured objective numeracy with a 

validated measure that presents three arithmetic problems testing the use of proportions, 

fractions, and percentages23. Summing correct responses yields an objective numeracy 

score.

Data analysis

We examined the psychometric properties, factor structure (to evaluate the assumption that 

all items reflect a single underlying construct—in this case, genomic knowledge), and 

convergent validity (to evaluate the scale’s association with conceptually related variables) 
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of the UNC-GKS. We also conducted item response theory (IRT) analyses that offer more 

in-depth information than classical test theory methods, including evaluation of variation in 

item performance (differential item functioning) across demographic subgroups.

Item-level descriptive statistics—First, we examined the proportion of participants 

correctly answering each UNC-GKS item to evaluate whether items were too easy (ceiling 
effects, indicated by >90% of participants answering them correctly) or too hard (floor 
effects, indicated by >90% of participants answering them incorrectly). Second, we 

computed inter-item tetrachoric correlations24 to evaluate whether UNC-GKS items were 

positively associated with each other, as we would expect. Third, we evaluated whether 

responses to each item were consistent with the sum of the responses to the remaining items 

by examining whether item-total correlations were positive. Negative or low item-total 

correlations indicate items that may need to be reworded or discarded.

Factor analyses—Before completing IRT analyses, we checked the assumption that the 

measure was unidimensional by conducting a confirmatory factor analysis of the inter-item 

tetrachoric correlation matrix using the Mplus25 “weighted least squares with robust 

standard errors, mean- and variance-adjusted” algorithm. We evaluated model fit using the 

root mean square error of approximation (RMSEA, acceptable if <0.05)26, the Tucker-Lewis 

index (TLI, acceptable if >0.95)27, the comparative fix index (CFI, acceptable if >0.95)28, 

and residual correlations between items via modification indices. Large modification indices 

(>10) reveal possible local dependence for sets of items, indicating possible violation of the 

local dependence assumption of IRT. Local dependencies indicate content redundancy or 

similar wording between two or more items and may suggest additional factors exist in the 

scale.

IRT analyses—We evaluated performance of the UNC-GKS items by fitting one-, two-, 

and three-parameter logistic IRT models (1PL, 2PL, and 3PL, respectively) using the 

software program IRTPRO29. The 1PL model30 characterizes each item by a single 

parameter—the difficulty parameter, b, which indicates the level of genetic knowledge at 

which there is a 50% chance of answering the item correctly (that is, how difficult the item 

is). The 2PL model31 estimates both b and an additional parameter, the discrimination 
parameter, a, which reflects the degree to which item responses are associated with the latent 

construct being measured (how effectively an item discriminates between individuals with 

higher versus lower genomic knowledge). The 3PL model31 estimates the a and b 
parameters and an additional parameter, c, which accounts for guessing. We chose the best 

fitting model by examining chi-square tests of the likelihood ratio for each model pair, then 

examined this model’s goodness of fit to the data using Orlando and Thissen’s S-X2 

statistic32,33, for which a nonsignificant result indicates adequate model fit at the item-level 

(i.e., how well each item fits the model). We controlled for multiple comparisons using the 

Benjamini-Hochberg procedure34,35.

In addition to items flagged for potential local dependence in the confirmatory factor 

analysis, we used the IRT-based local dependence statistic36 to identify items that were 

excessively related after controlling for the underlying construct (genomic knowledge)—an 

undesirable characteristic. Values >10 indicate substantial local dependence. We then 
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conducted an additional check on the dimensionality of the data by estimating a bifactor IRT 

model in which each locally dependent set of items was specified as a second order factor. 

Violations of local dependence were deemed negligible if the variance accounted for by 

first-order or general factor (common variance)37–40 was at least 0.85.

Next, we examined differential item functioning (DIF), which enables evaluation of whether 

items behave differently across subgroups after holding the underlying construct (genomic 

knowledge) constant41. It detects a form of measurement bias that occurs when people in 

different groups with the same level of the underlying construct have a different probability 

of getting a particular score on a scale. DIF may indicate that attributes other than those the 

scale is intended to measure are affecting responses. In the present study, we examined DIF 

across sex, race/ethnicity, education, and English proficiency groups. For each item, we used 

a logistic regression model to evaluate whether item responses were associated with group 

membership after controlling for participants’ IRT score on the UNC-GKS. Uniform DIF (of 

a similar magnitude across the range of the underlying construct) was evaluated with a 

likelihood ratio test comparing a logistic regression model with one predictor (IRT score) to 

a model with both IRT score and an additional predictor (group membership); this approach 

allowed us to evaluate whether, after controlling for overall level of genomic knowledge, one 

group was more likely than the other to answer the item correctly. Non-uniform DIF (for 

which magnitude may differ across the range of the underlying construct) was evaluated 

with a likelihood ratio test comparing a model with both predictors (IRT score and group 

membership) to a model that also included their interaction term. This model allowed us to 

evaluate whether an item provided better measurement of genomic knowledge for one group 

versus another. We used the Benjamini-Hochberg procedure to make inferential decisions in 

multiple comparisons.

