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SUMMARY

The odds of living a long and healthy life with HIV infection have dramatically improved with the 

advent of combination antiretroviral therapy. Along with the early development and clinical trials 

of these drugs, and new field of research emerged called viral dynamics, which uses mathematical 

models to interpret and predict the time course of viral levels during infection and how they are 

altered by treatment. In this review, we summarize the contributions that virus dynamics models 

have made to understanding the pathophysiology of infection and to designing effective therapies. 

This includes studies of the multi-phasic decay of viral load when antiretroviral therapy is given, 

the evolution of drug resistance, the long-term persistence latently infected cells, and the rebound 

of viremia when drugs are stopped. We additionally discuss new work applying viral dynamics 

models to new classes of investigational treatment for HIV, including latency-reversing agents and 

immunotherapy.
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INTRODUCTION

HIV, the causative agent of AIDS, infects nearly 40 million people worldwide(1) and 

represents one of the highest overall global burdens of disease (2). After an estimated entry 

into the human population in the early 20th century (3), it spread unnoticed until 1981 when 

a syndrome of opportunistic infections in previously healthy gay men (4) led to the eventual 

characterization of the disease AIDS and identification of the virus responsible (reviewed in 

(5)). Since then, HIV has become one of the most intensively studied infections. These 

studies have addressed how it leads to massive reductions in CD4+ T cell populations due to 
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a combination of direct infection and generalized dysregulation of the immune system, and 

how it evolves rapidly to evade anti-viral immune defenses. Massive drug development 

efforts starting soon after identification of the virus have resulted in 27 different approved 

antiretroviral drugs (6), which can halt viral replication and prevent transmission and 

progression to AIDS. Yet despite these advances, we still do not have a clear explanation for 

the pathogenesis of infection nor therapies that can permanently cure the infection.

The rapid pace of HIV research has been made possible by two very convenient aspects of 

the infection: first, the CD4+ T cells that the virus infects continually circulate through the 

body, allowing them to be sampled in the peripheral blood, and second, virions are released 

by infected cells in sufficient amounts that they can also easily be measured in blood 

samples and tracked over time. Genomic viral RNA in virions can be readily quantified with 

RT-PCR, providing a convenient, reliable, and quantitative biomarker of infection status. 

Measurement of plasma HIV RNA (often referred to as “viral load”) led to the observation 

of complex yet repeatable patterns in individual patients over time (Figure 1). After initial 

infection (through sexual transmission, contaminated blood products, intravenous drug use, 

or perinatal events), viral levels increase exponentially with a doubling time of ~ 0.65 days 

(7), reaching peak “viral loads” as high as 108 copies of viral RNA per mL of plasma (c/mL) 

(8). Viral loads then decrease over the period of a few weeks to a “set point” typically 

between 103 - 106 c/mL, where they can remain relatively stable for many years (9). During 

this time, viral populations diversify and diverge from the strains that founded infection (10), 

often displaying population genetic signs of strong selection (11, 12). CD4+ T cells slowly 

decrease over the course of chronic infection and eventually become so low (<200 cells/uL 

blood) that opportunistic infections occur and the individual classified as having AIDS. 

Early in the epidemic, these characteristic trends inspired the use of mathematical models to 

understand these dynamics and help generate ideas about how to treat the infection.

Mathematical models are sets of equations or rules that describe how different entities in a 

system interact and change over time (15). Different models may consider dynamics at very 

different scales - from individual molecules to cells to people to countries. Most commonly, 

models are formulated as systems of nonlinear differential equations or as sets of stochastic 

reactions constituting a Markov process. Roughly speaking, the use of models in biology can 

be divided into two cases. In one scenario, models may be constructed with the goal of 

explaining patterns that are observed in existing data, perhaps for generating and comparing 

hypotheses about the mechanisms that lead to the observed data or to estimate values of 

particular model parameters. While this approach has the advantage of allowing direct 

comparison of models with data, it has the downside that it is generally always possible to 

create a model that reproduces observed data, but this does not mean that model is correct or 

useful. Alternatively, models may be constructed in the absence of directly related data, by 

starting from a basic mechanistic understanding of the biological processes involved and 

choosing only the processes considered most critical to the outcome. Values for reaction 

rates can ideally be taken from direct measurement of individual steps in the process. 

