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Abstract

Purkinje neurons, the sole output of the cerebellar cortex, deliver GABA-mediated inhibition to the 

deep cerebellar nuclei. To subserve this critical function, Purkinje neurons fire repetitively and at 

high frequencies, features that have been linked to the unique properties of the voltage-gated 

sodium (Nav) channels expressed. In addition to the rapidly activating and inactivating, or 

transient, component of the Nav current (INaT) present in many types of central and peripheral 

neurons, Purkinje neurons also express persistent (INaP) and resurgent (INaR) Nav currents. 

Considerable progress has been made in detailing the biophysical properties and identifying the 

molecular determinants of these discrete Nav current components, as well as defining their roles in 

the regulation of Purkinje neuron excitability. Here we review this important work and highlight 

remaining questions about the molecular mechanisms controlling the expression and the 

functioning of Nav currents in Purkinje neurons. We also discuss the impact of the dynamic 

regulation of Nav currents on the functioning of individual Purkinje neurons and cerebellar 

circuits.

Introduction

In most mammalian central neurons, voltage-gated sodium (Nav) currents underlie the 

generation and propagation of action potentials and regulate repetitive firing rates [1,2]. The 

detailed time- and voltage-dependent properties of the Nav currents, in concert with the 

many other voltage- and non-voltage-gated currents expressed, underlie the generation of 

cell type-specific differences in the waveforms of individual action potentials and the rates 

and patterns of repetitive firing [1,2]. In cerebellar Purkinje neurons, which fire repetitively 

at high frequency in vivo [3] and in vitro [4], independent of synaptic inputs [4,5], for 

example, three Nav current components have been distinguished: (1) a rapidly activating and 

inactivating, i.e., transient, component, INaT; (2) a non-inactivating, persistent component, 

INaP [6]; and, (3) a resurgent component, INaR [5]. These Nav current components all 

contribute to shaping the waveforms of action potentials and controlling the repetitive firing 

rates of Purkinje neurons [5,7,8]. Deletion or mutation of Scn1a or Scn8a, which encode the 

Nav channel pore-forming (α) subunits Nav1.1 or Nav1.6, respectively, attenuates Nav 

currents and repetitive firing rates in Purkinje neurons, the sole output neurons of the 
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cerebellar cortex, and impairs motor performance [9–12]. Interestingly, modulation of the 

voltage-dependent properties of Nav currents in Purkinje neurons also disrupts high 

frequency firing and affects motor coordination and balance [13].

Here, we review the time- and voltage-dependent properties of the Nav currents expressed in 

cerebellar Purkinje neurons and explore the roles of the three Nav current components, INaT, 

INaP and INaR, in shaping the firing properties and the functioning of these cells. We also 

discuss recent studies focused on identifying the molecular determinants of native Nav 

currents in Purkinje neurons and the mechanisms contributing to INaT, INaP and INaR gating. 

Finally, we discuss upstream mechanisms that may contribute to Nav current modulation and 

important, unanswered questions about the regulation of Nav channel expression, properties 

and functioning in cerebellar Purkinje neurons.

Purkinje neurons are the sole output of the cerebellar cortex

In pioneering work conducted during the 1960’s, Eccles, Llinás and Sasaki directly linked 

the cerebellum to motor function and mapped the physiological underpinnings of the 

cerebellar circuit [14–21]. Purkinje neurons function as the final destination of sensory 

information processing in the cerebellar cortex (Figure 1) and the relay of information from 

the cerebellar cortex to downstream targets [22]. Sensory information enters the cerebellum 

via mossy fibers (Figure 1), originating from over two-dozen brain and spinal cord nuclei 

[22], that synapse on and excite granule neurons [14]. The granule neurons, in turn, project 

parallel fiber axon bundles into the molecular layer of the cerebellar cortex (Figure 1), where 

they make excitatory synapses on the large dendritic trees of Purkinje neurons [15]. The 

axons of Purkinje neurons exit the cerebellar cortex (Figure 1) and provide GABA-mediated 

inhibition to neurons in the deep cerebellar nuclei [23–25]. In addition to granule cell inputs, 

Purkinje neurons also receive excitatory synaptic climbing fiber inputs from neurons in the 

inferior olivary nucleus [16] and local GABAergic inhibitory inputs from cerebellar basket 

[26] and stellate [17] cells (Figure 1).

