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Abstract

Background: The central vein sign (CVS) is a promising magnetic resonance imaging (MRI) 

diagnostic biomarker for multiple sclerosis (MS). Recent studies demonstrate that patients with 

MS have higher proportions of white matter lesions with CVS compared to people with diseases 

that mimic MS on MRI. However, the clinical application of CVS as a biomarker is limited by 

inter-rater differences in the adjudication of CVS, as well as the time burden required for the 

determination of CVS for each lesion in a patient’s full MRI scan.

Methods: We present an automated technique for the detection of CVS in white matter 

lesions.The method derives a CVS probability,πij for each lesion, as well as a patient-level CVS 

biomarker, ψi. The method is probabilistic in nature, allows for site-specific lesion segmentation 

methods, and is potentially robust to inter-site variability. The proposed algorithm was tested on 

imaging acquired at the University of Vermont in 16 participants who have MS, and 15 

participants who do not.

Results: Using the proposed automated technique, MS participants were found to have 

significantly higher values of ψ than non-MS participants (ψMS = 0.55, sd = 0.18; ψnon−MS = 0.31, 
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sd = 0.12; p < 0.001). The algorithm was also found to show strong discriminative ability between 

MS and non-MS patients, with an area-under-the-curve of 0.88.

Conclusion: The current study presents the first fully automated method for detecting CVS in 

white matter lesions and demonstrates promising performance in a sample of MS and non-MS 

cases.

1. Introduction

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous 

system that is characterized by lesions in the brain and spinal cord. Currently, assessment of 

magnetic resonance imaging (MRI) factors heavily in the diagnosis of MS, with much 

importance placed on the distribution (dissemination in space) and time course of lesions 

(dissemination in time)1 in patients presenting with clinical symptoms typical for MS. 

However, current imaging-based diagnostic criteria favor sensitivity over specificity, making 

misdiagnosis of MS relatively common2,3. This is especially true among disorders that 

demonstrate white matter lesions similar to those found in MS4,5.

As a means for distinguishing MS lesions from white matter abnormalities arising from 

other diseases, the identification of a vein traversing the center of a lesion has been proposed 

as a diagnostic tool since inflammatory demyelination in the MS white matter is 

perivenular6,7. The potential for this marker to be used in the diagnosis of MS has been 

advanced by recent developments in MRI pulse sequences, which have enabled detailed 

imaging of veins in the brain8–10. Using these sequences, researchers have provided strong 

evidence that higher proportions of MS lesions show central vein sign (CVS) compared to 

lesions resulting from other disease processes commonly mistaken for MS7,11–16. This 

finding has been demonstrated for neuromyelitis optica spectrum disorder (NMOSD), 

systemic autoimmune diseases (SAD), cerebral small vessel disease (CSVD), Susac’s 

syndrome, and migraine. While further replication in a prospective setting is still necessary, 

a high proportion of brain MRI lesions demonstrating CVS appears to have potential as a 

biomarker with high specificity for MS.

Unfortunately, important barriers limit the feasibility of clinical application of CVS. Two 

such limitations are the presence of intra- and inter-rater variability in the subjective 

assessment of CVS, and the time required to adjudicate CVS in every MRI lesion per 

patient. Recent studies have attempted to mitigate the time burden associated with CVS 

assessment by limiting the number of lesions that are examined13,17. However, these 

techniques have the potential to increase variability, and have generally not been as 

successful as the evaluation of the proportion of CVS in all MRI lesions per patient7,18. 

Importantly, in studies that adjudicate all lesions per patient, optimal proportion cutoffs have 

differed across study sites and disease comparisons7,13,18. This variability highlights the 

need for thorough comparison and optimization of these cutoffs across samples and diseases, 

yet the same issues of rater subjectivity and temporal burden make this type of research 

difficult. As such, the current study introduces an algorithm for the automatic determination 

of CVS in white matter lesions, and presents a fully automated patient-level diagnostic 
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biomarker. In this paper, we describe the CVS detection pipeline, present statistical measures 

of judgment accuracy, and discuss the implications and next steps for this line of research.