Constructing such a model is a formal way of integrating often disparate data into a single 

framework, and can be used to predict the outcomes of studies that have not yet been 

conducted based on the optimal use of prior information. Ideally, models can be developed 

and refined by iterating between these two approaches.
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In this paper, we will review some examples of how mathematical models have improved 

our understanding of HIV treatment, including both successes and failures. The models we 

will discuss are commonly called “viral dynamics” models and track levels of virus and 

immune cells over time within individual infected people or animals (and thus are often 

referred to as “within-host” models). A huge amount of other work that will not be discussed 

here uses “between-host” models to describe how HIV spreads between individuals in a 

population (e.g. (16–18)). The first half of the paper will focus on antiretroviral drugs, which 

are still the only approved drugs for treating HIV. The second half of the paper will discuss 

investigational therapies being tested with the hope that they may one day replace 

combination antiretroviral therapy (ART) by permanently curing the infection. Many other 

excellent reviews of viral dynamic modeling of HIV exist in the literature (e.g (19–21)). 

Here we do not attempt to cover the entire field but rather to detail some topics we 

personally have studied or feel are illustrative examples of these methods.

BASIC VIRAL DYNAMICS MODEL

The backbone of most mathematical modeling work describing HIV infection within 

individual patients is the basic viral dynamics model. In its simplest form, this model tracks 

levels of the virus (V) and the CD4+ T cells that it infects (Figure 2a). Uninfected target 

cells (T) are assumed to enter the system at a constant rate λ, and die with rate constant dT 

(equivalent to an average lifespan of 1/dT). Infected cells (I) are produced with a rate 

proportion to levels of both virus and target cells and the infectivity parameter β. Infected 

cells produce free virus at a rate k and die with rate dI (which is assumed to be higher than 

dT). Free virus is cleared at rate c. These reactions can be described with the set of ordinary 

differential equations

T
.

= λ − βTV − dTT

I
.

= βTV − dII

V
.

= kI − cV

Eq. 1

This model reproduces many of the qualitative features of acute and chronic HIV infection 

(Figure 2b,c). Following transmission of a small number of founder virions, viral loads 

initially grow exponentially then peak before declining to eventually reach a stable setpoint 

level. Formulas can be derived from the model relating these features of viral load to the 

underlying parameter values (19). An important early insight provided by this model was 

that the decline from peak viremia could be explained without any specific later-onset 

immune response. It is a natural consequence of the slower turnover of uninfected cells 

relative to infected ones (22). Because of the non-linear infection rate that appears in 

Equation 1, the model displays a type of thresholding behavior in which the infection can 

only spread and persist if a parameter combination called the “basic reproductive number” is 

large enough. Otherwise, the virus will be cleared from the body. The basic reproductive 

number is given by the formula (19, 23)
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R0 = λβk
dTdIc

Eq. 2

Mathematically, R0=1 is a “transcritical bifurcation” in the system, and only for R0>1 is the 

extent of infection non-zero in the long run. R0 has an intuitive meaning: It is the average 

number of secondary infections caused by virions released from a single infected cell over 

its lifetime in a population of otherwise uninfected target cells. This phenomenon is exactly 

analogous to the concept of the basic reproductive number in population-level epidemic 

models (24), with people or animals replaced by cells. The goal of treatment for any 

infection, in an individual or population, is to alter one of the parameter values such that 

R0<1.