The interplay of inhibitory and excitatory synaptic inputs modulates the repetitive firing 

rates and can cause brief pauses in the firing of individual Purkinje neurons [19,27], as well 

as synchronize the repetitive firing of adjacent Purkinje neurons [28,29]. The synchronized 

firing of Purkinje neurons is important in relaying spike timing information to neurons in the 

deep cerebellar nuclei [30], and is evident during cerebellar-related motor behaviors [31,32]. 

In the absence of synaptic inputs, however, Purkinje cells continue to fire action potentials 

spontaneously and repetitively at high frequencies [4,5]. This sustained, high frequency 

repetitive firing, which depends on the unique intrinsic membrane properties of Purkinje 

neurons, is vital to the functioning of the cerebellar cortex. Indeed, alterations in the rates 

and patterns of repetitive firing of Purkinje neurons impact balance and motor performance 

[9–13].
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Nav currents underlie high frequency repetitive firing in cerebellar Purkinje 

neurons

In 1980, Llinas and Sugimori demonstrated that the high frequency repetitive firing of action 

potentials observed in Purkinje neurons in acute cerebellar slices requires subthreshold Na+-

dependent, tetrodotoxin- (TTX-) sensitive membrane depolarizations [6,33]. Combining 

voltage-clamp and action potential-clamp recordings on isolated Purkinje neurons, Raman 

and Bean detailed the time- and voltage-dependent properties of the critical subthreshold 

currents underlying spontaneous action potential firing, providing new insights into the roles 

of these currents in shaping the waveforms of individual action potentials and in controlling 

the rates and patterns of repetitive firing [5,7,34]. Importantly, these experiments revealed 

that the intrinsic, high frequency repetitive firing of action potentials in cerebellar Purkinje 

neurons is not dependent on calcium currents (ICa) or hyperpolarization-activated cation 

currents (Ih) [7], conductance pathways often associated with pacemaker activity [35–37]. 

Instead, TTX-sensitive Nav conductances were identified as the primary source of 

subthreshold membrane depolarizations, both during the action potential and the inter-spike 

interval, and to be critical in controlling the repetitive firing of Purkinje neurons [5,7]. 

Indeed, spontaneous, high frequency repetitive firing persists in isolated Purkinje neurons 

with pharmacological inhibition of ICa and Ih, but not in the presence of TTX [7].

Action potential-clamp recordings also revealed that the TTX-sensitive inward Nav currents 

are activated in Purkinje neurons at subthreshold membrane potentials during the upstroke of 

individual action potentials, as well as during the inter-spike interval [7]. Combining action 

potential-clamp and voltage-clamp recordings, Carter and Bean [38] went on to examine INa 

availability during action potentials and during inter-spike intervals in Purkinje neurons 

firing at different rates. To quantify INa as a function of time and voltage, they applied 

steady-state depolarizing voltage steps at different times during action potentials [38]. These 

experiments revealed that Purkinje neurons continue to fire at >100 Hz even with ~75% of 

the Nav channels inactivated. In Purkinje neurons firing at 300 Hz, INa availability fell to 

15% of its (original) maximal value [38].

Multiple Nav current components drive and fine tune repetitive firing in 

Purkinje neurons

Steady-state voltage-clamp recordings revealed that the critical Nav conductance in 

cerebellar Purkinje neurons included a rapidly activating and inactivating, i.e., a transient 

Nav current component, INaT, and a non-inactivating, i.e., persistent Nav current component, 

INaP [5,7,9,39] illustrated in Figure 2a. In mouse Purkinje neurons, INaP, which is observed 

at voltages as negative as −80 mV, was shown to contribute to the regulation of action 

potential thresholds and the amplification of dendritic excitatory and inhibitory synaptic 

potentials [40]. Voltage-clamp experiments also revealed that the decay of INaT in cerebellar 

Purkinje neurons follows a bi-exponential time course [9]. At room temperature, the fast 

component of INaT decay inactivates with a time constant of ~1 ms, and the slow component 

of INaT decay inactivates with a time constant of ~8 ms [9]. Recovery of the fast inactivating 

component of INaT (from inactivation) is best described by a single exponential; the time 
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constant of recovery at −40 mV (and at −80 mV) at room temperature, for example, is 3.8 

ms [5,41]. This rate is considerably faster than the rate of INaT recovery observed in other 

mammalian central neurons. In hippocampal CA1 pyramidal cells, for example, the time 

constant of INaT recovery from inactivation at −70 mV at room temperature was reported to 

be 9 ms [42].