2. Methods

2.1 CVS detection algorithm

To adjudicate CVS for each lesion in a given participant, the several steps are carried out. 

We first present the overall summary and then address each step, with associated rationale, 

in detail below. To perform the algorithm, a T1-weighted volume (T1), T2-weighted FLAIR 

volume (T2-FLAIR), and T2
*-weighted segmented echo-planar imaging volume (T2*-EPI) 

are required. 1) A map of the veins present in the T2*-EPI volume is created using a process 

referred to as vesselness filtering, and the vein map is rigidly registered to the T1 volume. 2) 

White matter lesions are segmented using the T1 and T2-FLAIR volumes. 3) Clear lesion 

boundaries are then determined using a process that removes ambiguous boundary voxels. 4) 

Periventricular lesions are removed from candidacy, per guidelines given by the North 

American Imaging in Multiple Sclerosis (NAIMS) cooperative19. 5) A permutation 

procedure is carried out to determine whether identified veins occur in the center of a given 

lesion to a greater degree than would be expected by chance. This yields a probability of 

CVS for each lesion j in patient i’s scan, denoted πij . Lesion-level CVS probabilities are 

then averaged to obtain a patient-level CVS biomarker, denoted ψi . 6) To account for scan 

motion, lesions’ contributions to the average can be weighted by the noise in their T2*-EPI 

intensities. Figure 1 demonstrates the algorithm’s steps on an example lesion. Importantly, 

while figures are necessarily presented in 2D space, all methods undertaken for this 

procedure are conducted in 3D volumetric space, and simultaneously consider all three 

planes of the image.

Vesselness filtering—Vein maps in the brain are created in order to later determine 

presence or absence of veins in each lesion. To do this, the Frangi vesselness filter20 is 

applied to the unregistered T2*- EPI volume (for the application to data, this study used the 

Convert3D toolbox), producing a map of scores ≥0, with scores of 0 implying no vesselness 

qualities. The Frangi filter is a vessel enhancement algorithm based on the Hessian matrix at 

each voxel, in which the second-order structure of the image is obtained through convolution 

with derivatives of Gaussian kernels. The scores are calculated using the eigenvalues of the 

Hessian matrix, specifically picking up on tubular structures that are darker (or lighter, 

depending on the implementation) than their surroundings. After being obtained in the 

unregistered T2*-EPI space, these “vesselness” maps are then rigidly registered to the T1 

space.

Lesion segmentation—To determine the location and shape of white matter lesions, 

automatic lesion segmentation is performed on co-registered T1 and T2-FLAIR volumes. 

For the application to data, this study used the Method for Inter-Modal Segmentation 

Analysis (MIMoSA) model21 in the R statistical environment22. The lesion segmentation 

algorithm produces a map containing the probabilities that each voxel is part of a lesion. For 

the results presented in this paper, a threshold of 0.30 is applied to this probability map in 

order to create a binary lesion mask. The threshold of 0.30 was chosen because previous 
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work has found it to be a conservative cutoff that can limit the amount of false positive 

lesion tissue23,24. Following the definition for a CVS+ lesion given by the NAIMS 

cooperative19, lesions detected by the MIMoSA model that are smaller than 3 mm in any 

plane are removed from candidacy.

Lesion boundary determination—Thresholding of the lesion probability map often 

results in pathologically distinct lesions being connected by ambiguous boundary voxels. 

For these lesions to be properly assessed for CVS, the proposed algorithm addresses this 

pseudo-confluence through a recently described technique that removes voxels that are 

connecting pathologically distinct lesions24. The technique works by finding regions in 

which the texture of the lesion probability map resembles the center of a lesion. Therefore, 

the centers that it produces are maintained and used for investigating CVS for the remainder 

of this algorithm. Further detail on the implementation of this method can be found in the 

original publication24.