According to common practice, we planned to drop items if they did not fit well, 

substantially violated local dependence, or functioned differently for key groups. The 

remaining items would then be used to calibrate a final IRT model to use in subsequent 

analyses.

IRT scoring and reliability—We computed IRT scores for the UNC-GKS based on the 

parameters from the final IRT model. These scores are relative to the population of this 

sample, assuming a normal distribution with a mean of 0 and standard deviation of 1. To be 

more easily interpretable, we scaled the IRT scores to the T-score metric with a mean of 50 

and a standard deviation of 10. Analysts typically compute IRT scaled scores based on 

response patterns, essentially weighting item responses by their IRT a parameters so that 

items more strongly related to the underlying construct have a greater impact on the score. 

However, analysts also often use summed scores because they do not require special 

software. To enable practical use of scaled scores, we computed a scoring table to convert 

summed scores to expected scaled scores. We also computed a scoring table for a 19-item 

version of the UNC-GKS that omitted the WES items, for use when those items are not 

needed. The 19-item version was scored using the 19 IRT parameters from the 25-item 

calibration so that scores would be on the same scale and comparable.
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Next, we used the IRT test information function (TIF) to examine the precision of scale 

scores—the extent to which an estimate of genomic knowledge at a given scale score is 

reasonably close to the true value. Given that these scores estimate individuals’ genomic 

knowledge, greater precision improves the scale’s ability to distinguish between individuals 

with different levels of genomic knowledge in addition to providing other useful 

information. The TIF sums information functions for each individual item into a single 

function. Greater test “information” indicates greater precision42. TIF is depicted in a 

graphical format where the amount of information is plotted against the latent construct 

(here, genomic knowledge) to show how well the test estimates the construct over the full 

range of individuals’ ability or knowledge. The areas of greatest measurement precision are 

indicated by the highest points of the curve.

Classical test theory reliability—We evaluated internal consistency reliability of the 25 

UNC-GKS items by computing Cronbach’s coefficient α43. Ideal α values are at least 

0.7044, indicating a set of items that are strongly related to one another.

Convergent validity—We calculated Pearson correlations between the UNC-GKS scale 

score and the REAL-G, REALM, and subjective and objective numeracy scales to evaluate 

convergent validity, or the extent to which measures that should be associated with each 

other are in fact associated. We predicted that the UNC-GKS would correlate positively with 

genetics-related literacy and general health literacy, because individuals with greater ability 

to obtain, process, and understand health information should be more able to learn the 

domains of information assessed by the UNC-GKS. We also predicted positive correlations 

between the UNC-GKS and both measures of numeracy because the ability to reason and 

apply numerical concepts influences ability to learn these domains of information45.

Results

Sample

The final sample included 286 adult patients and 132 parents (Table 2). Three quarters were 

women and 17% were racial/ethnic minorities. Participants’ mean age was 47 years (range 

17–84 years). Nearly 20% of participants had not attended college; just over half had a 

college degree. The median annual household income category was $60,000–74,999. Nearly 

13% of the sample had marginal or worse general health literacy and 6% had low genetic 

literacy. About 18% reported less than “excellent” proficiency in speaking, writing, and/or 

reading English.

Scale and item descriptive statistics

The number of missing responses was minor, ranging from 2–8 of 418 participants per item. 

The mean proportion of participants correctly answering each item was 0.73 (SD=0.12) with 

a range of 0.48 to 0.89 across the items. Figure 1 shows the distribution of responses for 

each item, revealing items for which knowledge and uncertainty were highest and lowest. 

Items from the four domains assessed by the measure (the structure and function of genes, 

how they are inherited, their relation to health, and the strengths and limitations of WES) 

were well distributed across the range of items answered correctly, incorrectly, or for which 
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there was uncertainty. There were no floor or ceiling effects; thus, no items were too easy or 

too hard for this sample. All correlations among items were positive and statistically 

significant, with a mean of r=0.46 (SD=0.15) and range of 0.10 to 0.90. Similarly, all item-

total correlations were positive and of medium to large magnitude, with a mean of r=0.49 

(SD=0.11) and range of 0.29 to 0.68. Thus, item-level statistics did not identify any items as 

candidates for revision or removal and subsequent analyses considered all 25 items. 