Voltage-clamp analyses also led to the discovery of a distinct “resurgent” Nav current 

component, INaR, in Purkinje neurons, revealed on membrane repolarizations following 

depolarizing voltage-steps [5,43], as illustrated in Figure 2b. INaR, therefore, would be 

expected to provide depolarizing, inward (Na+) current during the falling phase of action 

potentials and inter-spike intervals in Purkinje neurons [8,41]. Action potential-clamp 

recordings from Purkinje neurons indeed revealed an increase in TTX-sensitive inward Nav 

current during the action potential down-stroke [7,38,44,45].

To explore the functional role(s) of the individual Nav current components in the regulation 

of high frequency repetitive firing in Purkinje neurons, Khaliq et al. [8] constructed a 

conductance-based Purkinje neuron model based on the experimentally-determined 

properties of the three Nav current components, INaT, INaP and INaR, together with the three 

voltage-gated potassium (Kv) currents, two voltage-gated calcium (Cav) currents and the 

calcium-activated potassium current, identified in these cells [7–9,34]. The Nav currents 

were simulated using a Markov model [34] that included an ‘open blocked’ state to simulate 

INaR. This conductance based model allowed manipulation of INaR and INaT densities and 

revealed that decreasing INaR reduced repetitive firing rates in model cells [8]. Using this 

model [34] to simulate INaR, Ransdell et al. [41] demonstrated that (positively) scaling the 

magnitude of INaR in dynamic-clamp recordings [46,47] increased instantaneous and evoked 

firing rates in Purkinje neurons in acute cerebellar slices.

Nav channel gating in cerebellar Purkinje neurons

Each Nav channel pore-forming (α) subunit contains four homologous domains (domains I–

IV), each with six transmembrane segments (S1–S6) that are linked by cytosolic peptides 

(Figure 3a) [48]. The S5 and S6 transmembrane domains contribute to the formation of the 

Na+ selective pore (Figure 3b). The voltage-sensing, S4, segment in each domain has 

multiple positively charged residues, repeated at three-residue intervals, followed by two 

hydrophobic amino acids [48,49]. The positively charged amino acid residues in the S4 

domain respond to changes in membrane voltage and move (outward) on membrane 

depolarization [50]. This charge movement opens the Nav channel pore, allowing Na+ 

influx. Following opening, Nav channels inactivate, mediated by the cytosolic DIII–DIV 

linker peptide, specifically by three residues in the DIII–DIV linker that form the 

hydrophobic (IFM) motif [51], terminating Na+ influx. The IFM motif binds to a site in the 

channel pore that is only made available after the outward movement (opening) of the DIV 

S4 segment [52–54]. Importantly, this means that Nav channel inactivation, although tightly 

linked to voltage-dependent Nav channel activation [55], is a voltage-independent process 

[52,56].
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Interestingly, the S4 voltage sensors in each of the four domains of an Nav channel α 
subunit have different voltage sensitivities [53]. Because Nav channel inactivation requires 

the movement or activation of the domain IV voltage sensor [54], and Nav channels conduct 

Na+ after activation of domains I, II and III [57,58], INaP can arise at membrane potentials 

that activate the domain I, II and III voltage sensors, if domain IV remains deactivated. 

Importantly, these gating mechanisms indicate that differential regulation of the voltage 

sensitivities of the domain I–IV voltage sensors may regulate the proportion/density and 

voltage-dependence of INaP and INaR.

The “resurgent” component of the Nav current in Purkinje neurons, INaR, is evident on 

membrane repolarization following brief depolarizations to positive test potentials (Figure 

2b) [5,43]. In Purkinje neurons, INaR, peaks at −35 mV- −45 mV, activates with a time 

constant of 5–6 ms and inactivates with a time constant of ~20 ms [5,41,43]. Importantly, the 

fact that INaR is not revealed instantaneously on membrane repolarization, but rather takes 

time to activate, reveals that it (INaR) does not reflect INaP tail currents. Rather, INaR must be 

mediated by newly opened or recovered Nav channels. In Purkinje neurons, prolonged (40 

ms), moderate depolarizations (e.g., to −30 mV) result in INaR (at −40 mV) that is much 

smaller than INaR (also measured at −40 mV) after a short (5 ms) depolarizing step to more 

positive (e.g., +30 mV) potentials [34]. Using (both) voltage-clamp protocols mimicking 