The rate parameters for this model can be estimated in a number of different ways. Lifespans 

of immune cells can be estimated from in vivo heavy-water labeling experiments (25), and 

clearance rates of virus have been estimated from plasma apheresis (26). Before infection, 

CD4+ T cell levels are stable at measurable levels, and once the death rate is known, the 

production rate can be estimated as the quantity needed to achieve an equilibrium. In vitro 
infections, measurements of infected cell and virus levels in vivo, and ex vivo tissue imaging 

studies have been used to estimate the number of virions produced per infected cell 

(reviewed in (27)). While it is generally impossible to measure the infection rate β directly, 

the observed rate of exponential increase or the value of the viral load set point can be used 

to estimate it when other parameters are known. Another technique is to attempt to jointly 

estimate all parameters by fitting the model to longitudinal data, though in general all 

parameters of the model are not uniquely identifiable this way (28). Estimates of the basic 

reproductive number suggest values anywhere between 2 and 25 (median ~8) (7), implying 

that treatments must inhibit at least 95% of infections to lead to clearance (need R0 →R0 

(1−ϵ) < 1, where ϵ is the treatment efficacy).

MODELING ANTIRETROVIRAL THERAPY

What does viral load decay during ART tell us about the underlying dynamics of infection?

Perhaps the most influential use of this model has been in interpreting changes in viral load 

when antiretroviral drugs are administered (29, 30). When ART is given, the viral load 

almost immediately begins to decays exponentially with a slope of ~1/day. Combination 

ART prevents successful infection of new cells, and if therapy is 100% effective, β → 0 and 

the viral dynamics equations have an analytic solution for viral load over time (29)

V(t) = V0
(ce

−dIt
− dIe

−ct)
c − dI

Eq. 3

where V0 is the viral load at the time of therapy initiation. Thus, the decay dynamics only 

depend on the lifespans of free virus and infected cells: viral load will decay with the slower 
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of these two values after a shoulder phase approximately equal to the length of shorter 

lifespan. Since the lifespan of free virus is estimated to be around 1/c ~ 1 hour (26), but the 

observed decay rate is around 1/day, we must have dI > c and dI ~1/day.

When this decay was first observed and interpreted in the context of this model (29–31), it 

was very surprising that virus-producing cells had such a short lifespan. This lifespan 

implies that many new cells must be infected each day to maintain setpoint viremia 

(estimates of dII at setpoint from the model in Figure 2 scaled up to full body cell numbers 

are around 109). This meant that the long period of asymptomatic infection and constant 

viral levels prior to the development of AIDS was not due to a latent or slow moving 

infection, but instead a highly dynamic balance between new rounds of infection and the 

death of infected cells. Since HIV generates a new mutation approximately every three 

infection events (mutation rate per base pair per replication cycle of 3 × 10−5 and genome 

length of ~10kb (19)), these numbers allow for a tremendous amount of diversity to be 

generated, explaining the rapid rates of evolution observed.

Despite these and many other insights into HIV infection that have come from the viral 

dynamics model, it is important to note that the model does make a number of unrealistic 

assumptions. For example, this model assumes that cells start producing virus immediately 

upon being infected, whereas in reality a cell must pass through multiple stages of the viral 

lifecycle before infectious virions are released. Additions to this model include this time 

delay (32–34), which has many interesting effects, but most importantly, changes the 

relationship between the early viral growth rate and estimates of R0 (7). CD4+ T cells obey 

very simplified dynamics in these equations, but are actually governed by more complicated 

homeostatic mechanisms that increase cell proliferation when numbers get low (35, 36). 

While CD4+ T cell levels can decline dramatically during chronic infection, generally only 

activated cells are highly susceptible to infection, and only a very small fraction of them are 

infected at any given time (around 1/1000)(37, 38). Including more of these details can 

improve the agreement between model predictions and observed CD4 counts but still cannot 

explain the entire progression to AIDS (39).