Distributions of the summed score for the 19 and 25 item versions of the UNC-GKS appear 

in Figures 2 and 3. Scores are skewed to the left, indicating that participants correctly 

answered most items.

Factor analyses

The one factor confirmatory factor analysis model fit the data well (Χ2=476.4, df=275, 

p<0.001; RMSEA=0.04; CFI=0.96; TLI=0.95), indicating that the items represented a single 

underlying construct. The standardized factor loadings were positive, statistically significant, 

and of moderate to large magnitude (0.40–0.95); thus, all items were associated with the 

underlying construct of genomic knowledge (Table 4). Two modification indices indicated 

possible local dependence between items 5 and 6, and between items 9 and 12. Fitting a 

model that allowed the errors for these two item pairs to correlate led to good fit (Χ2=456.0, 

df=273, p<0.001; RMSEA=0.04; CFI=0.96; TLI=0.96) with a statistically significant 

improvement in fit over the simpler model ( χdiff
2 = 20.4, df=2, p<0.001). However, the 

residual correlations were not large (r=0.33 for items 5 and 6, r=0.42 for items 9 and 12) and 

the items’ text did not suggest content redundancy so we retained them for further 

evaluation.

Item response theory analyses

The UNC-GKS items varied in their ability to discriminate between participants with 

differing amounts of genomic knowledge, as indicated by the better fit of the 2PL rather than 

the 1PL model ( χdiff
2 = 221.37, df=24, p<0.001). The 2PL model fit the items well; no items 

exhibited misfit or local dependence (p<0.05). Participants were not likely to have been 

guessing when they answered “true” or “false,” given that the 3PL model did not fit better 

than the 2PL model ( χdiff
2 = 2.92, df=24, p=1.00); participants who were unsure of their 

responses were likely selecting “not sure/don’t know.” The S-X2 and LD statistics appear in 

Table 3.

To further evaluate the residual correlations found in the confirmatory factor analysis model 

between items 5 and 6 and items 9 and 12, we estimated a bifactor 2PL model with each of 

these item pairs loading on a second-order factor in addition to the overall genomic 

knowledge factor. Explained common variance for this model was 0.91; thus, most of the 

variance in the items was attributable to the overall factor. This finding supported our 

decision to retain these items and led us to consider the data to be “essentially 

unidimensional,” meaning that there were no other meaningful underlying dimensions. 

Thus, these four items could be considered part of the overall factor.
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DIF detection analyses, estimated with logistic regression models, did not reveal any 

statistically significant parameters (p<0.05) for uniform or non-uniform DIF. That is, after 

controlling for level of genomic knowledge, the scale items did not function differently in 

terms of their difficulty or how related they were to genomic knowledge when answered by 

individuals who differed on each of the key demographic groups of sex, race/ethnicity, 

education, and English proficiency. The measure performed comparably across these groups.

Our analytic plan called for items to be dropped prior to calibration of a final IRT model if 

they did not fit well, substantially violated local dependence, or functioned differently for 

key groups. Because no items were flagged for removal using these criteria, the original 2PL 

calibration was the final IRT model used for scoring. As shown in Table 3, the difficulty (b) 

parameters for the items ranged from −2.56 to 0.09; higher b parameters indicate more 

difficult items. The discrimination (a) parameters indicated that all items were highly related 

to the underlying construct of genomic knowledge and that they were able to discriminate 

between individuals with different levels of genomic knowledge. Items specific to WES 

(items 20–25) had a parameters >2.0 and thus were particularly good at discriminating 

between these individuals, perhaps because the items covered information that was relatively 

unfamiliar to participants, many of whom had not known about WES prior to the study.

Item response theory scoring and reliability

We examined score precision (TIF) and reliability for both forms of the scale (see Figure 4). 

For the 25-item UNC-GKS, precision and reliability was especially high for T-scores 

between 32 and 49, and reliability was good (≥ 0.70) for all scores below 61 (approximately 

one standard deviation above the mean). For the 19-item UNC-GKS, precision and 

reliability was highest for T-scores between 36 and 40, and reliability was good (≥ 0.70) for 

all T-scores below 60. Thus, reliability was above accepted cut-offs for individuals who 

correctly answered ≤ 23 items on the 25-item UNC-GKS or ≤ 17 items on the 19-item UNC-

GKS. Table 4 provides a scoring translation table for converting summed scale scores to T-

scores based on the final (2PL) IRT model using the overall sample as a reference group. 

The correlation between T-scores resulting from the two versions of the scale was 0.97.