these paradigms on the same cell, Raman and Bean [34] showed that INaT recovery 

paralleled INaR, i.e., INaT recovery was greater when measured after a hyperpolarizing 

voltage step producing a large INaR, than following steps yielding little INaR. This result has 

several important implications. First, because the magnitude of INaR was dependent on the 

duration and potential of the pre-step, with shorter, more depolarized potentials resulting in 

larger INaR, Raman and Bean reasoned that there were two competing Nav channel 

inactivation mechanisms [34]. Specifically, they suggested that Nav channels undergo 

conventional inactivation (mediated by the cytosolic DIII–DIV linker) at more 

hyperpolarized potentials and a novel form of Nav channel inactivation at more depolarized 

potentials.

This novel mechanism of Nav channel inactivation was referred to as “open-channel block”, 

i.e., activated Nav channels opened at depolarized membrane potentials were blocked by a 

particle distinct from the DIII–DIV linker. Grieco et at. [59] specifically suggested that a 

blocking particle, not part of the Nav α subunit, competes with conventional inactivation, 

occludes the Nav channel pore during strong depolarizations and is expelled from the pore 

on membrane repolarization allowing ‘resurgent’ Na+ influx (before the Nav channels enter 

a conventional inactivated state). In the open-channel block mechanism, Nav channels, or at 

least the subset of Nav channels that undergo open-channel block, forego conventional 

inactivation allowing faster recovery of INaT during hyperpolarization [34].

The proposed mechanism for INaR generation requires the presence/functioning of a particle 

that competes with conventional inactivation and occludes the Nav channel pore at 

depolarized potentials. The Nav channel β4 subunit (Navβ4), which binds covalently to Nav 

α subunits [60,61] and has a short (20 residues) intracellular C-terminus, which includes 

several positively charged amino acids, in addition to a phenylalanine residue, was suggested 

by Lewis and Raman to function as an endogenous “blocking” particle [62]. In a landmark 
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study, Grieco et al. [63] demonstrated that INaR, measured in membrane patches excised 

from Purkinje neurons, was abolished when the intracellular face of the membrane was 

exposed to proteases specific for cleavage at positively charged (trypsin) or aromatic 

(chymotrypsin) residues. In addition, following protease treatment, INaR was rescued by 

intracellular application of a synthetic peptide, referred to as the β4peptide, homologous to 

the Navβ4 C-terminus [63]. Interestingly, although co-expression of Nav α subunits with 

Navβ4 in heterologous cells results in Nav currents that lackINaR [64–66], intracellular 

applications of the β4peptide to HEK-293 cells expressing Nav1.1, 1.4, 1.5, or 1.7 produce 

robust INaR [65–68]. It has also been reported that shRNA-mediated ‘knockdown’ of Navβ4 

reduced or eliminated INaR in cerebellar granule neurons [69], as well as in dorsal root 

ganglion neurons [70]. More recently, however, it was shown that targeted deletion of Navβ4 

(Scn4b−/−) reduces, but does not abolish INaR in striatal medium spiny neurons [71] or in 

cerebellar Purkinje neurons [41]. In fact, INaR amplitudes/densities in Scn4b−/− Purkinje 

neurons were ~50% of wild type INaR levels and, in addition, the time- and voltage-

dependent properties of the residual INaR were indistinguishable from wild type INaR [41]. 

These results clearly indicate that Navβ4-independent mechanisms contribute to the 

generation of native INaR.

An alternative, or perhaps additional, mechanism for INaR generation is that there is a range 

of membrane voltages and/or a distinct subset of Nav channels in which the rate of Nav 

channel deactivation is slower than the rate of channel recovery from inactivation [41,43]. If 

Nav channel closing (deactivation), for example, is slower than recovery from inactivation at 

membrane potentials between −50 mV and −30 mV, Na+ influx through recovered Nav 

channels will occur. This mechanism was first suggested by the results of experiments 

demonstrating that β-toxins from Centruroides scorpions [72] slow the kinetics of 

deactivation of heterologously expressed Nav1.6 channels in HEK-293 cells [73,74]. The 

change in deactivation kinetics resulted in the generation of resurgent Nav currents in cells 

exposed to the toxin [73,74]. It has also been reported that exposure of rat cerebellar 

Purkinje neurons to Cn2 toxin, a β-toxin from Centruroides noxius, produced an additional 

Na+ mediated resurgent current with voltage-dependent activation properties distinct from 

native INaR [73]. It remains to be determined if there are intrinsic mechanisms in Purkinje 

neurons, or other neuronal cell types, which similarly modulate Nav current deactivation 

kinetics to produce resurgent Nav currents.