As the NAIMS guidelines call for the exclusion of confluent lesions, in some cases of true 

confluence this step may represent a deviation from those recommendations. Yet it is 

important to note that many lesions that would be judged as discrete by expert raters are 

often merged by automated segmentation methods25. This can result in drastic and 

unrealistic degrees of pseudo-confluence in automated lesion masks, sometimes resulting in 

50 or more distinct lesions being merged into fewer than 10 lesion components24. Thus, 

relying on automated determinations of confluence in automated lesion masks would likely 

result in the exclusion of many or most eligible lesions.

Periventricular lesion exclusion—The density and branching nature of veins near the 

ventricles makes assessment for CVS difficult in periventricular lesions, especially in cases 

where more than one distinct vein traverses the lesion. For this reason, the NAIMS 

Cooperative recommends excluding lesions with more than one vein or with branching 

veins19. The proposed algorithm addresses this consideration by excluding periventricular 

lesions from consideration, as periventricular lesions typically contain multiple veins. This 

exclusion is done by performing tissue-class segmentation on the T1 volumes (for the 

application to data, this study used the FAST algorithm in the FSL26), expanding the 

cerebrospinal fluid (CSF) region of the brain by 3mm, and eliminating lesions from the 

lesion-center mask that overlap with the expanded CSF region. The choice of a 3mm 

expansion was made based on visual inspection of randomly selected T2*EPI volumes, for 

which 3mm appeared to include most of the branching vein structure discussed in the 

consensus statement, without removing too much of the deep white matter. Notably, 

although this technique excludes periventricular lesions, it does not exclude other lesions 

that may have multiple veins. This represents a second deviation from the NAIMS 

recommendations, which could potentially be addressed by future advances in methods for 

segmenting and counting distinct veins.

CVS permutation procedure—In lesions that contain central veins, one would expect 

above-average coherence between voxels’ centrality within the lesion and their vesselness 

score. The proposed permutation procedure takes advantage of that expectation to examine 

the degree to which a lesion’s most vein-like voxels are more concentrated in the lesion’s 

Dworkin et al. Page 4

AJNR Am J Neuroradiol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



center than one might expect to observe by chance. First, a vein-center coherence score for 

lesion j in patient i’s scan, Cij, is calculated by summing over the products of each voxel’s 

distance-to-nearest-lesion-boundary (i.e., centrality) score, dijv, and its Frangi vesselness 

score, fijv. The coherence formula is given by,

Cij = Σv ∈ V dijv ⋅ f ijv,

where V is the set of all voxels in lesion j. Thus, higher values of this score indicate that the 

highest vesselness values within the lesion tended to occur in the same voxels as the highest 

centrality values.

To determine the degree to which this score deviates from chance in cases where there is no 

biological correspondence between vesselness and location within lesions, a lesion-specific 

null distribution of coherence scores is created using 1000 random permutations. For each 

permutation, p, the vesselness scores of the voxels in lesion j are randomly resampled 

without replacement, yielding a randomly ordered set of values, V p*. A null coherence score 

is then calculated using the formula,

Ci jp* = ∑v ∈ V , r ∈ V p*
di jv · f i jr .

This permutation procedure is performed 1000 times, resulting in a sample of 1000 null 

coherence scores. The lesion-level CVS probability, πij, is then calculated as proportion of 

chance (null-distributed) CVS scores that are smaller than the observed score, given by,

πi j = 1
1000 ∑p = 1

1000 I[Ci jp* < Ci j]

To obtain a subject-level CVS biomarker, ψi, these probabilities are averaged over all lesions 

observed in patient i. The formula for ψi, is given by,

ψi = 1
NL

∑ j ∈ Lπi j

where NL is the number of candidate lesions in patient i’s scan. The biomarker, ψi can be 

interpreted similarly to the proportion of the patient’s lesions that demonstrate CVS.