Classical test theory reliability

Internal consistency reliability was high (Cronbach’s α=0.90) for the 25-item UNC-GKS 

and for the 19-item UNC-GKS (α=0.86).

Convergent validity

As expected, the UNC-GKS correlated moderately and positively with general health 

literacy, genetics-related health literacy, and objective and subjective numeracy (Table 5), 

providing evidence of convergent validity.

Discussion

In order to make informed decisions about accepting or declining sequencing, understand 

their sequencing results, and decide on appropriate ways to apply these results, people need 

knowledge about the structure and function of genes, how genes are inherited in families, 
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effects of genes on health, and potential benefits, harms, and limitations of sequencing4,5. 

Our study used rigorous methods to evaluate the psychometric properties of the UNC-GKS, 

which assesses these domains of knowledge. Findings indicate that all of the scale’s items 

measured genomic knowledge well and, taken together, they cover a broad range of critical 

genomic knowledge. Thus, the UNC-GKS can generate a single score representing a 

person’s genomic knowledge.

Importantly, findings indicated that the UNC-GKS measures genomic knowledge in the 

same way regardless of people’s sociodemographic background. That is, different subgroup 

scores indicate different levels of genomic knowledge rather than differences in the way 

people in certain subgroups understood scale items or differences in their response patterns 

that are unrelated to their level of genomic knowledge. As such, the UNC-GKS is valid for a 

variety of subgroups and researchers can use it with diverse populations. For instance, group 

differences in UNC-GKS scores could be used to advance understanding of disparities in 

genomic sequencing.

Furthermore, UNC-GKS scores were most informative below one standard deviation above 

the scale’s mean. Thus, the scores are precise for most individuals, with slightly less 

reliability, although still well within an acceptable range for those who answer all items 

correctly or those who give one incorrect answer (i.e., scores at one standard deviation above 

the scale’s mean or higher). These high-scoring individuals may have less need for 

educational interventions, so this psychometric property of the UNC-GKS does not detract 

from its usefulness. In sum, the measure is reliable and especially sensitive for identifying 

people with varying degrees of low to moderate genomic knowledge—the group in greatest 

need of education and decision support when offered genomic sequencing.

We created two versions of the UNC-GKS: a 25-item version that includes items assessing 

knowledge about strengths and limitations of WES (the context for which we developed the 

scale) and a 19-item version that excludes these WES-specific items. T-scores were 

comparable for these two forms—an advantage for researchers and clinicians who use only 

the first 19 items because they are not offering WES, or they wish to develop a new set of 

items specific to the type of testing they are using. Our team has developed and will validate 

versions of the scale that substitute the WES items with new items relevant to the application 

of genomic sequencing to newborn screening and to screening adults for highly penetrant 

mutations that confer risk for treatable or preventable diseases.

Moreover, findings indicated that participants were not guessing, likely as a positive result of 

including the “not sure/don’t know” response option. This response option also allows 

evaluation of the extent to which individuals are unsure of responses versus having been 

forced to indicate that each item is true or false, without being able to indicate uncertainty. 

Being able to evaluate uncertainty may have practical utility in some applications. For 

instance, items with high unsure/don’t know responses may represent specific areas that 

should be targeted with educational efforts.

Limited literacy and numeracy—basic abilities necessary for seeking, comprehending, and 

using health information46,47—is a prevalent problem and one that is highly relevant for 
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researchers and clinicians who need to educate individuals about genomic sequencing. Both 

were associated with lower scores on the UNC-GKS. These associations have been 

identified as important in the context of genetic testing and genomic sequencing48, and they 

have contributed to calls to increase educational efforts necessary for making scientific 

knowledge about genetics and genomics more broadly accessible4.

Additional research will be needed to evaluate additional aspects of validity, including other 

correlates of genomic knowledge measured by the UNC-GKS, group differences in genomic 

knowledge that may contribute to disparities in decision making and decision outcomes, and 

whether UNC-GKS scores identify people at risk for experiencing poor psychosocial or 

medical outcomes after testing. Research using this measure may also help guide 

development of psychoeducational interventions to address knowledge deficits, targeting 

clinicians (e.g., training in communicating effectively about genomic sequencing), patients 

and research participants (e.g., more useful and accessible educational resources), or both.