A fascinating aspect of INaR in Purkinje neurons that has not been thoroughly explored to 

date is that, at negative potentials, the magnitude and the rate of decay of INaR parallel the 

magnitude and the rate of decay of the slow component of INaT inactivation. Representative 

recordings from an isolated Purkinje neuron demonstrate that the magnitude and decay 

phase of INaR at −40 mV (from a depolarized membrane potential) are indistinguishable 

from the slow component of INaT inactivation evoked directly on membrane depolarization 

to −40 mV from a hyperpolarized membrane potential (Figure 4). Noting this property, 

Raman and Bean proposed that, rather than competing with conventional inactivation, Nav 

channels responsible for INaR may undergo open-channel block at all voltages that activate 

INaT [34].

Ransdell and Nerbonne Page 6

Cell Mol Life Sci. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nav channel alpha and accessory subunits in the functioning of Purkinje 

neurons

Transcripts encoding the Nav1.6 (SCN8A/Scn8a) and Nav1.1 (SCN1A/Scn1a) pore forming 

α subunits are robustly expressed in cerebellar Purkinje neurons [75]. In situ hybridization 

studies have provided conflicting results [76–78] regarding the expression of Scn2a, which 

encodes the Nav1.2 α subunit, in cerebellar Purkinje neurons. In addition, although readily 

detected in cerebellar granule neurons, the Nav1.2 protein was not detected on Purkinje 

neuron somata, dendrites and axons [12]. In contrast, robust anti-Nav1.6 and anti-Nav1.1 

protein labeling has been reported in Purkinje neurons [79,80], and the Nav1.6 and Nav1.1 

proteins are differentially localized. Anti-Nav1.1 labeling, for example, was observed on the 

cell bodies and dendrites of Purkinje neurons [79] and, in addition, was detected in the 

segment of the axon proximal to the soma [81]. In contrast, anti-Nav1.6 staining was 

reported to be localized to the axon initial segment (AIS) [80,81]. Focal application of TTX 

(to block Nav currents) or β-pompilidotoxin (to increase INaR) [82] revealed that action 

potentials in Purkinje neurons are initiated in the distal portion of the AIS, although when 

AIS Nav channels were blocked, somatic Nav channels in Purkinje neurons were sufficient 

to generate repetitive firing [83]. Simultaneous extracellular recordings from Purkinje 

neuron somata and different sites along the axon [84], in combination with the results of 

antibody labeling [80,81], suggest that Nav1.6 plays a critical role in the initiation of action 

potentials in the AIS and the regulation of repetitive firing in Purkinje neurons.

In studies designed to explore directly the contributions of individual Nav α subunits to the 

regulation of action potential generation and repetitive firing in Purkinje neurons, the 

functional consequences of the targeted disruption of the genes encoding individual Nav α 
subunits were examined. The first of these studies used the naturally occurring Scn8amed 

mutant mouse [85], which results in the functional ‘knockout’ of Scn8a and loss of the 

Nav1.6 protein [9,85,86]. As might have been expected, loss of Nav1.6 resulted in 

attenuation of repetitive firing in Purkinje neurons. Recordings from cells isolated from 14–

19 day old mice revealed spontaneous firing rates reduced to 9 Hz in Scn8amed, compared 

with 35 Hz in wild type, Purkinje neurons [8]. In addition, peak INaT densities in Scn8Amed 

Purkinje neurons were ~65% of wild type levels [9]. Interestingly, INaP and INaR densities 

were reduced to 30% and 10–20%, respectively of wild type levels in Scn8Amed Purkinje 

neurons [9]. Targeted disruption of Scn1a and loss of Nav1.1 also reportedly reduced 

spontaneous, repetitive firing rates in acutely isolated postnatal day 13–14 Purkinje neurons 

to 45 Hz, compared with 69 Hz in wild type cells [12]. Loss of Nav1.1 resulted in INaT, INaP 

and INaR densities that were 42%, 41% and 31% of those measured in wild type Purkinje 

neurons, respectively.