Optional noise weighting—When taking the average of the CVS probabilities for a 

patient’s lesions, some lesions may have more reliable estimates than others. A more stable 

biomarker can potentially be obtained by weighting each lesion’s contribution to the 

biomarker by the amount of noise in the lesion’s voxels on the T2*-EPI volume. To estimate 

the level of noise in a lesion, a “noiseless” T2*-EPI is first constructed by performing 

anisotropic diffusion on the original scan27. This procedure results in a smoothed volume 

that maintains tissue boundaries and other image gradients. Then, for voxels in the lesion, 

the difference is taken between the original T2*-EPI and the smoothed T2*-EPI. A noise 
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value is finally calculated by dividing the sum of the squared voxel differences by the total 

number of voxels in the lesion. For lesion j, this value is defined as,

ηi j = 1
NV

∑v ∈ V (Iv − Iv
s)2

where Iv and Iv
s are voxel v’s intensity and smoothed intensity, respectively. The desired 

reliability weight is simply the inverse of this noise value,

wi j = 1
ni j

A weighted subject-level biomarker, ψ i
w, is then calculated by summing the products of the 

lesions’ CVS probabilities with their weights, and dividing by the sum of the weights. The 

weighted biomarker is given by,

ψi
w =

∑ j ∈ Lπi j ⋅ wi j
∑ j ∈ Lwi j

2.2 Implementation and software

To accompany this article, code for the central vein detection algorithm has been made 

freely available online (https://github.com/jdwor/cvs). One file, centralveins_full.R, contains 

code to run all preprocessing and analysis steps described in the previous section. This file 

serves to increase understanding of all steps used in this study and to provide a 

straightforward tool that can be applied to raw images. A second file, centralveins_simple.R, 

contains code to be run directly on a probability map and a vein map. This file serves to 

improve implementations across different sites and scanners, for which researchers and 

clinicians may have preferred pipelines for preprocessing and lesion segmentation. 

Following preprocessing and structure segmentation, the centralveins_simple function was 

found to take an average of 17.7 minutes (sd = 9.1), and was roughly broken down as a 10 

minute baseline with an additional 20 seconds per lesion, when run without parallelization. 

Finally, a third file, helperfunctions.R, provides additional functions used within the 

previous two files.

2.3 Validation

Data—For this study, data were analyzed for 40 research participants recruited from the 

University of Vermont neurology clinic as part of a study aiming to improve diagnostic 

specificity for MS17. Participants were between 20 and 67 years of age, and 37 were female. 

10 had MS and no comorbidities known to produce MRI white matter abnormalities; 10 had 

MS and comorbidities known to produce MRI white matter abnormalities; 10 had migraine 

with MRI white matter abnormalities and no other white matter comorbidities; and 10 were 

previously incorrectly diagnosed with MS and had MRI white matter abnormalities and a 

variety of diagnoses (Table 1).
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Whole-brain 3D T2-FLAIR, T1, and T2*-EPI28 volumes were acquired in a 3 tesla (T) 

Philips dStream MRI scanner with a 32-channel head coil. FLAIR and T1 volumes were 

obtained with 1-mm isotropic resolution, and T2*-EPI volumes were obtained with 0.55-mm 

isotropic resolution. N4 bias correction29 was performed on all images, and the T2-FLAIR 

volume for each participant was interpolated to a voxel size of 1 mm3 and rigidly co-

registered to the T1 volume. Extracerebral voxels were removed from the T1 volume using a 

skull-stripping procedure30, and the brain mask was applied to the T2-FLAIR volume.

Motion exclusion criteria—Since head motion might occur during the T2*-EPI scan, 

potentially producing uninterpretable images, each participant’s T2*-EPI scan was manually 

rated for motion in the relevant white matter regions. Scans were scored from 1 to 5, where 1 

indicated “perfect, no artifacts and excellent signal-to-noise,” 2 indicated “only one minor 

artifact that does not obscure any vessels in supratentorial white matter,” 3 indicated “more 

than one artifact that do not obscure any vessels in supratentorial white matter,” 4 indicated 

“more than one artifact that do obscure some vessels in supratentorial white matter,” and 5 

indicated “severe artifacts or bad signal-to-noise that do obscure most vessels in 

supratentorial white matter.” It was decided a priori that scans that were rated 5 would be 

removed for the primary analysis, as scans with that degree of motion may be unusable in 

clinical practice as well.