Future studies should also address limitations of the present study. Some of our subgroups 

were smaller than a suggested subgroup size of 100 for DIF analyses49. This rule of thumb 

is an estimate and, given the distribution of our item responses, we believe our results to be 

reliable. Yet, a more diverse sample would enable more in-depth examination of differential 

item functioning across subgroups, including the potential for more difficult or complex 

items to function poorly in some subgroups. We note that we did not find evidence for this 

type of problem, perhaps in part because our items were iteratively reviewed by 

measurement and clinical experts. However, it would be valuable to recruit a larger 

proportion of underserved minority groups, individuals with less than a high school 

education, and those with low health literacy. In addition, the research was conducted 

primarily at an academic medical center in a single geographic area. Future research should 

evaluate the measure in community-based samples and other geographic areas. Finally, the 

scale is likely to be too long for some purposes, and validation of a briefer form could 

increase its usefulness.

Conclusion

This study used a rigorous approach to demonstrate that the UNC-GKS is a promising tool 

for advancing research on people’s decisions about and responses to genomic sequencing. 

The scale has promising psychometric properties across different sociodemographic 

subgroups, making it appropriate for research in diverse populations. In addition, it covers 

domains of knowledge considered by a multidisciplinary team of experts to be critical for 

informed decision making about genomic sequencing, which is rapidly replacing single gene 

testing in some populations. Moreover, the scale is not disease or population specific, 

making it usable across a wide range of populations facing complex decisions involving next 

generation genomic sequencing.

Acknowledgments

This research was supported by the National Human Genome Research Institute of the National Institutes of Health 
under award number U01HG006487 (PIs: James P. Evans, Jonathan S. Berg, Karen E. Weck, Kirk C. Wilhelmsen, 
and Gail E. Henderson). The content is solely the responsibility of the authors and does not necessarily represent 
the official views of the National Institutes of Health.

Langer et al. Page 12

MDM Policy Pract. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We would also like to thank Kristy Lee and Kate Foreman for piloting and providing helpful feedback on the scale.

References

1. Warman CJ, Beaulieu C, Hartley T, et al. 2015; Axons to Exons: the Molecular Diagnosis of Rare 
Neurological Diseases by Next-Generation Sequencing. Curr Neurol Neurosci Rep. 15(9):64. 
[PubMed: 26289954] 

2. Bernhardt BA, Roche MI, Perry DL, et al. 2015; Experiences with obtaining informed consent for 
genomic sequencing. Am J Med Genet A. 167A(11):2635–2646. [PubMed: 26198374] 

3. Roche MI, Berg JS. 2015; Incidental findings with genomic testing: implications for genetic 
counseling practice. Curr Genet Med Rep. 3(4):166–176. [PubMed: 26566463] 

4. Secretary's Advisory Committee on Genetics, Health, and Society. Genetics Education and Training. 
Washington, DC: Department of Health & Human Services; 2011. 

5. Lautenbach DM, Christensen KD, Sparks JA, et al. 2013; Communicating genetic risk information 
for common disorders in the era of genomic medicine. Annu Rev Genomics Hum Genet. 14:491–
513. [PubMed: 24003856] 

6. Erby LH, Roter D, Larson S, et al. 2008; The rapid estimate of adult literacy in genetics (REAL-G): 
a means to assess literacy deficits in the context of genetics. Am J Med Genet. 146A(2):174–181. 
[PubMed: 18076116] 

7. Smerecnik CM, Mesters I, de Vries NK, et al. 2008; Educating the general public about 
multifactorial genetic disease: applying a theory-based framework to understand current public 
knowledge. Genet Med. 10(4):251–258. [PubMed: 18414207] 

8. Green MJ, Biesecker BB, McInerney AM, et al. 2001; An interactive computer program can 
effectively educate patients about genetic testing for breast cancer susceptibility. Am J Med Genet. 
103(1):16–23. [PubMed: 11562929] 

9. Richman AR, Tzeng JP, Carey LA, et al. 2011; Knowledge of genomic testing among early-stage 
breast cancer patients. Psychooncology. 20(1):28–35. [PubMed: 20200857] 

10. Scuffham TM, McInerny-Leo A, Ng SK, et al. 2014; Knowledge and attitudes towards genetic 
testing in those affected with Parkinson's disease. J Community Genet. 5(2):167–177. [PubMed: 
24018619] 

11. Singer E, Antonucci T, Van Hoewyk J. 2004; Racial and ethnic variations in knowledge and 
attitudes about genetic testing. Genet Test. 8(1):31–43. [PubMed: 15140372] 

12. Haga SB, Barry WT, Mills R, et al. 2013; Public knowledge of and attitudes toward genetics and 
genetic testing. Genet Test Mol Biomarkers. 17(4):327–335. [PubMed: 23406207] 

13. Kaphingst KA, Facio FM, Cheng MR, et al. 2012; Effects of informed consent for individual 
genome sequencing on relevant knowledge. Clin Genet. 82(5):408–415. [PubMed: 22694298] 

14. Frisbie DA. 1973; Multiple Choice versus true-false - comparison of reliabilities and concurrent 
validities. J Educ Meas. 10(4):297–304.