Taken together, these observations suggest that both Nav1.1 and Nav1.6 contribute to the 

high rates of repetitive firing in Purkinje neurons and animals lacking either of these 

subunits have severe deficits in balance and motor coordination [10,12]. In addition, both the 

Nav1.1 and Nav1.6 α subunits, contribute to INaT, INaP and INaR, although loss of Nav1.6 

disproportionately affects INaR and INaP. Using the Cre-lox system to eliminate Scn8a 
expression selectively in Purkinje or in cerebellar granule neurons, Levin and colleagues 
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demonstrated that loss of Nav1.6 in granule neurons resulted in only minor behavioral 

defects, whereas mice lacking Nav1.6 in Purkinje neurons exhibited ataxia, tremors and 

impaired coordination [11].

It is important to note that the biophysical properties of native INaP and INaR in Purkinje 

neurons are distinct from those of heterologously expressed Nav1.1- or Nav1.6-encoded Nav 

currents. Heterologous expression of Nav1.1, for example, revealed persistent Nav current 

amplitudes corresponding to 2 to 13 percent of INaT [87]. It has been estimated that Nav1.1-

mediated INaP in cerebellar Purkinje neurons is ~1.4% of Nav1.1-mediated INaT [12]. Even 

more striking is the fact that neither Nav1.6 nor Nav1.1 produces resurgent Nav currents in 

heterologous expression systems [64,65].

Accumulated evidence suggests that native neuronal Nav channels, like many other types of 

ion channels, function in macromolecular protein complexes comprising the pore-forming α 
subunits and a complement of accessory and regulatory proteins [88–90]. Various Nav 

channel accessory proteins have been linked to the regulation of Nav channel trafficking, 

localization and gating [65,91–93], increasing the complexities by which Nav channel 

regulation can influence intrinsic neuronal excitability, action potential waveforms and 

repetitive firing. Clear roles for the intracellular fibroblast growth factors (iFGF11-14), also 

referred to as fibroblast homologous factors (FHFs) [13,81,94,95], and the Nav channel β 
subunits (Navβ1-4) [43,41,63] in the regulation of Purkinje neuron Nav channels, action 

potential waveforms and repetitive firing patterns, for example, have been provided. FGF14 
is the locus of mutations in spinal cerebellar ataxia type 27 (SCA27) [96], an autosomal 

dominant disorder characterized by progressive ataxia and cognitive decline [96]. iFGFs are 

unique from the canonical FGFs in that they lack a signal sequence for secretion and they do 

not activate any known FGF receptors [97,98]. Rather, the iFGFs function intracellularly, 

binding to the C-terminus of Nav α subunits/channels [99–101].

iFGF14 is robustly expressed in Purkinje neurons and localizes with Nav1.6 at the AIS 

[81,102]. iFGF14 null (Fgf14−/−) mice display severe deficits in balance and motor 

coordination [103] and the vast majority of Fgf14−/− Purkinje neurons are quiescent and lack 

the ability to fire repetitively, even in response to depolarizing current injections [95]. 

Interestingly, shRNA-mediated ‘knockdown’ of iFGF14 in adult Purkinje neurons also 

resulted in deficits in balance and motor coordination and markedly attenuated firing in 

Purkinje neurons [13]. Additional experiments revealed that attenuated firing in Fgf14−/− 

Purkinje neurons could be attributed to a hyperpolarizing shift in the voltage-dependence of 

steady-state inactivation of INaT and that firing could be rescued by membrane 

hyperpolarizations to membrane potentials that allow inactivated Nav channels to recover. It 

has also been reported that shRNA mediated ‘knockdown’ of iFGF14 in neonatal Purkinje 

neurons in culture results in reduced INaR [94]. Loss of iFGF14, however, does not 

measurably affect INaR in acutely dissociated Purkinje neurons (unpublished). Additional 

iFGFs may also serve important roles in the regulation of Nav currents and the excitability 

of Purkinje neurons. Goldfarb and colleagues [102] demonstrated, for example, that animals 

lacking both iFGF12 and iFGF14 (Fgf12−/−, Fgf14−/−) display significantly worse motor 

defects than Fgf14−/− animals and that granule neuron excitability in Fgf12−/−, Fgf14−/− 
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mice was markedly attenuated. The role of iFGF12 in Purkinje neurons, however, has not 

been explored to date.