Infected cells and free virus are not generally cleared at a constant rate throughout infection 

because they are targeted and cleared by adaptive immune responses that expand in response 

to infection. Many models of antiviral immunity have been developed to explain different 

features of infection (12, 19, 40, 41). Inclusion of immune system effects is needed to 

reproduce the large drops from peak viremia to setpoint (42, 43) and explain patterns of viral 

evolution (e.g. (40, 44, 45)). When treatment reduces R0<1 in this model, the simplest forms 

of the model predict that infection will eventually be completely cleared. However, early 

studies demonstrated that no matter how long antiretroviral therapy is given and plasma viral 

levels remain undetectable by standard clinical assays, the infection always returns once 

therapy is stopped (46, 47). This was found to be due to the presence of a “latent reservoir” 

of integrated proviral genomes in resting memory CD4+ T. These latent genomes are not 

transcribed into mRNA and translated in protein to complete the viral lifecycle due to the 

quiescent state of these cells (48). However, upon cellular activation, transcription and 

translation can resume. Latently infected cells can persist despite decades of therapy (49, 

50), and reactivate later to restart infection (51–53). Consequently, antiretroviral therapy is 
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not curative and currently must be taken for life. Models that include viral latency are now 

common in studies of both antiretroviral therapy and new curative strategies (reviewed in 

(54) and discussed in later section).

Interestingly, many of these more complicated facets of infection can actually be inferred 

from looking more closely at viral load decay curves under different types of treatments. For 

example, after the first weeks of treatment with combination ART, the rate of viral load 

decay slows down, from a half-life of less than a day to a half-life of around 2 weeks. Then, 

after 3-6 months of treatment, the viral load becomes undetectable by standard clinical 

assays (limit of detection 50 c/mL), but ultrasensitive assays can reveal continual low-level 

viremia which decays extremely slowly, if at all (Figure 1B). Mathematical models have 

been used to interpret this decay, and in general the multiple phases are believed to reflect 

distinct populations of infected cells (e.g. (55–58)). The final phase of decay is now 

understood to be release of virus following reactivation of cells from long-lived latent 

reservoirs, and the decay reflects the very slow decline in the number of latently infected 

cells (49, 59). The identity of the cells responsible for the second phase of decay is not yet 

clear. Another cell type that HIV can infect, macrophages, was suspected, but has now been 

ruled out (60), while other possibilities include partially-resting CD4+ T cells in a lower 

state of activation, cells with a type of pre-integration latency, release of virus from follicular 

dendritic cells, or simply a decreased death rate of actively infected cells due to waning 

immunity (58, 61, 62).

Further insight has been gained by comparing viral load decay curves in treatment with and 

without the integrase inhibitor (II) class of drug. Early on after this class was introduced, it 

was noticed that viral loads became suppressed faster than with reverse-transcriptase (RTI) 

or protease inhibitor therapy (PI). This was initially taken as evidence that these drugs were 

more efficacious, but for the reasons detailed above (Figure 2, lack of dependence of decay 

curves on drug efficacy), modelers cautioned against this interpretation and hypothesized 

that the altered kinetics may be due to the later stage in the lifecycle at which the integrase 

inhibitor class acts (63–65). Recent work by Cardozo et al (58) used densely longitudinally 

sampled viral load data (66) during treatment with either a) 3 RTIs + 1 PI, b) 1 II, or c) 2 

RTIs + 1 II to compare various models to fit the decay curves. Based on the various 

alterations in kinetics seen with the II (first phase viral decay separating into two phases, 1a) 

and 1b), second phase decay occurring later and slower), they identified the model that fit 

the data best without unnecessary complexity. They concluded that the virus infects two 

distinct cell subsets, one with a fast rate of integration and another with a slow rate of 

integration, but that once integration occurs, production of virions occurs with similar rates 

in each subset. Additionally, their results suggest that the decay curves can only be explained 

if integrase inhibitors are not 100% effective even at the high concentrations administered, 

so that some integration proceeds slowly even in the presence of the drug. This agrees with 

direct measurements of drug efficacy in ex vivo assays (discussed in next section)(67), and 

could be due to the ability of HIV genes to be expressed at low levels from unintegrated 

viral DNA. In Figure 3, we show the infection model that has emerged from these combined 

studies and the decay curves that are produced under different treatment regimes
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How efficacious are antiretroviral drugs?