Performance assessment—As CVS shows great promise as a diagnostic biomarker, the 

performance of this algorithm in distinguishing between MS and non-MS cases is of primary 

interest. To determine whether the automated biomarkers, ψi and ψ i
w, replicate the findings 

from previous work that the distribution of manually adjudicated central vein proportion 

differs between MS and its mimics, t-tests were used to compare the automated CVS values 

for MS and non-MS cases. To determine the diagnostic utility of ψi and ψ i
w, the area under 

the curve (AUC) values of the receiver operating characteristic (ROC) curves were 

estimated. The presence of a difference in performance between of ψi and ψ i
w was tested 

with DeLong’s test for comparing the areas under correlated ROC curves31, using the pROC 
package in the R statistical environment22,32. Sensitivity and specificity were calculated 

using the 40% cutoff7, under which inflammatory demyelination is diagnosed if 40% or 

more of white matter lesions exhibit CVS, as well as the more recently proposed 50% 

cutoff18. Additionally, locally optimal cutoffs were determined, and their sensitivity and 

specificity values were compared to those obtained using established cutoffs.

Finally, these cutoffs were compared to the performance of proportion cutoffs applied to 

manual determinations of CVS in previous research7,13,18, as well as the performance of 

three recently proposed clinical decision rules that do not require the assessment of the full 

set of lesions in a scan. The first such rule, referred to as the rule of 613, states that 

inflammatory demyelination is diagnosed if there are more than six lesions with CVS, or if 

more than half of lesions show CVS. The second and third, referred to as select315 and 

select3*17, state that inflammatory demyelination is diagnosed if CVS is found in at least 2 

of 3 lesions pre-selected on T2-FLAIR and FLAIR*9 imaging, respectively.
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3. Results

Following manual ratings of scan noise due to motion, 9 participants were excluded and 31 

remained for the primary analysis. Of the remaining 31 participants, 16 had MS and 15 did 

not. Automated CVS detection was performed on these 31 participants, using the algorithms 

and software packages described in the previous section. Two-sample t-tests were run to 

determine whether the automated CVS scores differed between the 16 MS and 15 non-MS 

cases. In both the unweighted (MMS = 0.56, SDMS = 0.17; Mnon-MS = 0.37, SDnon-MS = 

0.12; p < 0.01) and weighted (MMS = 0.55, SDMS = 0.18; Mnon-MS = 0.31, SDMS = 0.12; p < 

0.001) variants of the algorithm, the within-patient average CVS probabilities were higher in 

patients with MS compared to patients without MS. See Figure 2 for breakdowns across all 

four groups.

To determine the diagnostic utility of the automated biomarkers, ψi and ψ i
w, ROC curves 

were estimated, and their AUCs were calculated. For the unweighted case, ψi yielded an 

AUC of 0.84 (Figure 3A). Based on the 40% rule, applying a cutoff of 0.40 to ψi yielded a 

sensitivity of 0.94 and a specificity of 0.67. Based on the 50% rule, applying a cutoff of 0.50 

to this biomarker yielded a sensitivity of 0.56 and a specificity of 0.80. Three locally optimal 

cutoffs appear to occur at 0.38, at which sensitivity was 1.00 and specificity was 0.67, at 

0.44, at which sensitivity was 0.75 and specificity was 0.73, and at 0.50, at which sensitivity 

was 0.56 and specificity was 0.80 (Table 2).