Transcripts (Scn1b-Scn4b) encoding Navβ1-4 are expressed in developing cerebellar 

Purkinje neurons [41,61,93,104,105], although Scn3b (Navβ3) is undetectable in mature 

Purkinje neurons [105]. As discussed above, Navβ4 contributes to INaR and repetitive firing 

rates are attenuated in adult Scn4b−/− Purkinje neurons. In marked contrast, repetitive firing 

rates and properties in neonatal (P14–P15) Scn4b−/− and wild type Purkinje neurons are 

indistinguishable [41], suggesting that the functional effects of Navβ4 on the repetitive firing 

rates of Purkinje neurons are developmentally regulated. Adult Scn4b−/− animals also have 

deficits in balance and motor coordination [41], although not as severe as those observed in 

Fgf14−/− animals [13,103].

In contrast with expectations, voltage-clamp experiments revealed that INaR is readily 

detected in Scn4b−/− Purkinje neurons and that the mean amplitude of the current is ~50% of 

the magnitude of INaR in wild type cells [41]. These observations demonstrate that 

additional, perhaps compensatory, mechanisms contribute to the generation of INaR in 

Purkinje neurons. Although the critical, alternate mechanism(s) remain to be identified, there 

are several possibilities. As mentioned above, it has been reported that shRNA mediated 

‘knockdown’ of iFGFf14 in neonatal Purkinje neurons in dissociated cell culture resulted in 

reduced INaR [94]. In addition, INaR has been reported to be attenuated (compared with wild 

type levels) in neonatal Scn1b−/− granule neurons in culture [93]. Importantly, no changes in 

INaP or INaT densities or properties were observed in Scn1b−/− granule neurons [93], 

indicating specificity for INaR. In contrast, Navβ2 (Scn2b) more closely resembles Navβ4 

than Navβ1 and includes multiple positively charged residues in the C-terminus [62]. 

However, relative INaR (to INaT) amplitudes are similar in Scn2b−/− and wild type Purkinje 

neurons [63]. The effects of the additional loss of Navβ1 or Navβ2 with Navβ4 on Nav 

currents in Purkinje neurons have not been investigated to date.

Teasing out the additional molecular determinants of INaR and determining if there are 

physiologically-relevant mechanisms distinct from open-channel block of Nav channels that 

contribute to INaR will be important in efforts to provide a detailed understanding of the 

diverse roles of Nav currents in controlling the physiology and functioning of cerebellar 

Purkinje neurons.

Summary, Open Questions and Future Directions

The discovery of and detailed characterization of the biophysical properties of INaP [6] and 

INaR [5] has provided important insights into the contributions of these Nav current 

components, together with INaT, to regulate spontaneous, high frequency, repetitive firing in 

Purkinje neurons [8,9,38,44,41]. Cerebellar Purkinje neurons are also being utilized to 

uncover the important contributions of distinct Nav channel accessory proteins on the 

properties of the Nav currents and on the regulation of action potential waveforms and 

repetitive firing properties [13,63,94,106]. However, this work is still in its infancy. At 

present, for example, the only Nav channel accessory proteins shown to contribute to the 

regulation of the excitability and the functioning of cerebellar Purkinje neurons are iFGF14 
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and Navβ4. In addition to the contribution of the many other Nav channel accessory proteins 

that are expressed in Purkinje neurons (including Navβ1, Navβ2, iFGF11, iFGF12 and 

iFGF13), we should also consider the possibility that multiple proteins are involved and that 

this could result in nonlinear contributions to membrane excitability. Binding of calmodulin 

on the C-terminus of Nav1.4, which is expressed primarily in skeletal smooth muscle, for 

example, has been reported to affect channel permeability [107]. Over-expression of 

calmodulin has also been shown to attenuate Nav1.6-mediated INaP in Purkinje neurons in 
vitro [106]. It is certainly possible that calmodulin and iFGF14 (or other iFGFs), both of 

which bind to the C-terminus of Nav α subunits (Figure 3), act competitively or 

synergistically to modulate Nav channel gating properties. Interestingly, mice with global 

deletion of Fgf12 do not exhibit changes in motor coordination or granule neuron 

excitability, whereas loss of Fgf14 caused deficits in both animal coordination and granule 

neuron firing [102]. The combined deletion of Fgf14 and Fgf12, however, resulted in a more 

severe deficit in both these phenotypes than Fgf14 deletion alone [102]. These observations 

suggest that the expression/functioning of these two Nav channel accessory proteins may be 

linked in ways that are physiologically relevant. An important area for future research will 

be to explore the functional relationships among the various Nav channel accessory subunits 

(Figure 3) and to define their roles in the dynamic regulation of Purkinje neuronal 

excitability.