HIV drugs rapidly reduce viral loads, but they don’t eliminate all of the problems associated 

with HIV infection. Older regimes included drugs with unpleasant or even toxic side effects, 

making it difficult for patients to consistently adhere to therapy, or necessitating treatment 

changes. If there are problems with adherence, the drugs can fail to keep viral load 

suppressed indefinitely, often due to the development of drug resistant virus that can 

replicate despite the presence of therapy. Treatment success depends critically on choosing a 

drug dose that minimizes adverse effects while preserving efficacy, and on choosing drug 

combinations that inhibit viral replication and slow down the evolution of drug resistance. 

Since the number of possible drug combinations and doses is simply too high to test each in 

clinical trials, it is imperative to have models for drug efficacy that can be used to make 

informed decisions about administering therapy. In particular, these predictions require an 

understanding of the relationship between the concentration of a drug in the bloodstream and 

the reduction in the new infection events.

The previous sections emphasized that the slope of viral load decay during therapy reflects 

of an important timescale in infection: the lifespan of virus-producing cells. However, 

analyzing these curves tells us very little about drug efficacy itself; that is, what percent of 

new infections are blocked in the presence of drug? Viral dynamics models show that as 

long as therapy reduces viral replication below a critical threshold needed to push infection 

towards elimination (R0<1), the slope of viral load decay is relatively insensitive to the exact 

drug efficacy (Figure 2B). For example, drugs that stop 90% vs 99% vs 99.99% of new 

infections when R0~4 are nearly impossible to distinguish. However, the differences in 

residual replication under these different hypothetical regimens could be very important in 

determining the risk of developing resistance, or the risk of losing suppression if a few drug 

doses are missed. Even if viral load kinetics were more sensitive to drug inhibition, it would 

still be difficult to use it to reconstruct a dose-response curve for drug efficacy vs 

concentration, since drug levels fluctuate significantly between doses due to the physiologic 

processes of absorption, distribution, metabolism, and elimination (Figure 4).

In vitro assays, which allow virus to spread in cell culture systems with fixed drug levels, 

can avoid these problems, but their physiological relevance could be minimal, since cell 

lines in culture media may respond to infection and treatment very differently than cells in 
vivo. Additionally, the relationship between the amount of infection after a certain time of 

spreading in culture and the actual reduction in per contact probability of infection could be 

highly non-linear and dependent on other parameters in the system which are hard to 

control. Many of these problems can be overcome with a unique infection assay introduced 

by the Siliciano lab (69) and responsible for the most quantitative description of 

antiretroviral efficacy that we currently have. The assay is conducted in primary CD4+ T 

cells isolated from healthy donors and cultured in human blood serum, and uses virus that is 

capable of only a single round of infection and that labels productively infected cells by 

expressing a fluorescent protein along with viral genes. By comparing the fraction of cells 

infected in the presence vs absence of drug using flow cytometry, the inhibition of the drug 

can be quantified over many orders of magnitude.
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Using this assay, Shen et al (67) generated dose-response curves describing the relationship 

between drug concentration (D) and the fraction of infections inhibited (compared to the 

absence of drug) for all approved antiretroviral drugs. These curves could be described 

extremely well by a simple two-parameter “Hill”-function (70):

f u = 1 − ϵ = 1
1 + D IC50

m Eq. 4

Here fu is the fraction of infections that are unaffected by the drug (equivalent to one minus 

the drug efficacy ϵ). The IC50 describes the concentration of drug that reduces infections to 

one half the drug-free level, while the slope, m, describes how quickly inhibition changes as 

drug levels move away from the IC50.

Drugs differ substantially in their IC50 values, and there is overall no relationship between 

the drug class (determined by the phase of the viral lifecycle the drug inhibits) and the IC50. 

In contrast, striking differences between drug classes were observed in the slope of the dose 

response curves (m). Nucleoside reverse transcriptase inhibitors (NRTIs) and integrase 

inhibitors (IIs) all had slopes very close to 1, while values were near 1.7 for non-nucleoside 

reverse transcriptase inhibitors (NNRTIs) and fusion inhibitors (FI). Slopes for protease 

inhibitors ranged from ~2 to ~4.5 (Figure 4).