15. Ebel, RL, Frisbie, DA. Essentials of Educational Measurement. 5. Englewood Cliffs, NJ: Prentice 
Hall; 1991. 

16. Fitzgerald-Butt SM, Bodine A, Fry KM, et al. 2016; Measuring genetic knowledge: a brief survey 
instrument for adolescents and adults. Clin Genet. 89(2):235–243. [PubMed: 26032340] 

17. DeVellis, RF. Scale development: Theory and applications. 2. Vol. 26. Newbury Park: Sage 
Publications; 2003. 

18. Félix-Ortiz M, Newcomb MD, Myers H. 1994; A multidimensional measure of cultural identity for 
Latino and Latina adolescents. Hisp J Behav Sci. 16(2):99–115.

19. Davis TC, Crouch MA, Long SW, et al. 1991; Rapid assessment of literacy levels of adult primary 
care patients. Fam Med. 23(6):433–435. [PubMed: 1936717] 

20. Fagerlin A, Zikmund-Fisher BJ, Ubel PA, et al. 2007; Measuring numeracy without a math test: 
development of the Subjective Numeracy Scale. Med Decis Making. 27(5):672–680. [PubMed: 
17641137] 

21. McNaughton CD, Wallston KA, Rothman RL, et al. 2011; Short, subjective measures of numeracy 
and general health literacy in an adult emergency department. Acad Emerg Med. 18(11):1148–
1155. [PubMed: 22092896] 

Langer et al. Page 13

MDM Policy Pract. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. McNaughton CD, Cavanaugh KL, Kripalani S, et al. 2015; Validation of a short, 3-item version of 
the subjective numeracy scale. Med Decis Making. 35(8):932–936. [PubMed: 25878195] 

23. Schwartz LM, Woloshin S, Black WC, et al. 1997; The role of numeracy in understanding the 
benefit of screening mammography. Ann Intern Med. 127(11):966–972. [PubMed: 9412301] 

24. Wirth RJ, Edwards MC. 2007; Item factor analysis: current approaches and future directions. 
Psycho Methods. 12(1):58–79.

25. Muthén, LK, Muthén, BO. Mplus User’s Guide. Seventh. Los Angeles, CA: Muthén & Muthén; 
1998–2012. 

26. Steiger JH. 1990; Structural model evaluation and modification - an interval estimation approach. 
Multivar Behav Res. 25(2):173–180.

27. Tucker LR, Lewis C. 1973; Reliability coefficient for maximum likelihood factor-analysis. 
Psychometrika. 38(1):1–10.

28. Bentler PM. 1990; Comparative fit indexes in structural models. Psychol Bull. 107(2):238–246. 
[PubMed: 2320703] 

29. Cai, L, Thissen, D, du Toit, SHC. IRTPRO for Windows. Lincolnwood, IL: Scientific Software 
International; 2011. 

30. Thissen D. 1982; Marginal maximum likelihood estimation for the one-parameter logistic model. 
Psychometrika. 47:201–214.

31. Birnbaum, AS. Some latent trait models and their use in inferring an examinee’s ability. In: Lord, 
FM, Novick, MR, editors. Statistical Theories lf Mental Test Scores. Reading, MA: Addison-
Wesley; 1968. 392–479. 

32. Orlando M, Thissen D. 2003; Further investigation of the performance of S-X-2: An item fit index 
for use with dichotomous item response theory models. Appl Psychol Meas. 27(4):289–298.

33. Orlando M, Thissen D. 2000; Likelihood-based item-fit indices for dichotomous item response 
theory models. Applied Psychological Measurement. 24(1):48–62.

34. Benjamini Y, Hochberg Y. 1995; Controlling the false discovery rate - a practical and powerful 
approach to multiple testing. J Roy Stat Soc B Met. 57(1):289–300.

35. Williams VSL, Jones LV, Tukey JW. 1999; Controlling error in multiple comparisons, with 
examples from state-to-state differences in educational achievement. J Educ Behav Stat. 24(1):42–
69.

36. Chen WH, Thissen D. 1997; Local dependence indexes for item pairs: using item response theory. 
J Educ Behav Stat. 22(3):265–289.

37. Reise SP, Moore TM, Haviland MG. 2010; Bifactor models and rotations: exploring the extent to 
which multidimensional data yield univocal scale scores. J Pers Assess. 92(6):544–559. [PubMed: 
20954056] 

38. ten Berge JMF, Socan G. 2004; The greatest lower bound to the reliability of a test and the 
hypothesis of unidimensionality. Psychometrika. 69(4):613–625.