Beyond the combined and/or non-linear impact of Nav channel accessory subunits, there are 

also compelling recent studies that have identified potential upstream regulators that 

promote the binding of iFGF14 to Nav α subunits. These include glycogen synthase kinase 

3 (GSKIII) [108,109] and, more recently, casein kinase II (CKII) [110], which is a priming 

kinase for GSKIII. Inhibition of either of these kinases in hippocampal neurons disrupts 

iFGF14:Nav α subunit complexes, specifically Nav1.6- and Nav1.2-channel complexes 

[108,110], and alters Nav channel localization and membrane excitability [110]. While 

GSKIII is required during neuronal development and actively regulates neuronal 

proliferation and migration [111–113], it also functions in the regulation of synaptic 

transmission [114]. GSKIII is detected in both pre-synaptic and post-synaptic neuronal 

compartments [115] and, interestingly, GSKII has been found to participate in both long-

term synaptic depression [116] and potentiation [117]. The finding that GSKIII also 

functions in the regulation of iFGF14: Nav α subunit complexes may signify a mechanism 

by which network level activity regulates or modulates the intrinsic excitability of individual 

neurons. Although this hypothesis has not been tested at the network level, Purkinje neurons 

and the cerebellar circuit are an ideal model system to examine these processes.
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Fig. 1. Schematic of the cerebellar circuit shown in sagittal and coronal planes
Climbing fibers, originating in the inferior olive, form excitatory synapses on the dendrites 

of Purkinje neurons (green). Mossy fibers, which originate in multiple hindbrain and spinal 

cord nuclei, form excitatory synapses on granule neurons (red) in the cerebellar cortex. The 

granule cells, in turn, project parallel fiber axons into the molecular layer and form 

excitatory synapses on the dendrites of Purkinje neurons. Stellate and basket cells (blue), in 

contrast, form inhibitory synapses on Purkinje neurons, the sole output of the cerebellar 

cortex, which project inhibitory axons to the deep cerebellar nuclei.
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Fig. 2. Three Nav current components, INaT, INaP and INaR, resolved in steady-state voltage-
clamp experiments
In the example voltage-clamp paradigm illustrated, INaT and INaP are revealed during the 

depolarizing voltage step to +10 mV (panel a), and INaR is observed on membrane 

repolarization (from +10 mV) to −40 mV (panel b). In both the left and right panels, the 

waveform of the evoked Nav currents is shown below the voltage-clamp paradigm, and 

schematics of Nav channel gating states are presented; the intrinsic channel inactivation gate 

is shown in red and the open-channel blocking particle is depicted in blue.
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Fig. 3. Schematic of the membrane topology of Nav α and β subunits
(a) Nav α subunits have four homologous (DI–DIV) domains, each of which has six 

transmembrane segments; the voltage sensing S4 segment in each domain is red and the two 

(S5 and S6) transmembrane domains contributing to the pore are brown. The inactivation 

gate (grey) in the DIII–DIV linker and the Nav channel transmembrane accessory (β) 

subunits, Navβ1-Navβ4, are also shown. Navβ2 and Navβ4 (green) form covalent disulfide 

bonds with Nav α subunits, whereas Navβ1 and Navβ3 (blue) interact non-covalently with 

Nav α subunits. Binding sites for additional Nav channel interacting proteins, including 

AnkyrinG (purple) in the DII–DIII cytosolic linker and iFGF14 (blue) in the C-terminus, are 

also indicated. (b) The 24 transmembrane spanning segments of a single Nav α subunit 

assemble to form a Na+ selective pore (brown).
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Fig. 4. Decay phases of INaT and INaR
In the panel on the left, Nav current waveforms recorded from an isolated neonatal Purkinje 

neuron during two different voltage-clamp paradigms are shown; the voltage-clamp 

paradigms are illustrated above the current records. In the first case, membrane 

depolarization to −40 mV from a holding potential (HP) of −90 mV (red) evoked INaT (red); 

note the fast (red, open arrow) and slow (red, filled arrow) components of inactivation of 

INaT. Membrane repolarization to −40 mV following a brief (5 ms) strong (+10 mV) 

depolarization from the same HP revealed INaR (black). Note that the time course of INaR 

decay (black, filled arrow) and the slow component of INaT inactivation (red, filled arrow) 

are indistinguishable. The currents are shown on expanded amplitude and time scales in the 

records shown in the panel on the right.
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