These results were surprising for a few reasons. Firstly, HIV drug efficacy (as measured by 

older assays), was previously only reported in terms of the IC50, but inhibition at the higher 

concentrations which are required clinically is highly dependent on the slope as well (Figure 

4). The total viral inhibition at clinical drug levels calculated from these assays is higher in 

drug combinations recommended for first-line treatment and in those that outperform others 

in head-to-head randomized clinical trials (67). Secondly, the functional form for the Hill 

curve comes from considering a general mechanistic model of enzyme-substrate kinetics, 

and in this model the slope is directly related to cooperatively, which in this case would 

describe how many drug molecules must be bound to a target to inhibit it (71). However, for 

HIV drugs of most classes, there is only a single drug-binding site on each target, making 

slope values >1 very puzzling. A solution to this dilemma was proposed by in a follow-up 

paper by Shen et al (67), using what they call a “critical subset model” (72). They pointed 

out that for some targets of HIV drugs, there are multiple copies of the target in a single 

virion or infected cell. Although they are not covalently linked, these target molecules work 

together to carry out the relevant reactions (for example, protease cleavage of HIV 

polyproteins) and complete the relevant step in the virus life cycle. Inhibition of infection 

may require that some critical fraction of targets be bound to the inhibitor. Consequently, the 

dose-dependence of infection inhibition may act like the case of cooperative binding of a 

multivalent target. A mechanistic model of this kind produces dose response curves that look 

very similar to Hill curves with slopes greater than 1. Interestingly, there are other situations 

in which only a single drug target per infected cell is relevant. For example, the integration 

of viral DNA into the host cell genome or the addition of a dNTP to a growing HIV cDNA 

chain during reverse transcription. In these cases, the measured slope values are close to 1.
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In situations where drug levels are suboptimal, viral replication can occur and drug resistant 

variants can arise (74). Resistance is not an all-or-nothing phenomenon, and most mutations 

only confer partial resistance. To quantify the degree of resistance, viruses can be generated 

in the lab with specific suspected drug resistance mutations, and then subjected to the same 

dose-response curve measurements described above (75). Overall, the dose-response curve 

shifts in three possible ways for each resistant strain. In the absence of drug, mutant strains 

tended to have lower infection rates than wildtype strains. This “cost of resistance” is well-

documented in many systems and occurs because of compromises in the function of viral 

proteins that occur when they undergo amino acid changes to avoid drug effects (76–80). 

Since this fitness cost shifts the entire dose-response curve down (Fig 4c), it also indirectly 

influences how much a resistant strain can replicate at any drug level. In the presence of 

drug, mutant strains in general have higher IC50 values as well as lower slope values. Single 

point mutations to NNRTIs tend to have larger effects on both parameters overall, and 

resistance to integrase inhibitors only significantly alters the IC50. Interestingly, resistance to 

PIs tends to change only the slope. Major public databases that characterize the resistance 

levels of different mutations (81) as well as commercial testing services rely heavily on the 

IC50. to quantify resistance, but residual replication at clinical drug levels, especially to PIs, 

cannot be predicted without considering the three resistance parameters together.

Modern antiretroviral therapy typically involves combinations of three drugs, which makes it 

unlikely that viral strains containing resistance mutations to all three drugs will pre-exist at 

the time therapy is started or emerge during treatment (68, 82, 83). Understanding the 

combined reduction in viral replication would be helpful for designing optimal drug 

combinations. Early work in this field of pharmacodynamics theorized that inhibition by 

drug combinations could be calculated depending on whether the drugs act on the same or 

different target molecules (84). Based on that idea and the known mechanisms of action of 

HIV drugs, Jilek et al (85) studied the effect of combinations of two antiretroviral drugs and 

found that while some two-drug combinations behaved as expected, others interacted in 

surprising ways: sometimes the overall inhibition was much higher (“synergy”) or much 

lower (“antagonism”) than expected. Moreover the combined inhibitory effect of drug 

combinations was highly correlated with treatment outcomes in clinical trials. 