39. Bentler PM. 2009; Alpha, Dimension-free, and model-based internal consistency reliability. 
Psychometrika. 74(1):137–143. [PubMed: 20161430] 

40. Sijtsma K. 2009; On the use, the misuse, and the very limited usefulness of cronbach’s alpha. 
Psychometrika. 74(1):107–120. [PubMed: 20037639] 

41. Thissen, D, Steinberg, L, Wainer, H. Detection of differential item functioning using the 
parameters of item response models. In: Holland, PW, Wainer, H, editors. Differential Item 
Functioning. Hillsdale, NJ: Erlbaum; 1993. 67–113. 

42. Thissen D, Wainer H. 2002; Test Scoring. J Educ Meas. 39(3):265–268.

43. Cronbach LJ. 1951; Coefficient alpha and the internal structure of tests. Psychometrika. 16(3):297–
334.

44. Streiner, DL, Norman, GR. A Practical Guide to Their Development and Use. Second. Oxford: 
Oxford University Press; 1995. Health Measurement Scales. 

45. Lea DH, Kaphingst KA, Bowen D, et al. 2011; Communicating genetic and genomic information: 
health literacy and numeracy considerations. Public Health Genomics. 14(4–5):279–289. 
[PubMed: 20407217] 

Langer et al. Page 14

MDM Policy Pract. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



46. Medicine Io. Health literacy: A prescription to end confusion. Washington, DC: Institute of 
Medicine of the National Academies, Committee on Health Literacy, Board on Neuroscience and 
Behavioral Health; 2004. 

47. Kutner, M, Greenberg, E, Jin, Y. , et al. The health literacy of America’s adults: results From the 
2003 National Assessment of Adult Literacy (NCES 2006–483). Washington, DC: U.S. 
Department of Education; 2006. 

48. Lea DH, Kaphingst KA, Bowen D, et al. 2011; Communicating genetic and genomic information: 
health literacy and numeracy considerations. Public Health Genomics. 14(4–5):279–289. 
[PubMed: 20407217] 

49. Lai JS, Teresi J, Gershon R. 2005; Procedures for the analysis of differential item functioning 
(DIF) for small sample sizes. Eval Health Prof. 28(3):283–294. [PubMed: 16123258] 

Langer et al. Page 15

MDM Policy Pract. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Item response distributions for the University of North Carolina Genomic Knowledge 

(UNC-GKS)
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Figure 2. 
Summed score distribution for the 25-item University of North Carolina Genomic 

Knowledge (UNC-GKS)
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Figure 3. 
Summed score distribution for the 19-item University of North Carolina Genomic 

Knowledge (UNC-GKS)
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Figure 4. 
Item Response Theory test information and reliability for the University of North Carolina 

Genomic Knowledge (UNC-GKS) T-scores

Langer et al. Page 19

MDM Policy Pract. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Langer et al. Page 20

Table 1

UNC Genomic Knowledge Scale Items

Content
Area Item

Genes 1. Genes are made of DNA.

2. Genes affect health by influencing the proteins our bodies make.

3. All of a person’s genetic information is called his or her genome.

4. A person’s genes change completely every 7 years.*

5. The DNA in a gene is made of four building blocks (A, C, T, and G).

6. Everyone has about 20,000 to 25,000 genes.

Genes and health 7. Gene variants can have positive effects, harmful effects, or no effects on health.

8. Most gene variants will affect a person’s health.*

9. Everyone who has a harmful gene variant will eventually have symptoms.*

10. Some gene variants have a large effect on health while others have a small effect.

11. Some gene variants decrease the chance of developing a disorder.

12. Two unrelated people with the same genetic variant will always have the same symptoms.*

How genes are inherited in 
families

13. Genetic disorders are always inherited from a parent.*

14. If only one person in the family has a disorder it can’t be genetic.*

15. Everyone has a chance for having a child with a genetic disorder.

16. A girl inherits most of her genes from her mother while a boy inherits most of his genes from his 

father.*

17. A mother and daughter who look alike are more genetically similar than a mother and daughter who do 

not look alike.*

18. If a parent has a harmful gene variant, all of his or her children will inherit it.*

19. If one of your parents has a gene variant, your brother or sister may also have it.

Whole exome sequencing 20. Whole exome sequencing can find variants in many genes at once.