For the noise-weighted case, ψ i
w yielded an AUC of 0.88 (Figure 3B). Applying a cutoff of 

0.40 to ψ i
w yielded a sensitivity of 0.75 and a specificity of 0.73. Applying a cutoff of 0.50 

yielded a sensitivity of 0.56 and a specificity of 0.93. Two locally optimal cutoffs for ψ i
w

appear to occur at 0.37, at which sensitivity was 0.94 and specificity was 0.73, and at 0.46, 

at which sensitivity was 0.63 and specificity was 0.93 (Table 2). Although the weighting 

appeared to produce marginally improved performance, no significant difference was found 

using DeLong’s test (Z = 0.77, p = 0.22). Robustness analysis on the full sample of 40 

participants after reintroducing the motion-obscured scans showed AUC values of 0.77 and 

0.81 for ψi and ψ i
w respectively.

Previous studies that utilized CVS proportions within patients’ full set of lesions obtained 

optimal sensitivity/specificity of 1.00/1.00 when comparing MS cases to undiagnosed non-

MS cases7, patients with microangiopathic lesions13, and patients with inflammatory 

valculopathies18. Prior research on a subset of the current sample was unable to obtain 

perfect discrimination between MS and migraine patients when adjudicating CVS for all 

lesions15. Compared to cutoffs that utilized the full set of lesions, decision rules based on a 

subset of lesions were generally less discriminative between MS and non-MS participants. 

The rule of 6 did obtain sensitivity/specificity of 1.00/1.00 for distinguishing patients with 

MS and small-vessel ischemia13, yet in the current sample of MS, migraine, and 

misdiagnosed patients, the select3 procedure obtained sensitivity/specificity of 0.81/0.95, 

and the select3* procedure obtained sensitivity/specificity of 0.81/0.8317.
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4. Discussion

Preliminary studies have proposed and validated CVS as a promising biomarker for 

differentiation MS from other diseases that cause MRI white matter abnormalities7,15,19. Yet 

concerns remain regarding the heavy temporal burden on manual adjudication of CVS, as 

well as the subjective differences that may arise in response to variation in adjudicators’ time 

constraints and intuition. This study sought to address these issues by introducing an 

algorithm for automated CVS detection that could in principle, following further validation, 

be applied in clinical practice.

In the primary analysis, the algorithm was tested on a cohort of 16 MS (eight with and eight 

without other white matter comorbidities) and 15 non-MS (eight with migraine and seven 

misdiagnosed with MS) cases. The fully automated technique replicated previous work that 

used manual adjudications7,11–16 by demonstrating that proportions of lesions with CVS 

differ significantly between MS and its mimics. Additionally, the automated biomarkers, ψi 

and ψ i
w were found to have strong diagnostic ability, with AUCs of 0.84 and 0.88 and 

optimal sensitivity/specificity of approximately 0.94/0.70. There is also great promise for 

this algorithm to perform consistently across study sites and MRI scanners, as in-house 

preprocessing and lesion segmentation methods can be easily substituted, and the remaining 

steps (obtaining vesselness scores, finding lesion centers, and calculating CVS probabilities) 

do not require parameter tuning.

Importantly, the automated biomarkers presented in this study did not perform as well as 

previously obtained proportions of CVS based on manual ratings of all lesions in patients’ 

scans. Specifically, the 40% and 50% cutoffs used in prior manually rated studies often 

achieved perfect discrimination between MS and non-MS cases7,18, which the automated 

biomarkers were not able to replicate. However, previous work in a subset of the current 

sample showed that manual ratings of all lesions did not fully distinguish migraine patients 

from patients with MS and no white-matter comorbidities15. This suggests that the non-MS 

cases present in the current sample might be more difficult to distinguish from MS using 

CVS alone than the non-MS cases present in the studies that did obtain perfect 

discrimination.

Additionally, although the sensitivity and specificity obtained by these biomarkers were 

lower than manually obtained CVS proportions, the biomarkers performed comparably to 

decision rules that use only a subset of lesions in a scan17. Thus, while automated 

adjudication of every lesion in a scan is not yet as accurate as manual adjudication of every 

lesion in a scan, the proposed automated method shows promise as an alternative to other 

clinically feasible methods for identifying inflammatory demyelination. Further study and 

refinement of this technique has the potential to yield biomarkers that are both feasible for 

use in the clinic and comparable in accuracy and reliability to CVS proportions obtained by 

manual adjudication.