Characterizing these relationships for all three drug combinations is logistically impossible 

( (25 drugs)3 *(10 doses)3 ~ 107 ) but Jilek et al examined a subset, and found that three-

drug efficacy could be predicted entirely from two-drug data, meaning that all drug-drug 

pharmacodynamic interactions were pair-wise. Interestingly, similar results have been 

obtained for E. coli and Staph. aureus treated with antibiotics (86) or cancer cell lines treated 

with chemotherapy drugs (87, 88), despite the use of completely different biological 

systems, more complicated mechanisms of drug action, and different models to describe 

drug efficacy.

How does antiretroviral efficacy and adherence influence treatment outcomes?

Dose-response curves tell us how much infection is instantaneously blocked at a given drug 

level, but they don’t directly tell us what the long-term outcome of treatment will be. Drug 

levels fluctuate over time as drug is absorbed after a dose is taken and then cleared, and the 

individual pill-taking behavior of each person, including their potentially suboptimal 
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adherence, can lead to more extreme peaks and troughs in drug levels. The pre-treatment 

viral population size, the mutation rate, and the residual replication of wild-type virus 

despite therapy determine the likelihood of generating resistant strains, while the drug level 

and the way the mutation shifts the dose response curve determine the likelihood that a 

resistant strain is selected and grows in the body. Understanding the complex interaction 

between all these factors and how they combine to determine therapy outcomes is 

impossible without mathematical models.

The viral dynamics models described in the first section can be modified to consider drug 

treatment in more detail (73, 89–92). Although different drug classes act on different stages 

of the viral lifecycle (which are not explicitly considered in the basic viral dynamics model), 

their effects can be approximated by a dose-dependent reduction in the rate at which virus 

infects cells (β → β(D), where β(D) is simply the drug free value β0 multiplied by the drug 

effect (Eq 4). Since drug concentrations are time-dependent, D can be replaced by D(t). 
Therefore, viral population dynamics proceed under a time-dependent infection rate (Figure 

5).

To include the possibility of the evolution of drug resistance, the basic model can be 

augmented to include multiple strains of virus (wild type/drug-susceptible, mutant/drug-

resistant) which compete for target cells and can be produced by other strains via mutation 

(Figure 5a). It is important that models for long-term therapy outcomes include a 

compartment of latently infected cells, which are seeded by active infection and can 

reactivate to produce actively infected cells, since otherwise temporary admistration of fully-

suppressive therapy would falsely be predicted to cure infection. Overall, this results in a 

multi-strain, multi-cell type model with time-dependent parameters (Figure 5d), which can 

be described by the following set of equations:

T
.

= λ − T∑
i

βi(t)V i − dTT

I
.
ι = T∑

i
β j(t)V jQij − (dI + γ)Ii + aLi

V
.
ι = kIi − cV i

L
.
ι = γIi − (a + dL)Li

Eq. 5

where the new variable L is the level of latently infected cells, and the subscript i refers to 

the genotype of the viral strain. This formulation assumes that strains differ only in their 

infection rates (βi). Actively infected cells transition into latent infection at rate γ, a is the 

rate at which latently infected cells reactivate, and dL is the death rate of latently infected 

cells. Q is a matrix that includes information both on the mutation rate and the genetic 

structure of the population, i.e., is the probability that a cell initially infected by a virion of 

genotype i ends up carrying genotype j due to mutation during the reverse transcription 

process is Qij. The rates governing latently infected cells tend to be much smaller than those 

for activated cells or virus (e.g. dL, γ, a ≪ dI, dT).
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Even without dynamically simulating such a model, important insight can be gained on 

potential treatment outcomes just from at the relative dose-dependence of mutant and wild-

type viral fitness (73, 89)(Figure 4d). An important mathematical feature of the viral 

dynamics model is that it displays competitive exclusion; that is, one strain will always 