21. Whole exome sequencing will find variants that cannot be interpreted at the present time.

22. Whole exome sequencing could find that you have a high risk for a disorder even if you do not have 
symptoms.

23. Your whole exome sequencing may not find the cause of your disorder even if it is genetic.

24. The gene variants that whole exome sequencing can find today could have different meanings in the 
future as scientists learn more about how genes work.

25. Whole exome sequencing will not find any variants in people who are healthy.*

Note: Correct answer to the items is true unless followed by an asterisk (*).
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Table 2

Participant Characteristics (N=418)

n (%) Mean (SD)

Role

  Adult patient 286 (68.4)

  Parent of pediatric patient 132 (31.6)

Age (years)a 46.5 (14.3)

Sex

  Female 315 (75.4)

  Male 103 (24.6)

Ethnicity

  Non-Hispanic 391 (93.5)

  Hispanic 19 (4.5)

  Missing 8 (1.9)

Race

  White 345 (82.5)

  Non-White 71 (17.0)

  Missing 2 (0.5)

Education

  Less than high school 28 (6.7)

  High school graduate 52 (12.4)

  Some college 88 (21.1)

  Associates degree or vocational program 69 (16.5)

  4-year college degree 108 (25.8)

  Graduate degree 71 (17.0)

  Missing 2 (.5)

Income

  <$30,000 107 (25.6)

  $30,000–$59,999 83 (19.9)

  $60,000–$89,999 84 (20.1)

  $90,000–$104,999 17 (4.1)

  >$105,000 97 (23.2)

  Missing 30 (7.2)

Clinical group

  Hereditary cancers 100 (23.9)

  Cardiovascular disorders 46 (11.0)

  Neurodevelopmental disorders 112 (26.8)

  Congenital disorders 32 (7.7)

  Other 128 (30.6)
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n (%) Mean (SD)

General health literacy 63.0 (6.7)

  Functional (9th grade and above) 358 (85.6)

  Marginal (7th or 8th grade) 44 (10.5)

  Low (6th grade and below) 12 (2.9)

  Missing 4 (1.0)

Genetics-related health literacy 7.1 (1.6)

  High (above 6th grade) 384 (91.9)

  Low (6th grade and below) 23 (5.5)

  Missing 11 (2.6)

Objective numeracy 1.7 (1.0)

Subjective numeracy 4.6 (1.3)

a
Ages for participating parents of pediatric patients were not collected early in the study; therefore, descriptive statistics for participant age are 

based on all adult patients and 27 of the 132 participating parents.
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Table 4

Table for converting summed scores to item response theory-scaled T-scores for the University of North 

Carolina Genomic Knowledge Scale (UNC-GKS)

25-item UNC-GKS 19-item UNC-GKS

Summed score T-score
Standard

error T-score
Standard

error

0 21.7 5.0 21.9 5.1

1 24.3 4.6 24.6 4.7

2 26.7 4.2 27.1 4.3

3 28.8 3.8 29.4 4.0

4 30.6 3.5 31.4 3.8

5 32.2 3.2 33.3 3.6

6 33.7 3.0 35.1 3.5

7 35.0 2.8 36.8 3.5

8 36.2 2.7 38.4 3.5

9 37.3 2.6 40.1 3.5

10 38.4 2.5 41.8 3.6

11 39.5 2.4 43.5 3.7

12 40.6 2.4 45.4 3.8

13 41.6 2.4 47.3 4.0

14 42.7 2.5 49.4 4.2

15 43.9 2.6 51.8 4.5

16 45.1 2.7 54.4 4.9

17 46.3 2.9 57.4 5.4

18 47.7 3.1 61.0 5.9

19 49.3 3.4 65.0 6.5

20 51.1 3.7

21 53.1 4.1

22 55.5 4.5

23 58.2 5.1

24 61.6 5.7

25 65.4 6.3

Note. This table can be used to convert the summed count of a participant’s correct responses (summed scores) to item response theory scaled 
scores in the T score metric, allowing easy comparison across studies and populations. These T scores were calculated using this study’s sample, a 
population mean of 50, and standard deviation of 10. To convert a score, find a participant’s summed score in column 1 and follow the row to 
determine the IRT-scaled T score and standard error for the 25- and 19-item versions of the UNC-GKS.
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Table 5

Pearson correlations between University of North Carolina Genomic Knowledge (UNC-GKS) scale score and 

other measures

Scale
Correlation with

UNC-GKS 95% CI n

Genetics-related health literacy 0.46* 0.38 – 0.53 407

Health literacy 0.40* 0.31 – 0.47 410

Subjective numeracy 0.43* 0.34 – 0.52 412

Objective numeracy 0.41* 0.32 – 0.48 418

*
p<0.001
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