There are a number of important limitations to the proposed algorithm. First, biomarker 

values were found to be lower than previously reported CVS proportions for MS patients, 

and higher than previously reported CVS proportions for non-MS patients. It is possible this 
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effect is due to errors in lesion segmentation, which would pull the values of MS and non-

MS participants toward each other due to the assessment of non-informative false-positive 

lesions. Because this method allows for in-house lesion segmentation algorithms to be 

applied, the impact of false- positive lesions could potentially be mitigated in practice. It is 

also possible that the effect is due to false-positives or false-negatives in automated CVS 

assessment. Future work will use manual lesion-level assessments to tease apart these 

potential sources.

Additionally, the exclusion of 9 of the 40 subjects due to noise in the T2*-EPI scan 

represents a potential weakness of this automated method. However, robustness analysis 

found that the performance of the method on the full sample was not drastically reduced 

compared to the high-quality subset. This finding suggests that, in clinical practice, a great 

deal of motion would not render a scan useless but instead may be an additional 

consideration for clinicians when interpreting the algorithm’s results.

Although the potential clinical implications of an automated tool for CVS adjudication call 

for further study and refinement of such techniques, the current study demonstrates the 

promising performance of a fully automated method for detecting CVS in white matter 

lesions. To our knowledge, this is the first automated technique for this challenging aspect of 

MS diagnosis, and represents an important step forward toward a specific MRI biomarker 

for MS lesions.
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Figure 1: 
A) Axial slice of lesion on T2-FLAIR volume. B) Axial slice of lesion on T2*-EPI volume. 

C) MIMoSA lesion probability map. D) Distance-to-lesion-boundary mask with vesselness 

filter overlay. Lesion-level CVS probability following permutation was 0.975.
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Figure 2: 
Boxplots of patient-level central vein sign (CVS) biomarker score, by diagnostic group. The 

score can be interpreted as the proportion of lesions that are CVS+ according to the method 

described in this paper. Groups shaded gold do not carry an MS diagnosis, whereas groups 

shaded gray do. A) Boxplots for the unweighted biomarker. B) Boxplots for the noise-

weighted biomarker. Points outside of the boxplots represent outliers within their respective 

groups.
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Figure 3: 
Receiver operating characteristic (ROC) curves of MS diagnosis based on patient-level 

automated CVS biomarker scores. The ROC curve for the unweighted biomarker is shaded 

blue, and the ROC curve for the weighted biomarker is shaded green. The AUC values for 

both curves are displayed in their respective colors.
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Table 1.

Demographics of the study sample

MS (n=10)

Age 44 (16)

Sex 9/10 Female

Disease duration 9 (7)

Disease subtype 10/10 RRMS

MS with comorbidities (n=10)

Age 43 (9)

Sex 9/10 Female

Disease duration 9 (6)

Disease subtype 10/10 RRMS

Migraine (n=10)

Age 47 (13)

Sex 10/10 Female

Misdiagnosed with MS (n=10)

Age 53 (7)

Sex 9/10 Female
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Table 2.

Diagnostic performance of weighted and unweighted biomarkers.

Threshold Sensitivity Specificity

Unweighted
biomarker (ψi )

0.38 1.00 (0.75-1.00) 0.67 (0.42-0.84)

0.40 0.94 (0.70-1.00) 0.67 (0.42-0.84)

0.44 0.75 (0.50-0.90) 0.73 (0.47-0.89)

0.50 0.56 (0.25-0.65) 0.80 (0.58-0.94)

Weighted

biomarker (ψ i
w)

0.37 0.94 (0.70-1.00) 0.73 (0.42-0.84)

0.40 0.75 (0.50-0.90) 0.73 (0.42-0.84)

0.46 0.63 (0.40-0.80) 0.93 (0.68-1.00)

0.50 0.56 (0.35-0.75) 0.93 (0.74-1.00)
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