dominate the population while the other is reduced to low levels sustained only by new 

mutations or release from latent reservoirs. The “winner” of such a competition is the strain 

with the highest R0. If all strains have R0<1, infection will be suppressed (reduced to a level 

sustained only by latent cells while they remain). Thus, when drug levels are constant, the 

strain with the highest beta value determines treatment outcome, since R0 is directly 

proportional to β. When drug levels are low, the fitness cost incurred by a resistant strain 

dominates, meaning that the wild-type strain has higher infectivity (Fig 4c, left of pink 

shading). Treatment can fail due to replication of wildtype virus. At slightly higher drug 

levels, if a resistant strain exists in the population, it will be selected and dominate the 

infection, causing treatment failure with resistance. However, if resistance doesn’t arise, 

wildtype virus can still grow. At yet higher drug levels, wild-type virus is controlled by the 

drug, and failure can only occur if resistance is present (Figure 4c, pink shading). At very 

high drug levels (which may or may not be clinically achievable without toxicity), both 

resistant and wildtype strains will be suppressed and infection will be controlled (Figure 4c, 

right of pink shading).

When drug levels fluctuate - due to intrinsic pharmacokinetics and adherence patterns, drug 

levels can oscillate between different selection regimes (Figure 5). Treatment outcomes 

under time-dependent drug levels can be approximated by comparing time-averaged R0 

values between wildtype and resistant strains (89) or by considering the fraction of time 

spent in each of the “selection windows” (73) (Figure 4c). These proxies are significantly 

better than simply measuring time-averaged drug concentration, which misses the highly 

non-linear relationship between drug levels and viral fitness. However, they still have limited 

predictive power, since they ignore the fact that resistant strains do not always exist but 

instead must be generated stochastically via mutation before being available to be selected, 

and can go extinct if outcompeted temporarily (73). Consequently, the specific time course 

of drug levels can influence outcomes.

More predictive models of viral dynamics under drug treatment can be created by a) moving 

from differential equations, which assume populations can be arbitrarily small and all 

processes occur continuously, to stochastic models of finite-sized population, and b) 

including realistic parameters for drug levels over time and drug effects on different viral 

genotypes (Figure 5). Our HIV model incorporating the experimental measurements of drug 

efficacy described above, the identity of the most common resistant strains and the rates at 

which they are generated by mutation, drug levels measured from clinical trials, and a 

calibrated model of viral dynamics was used to examine the relationship between patient 

adherence and treatment outcomes for a panel of antiretroviral drugs(73). We found that 

multiple clinically observed trends could be explained by the model, and understood based 

on the underlying mechanisms. For example, there is a large range of low to moderate 

adherence levels where NNRTI-based therapy is prone to resistance, due to the long half-

lives of these drugs and the shallow dose-response curves. In contrast, boosted protease 

inhibitor therapy is more likely to fail just due to the growth of wild type virus. The short 
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half-life and sharp dose-response curves for these drugs makes the time spent in the 

selection window where resistant strains are favored small. Similar models have now been 

developed for many different infections, including HCV (93, 94), HSV (95), TB (96), and 

others have applied similar models to HIV (97–100) to examine effects such as archiving of 

transmitted resistant strains in the latent reservoir, tissue compartments with lower drug 

concentrations, details of intracellular pharmacokinetics of drugs, and host immunity.

Beyond the overall adherence level, more detailed characteristics of the drug time-course 

can influence treatment outcomes. Wahl and Nowak (89) showed that resistant strains are 

more likely to flourish when drug doses are taken more evenly as opposed to in a more 

“clumped” fashion, even when the total fraction of doses taken is the same (assuming that 

resistant strains always exist). When drugs are given in combination, the overlap between 

missed doses, which can differ depending on whether the drugs are packaged together in a 

“combo-pill” or allowed to be taken separately, can determine whether or not a drug 

combination is “resistance-proof”(73). Long-acting therapy, which is taken much less 

frequently than current daily dosing due to extended half-life formulations, is currently 

under development (101), and there are worries it may be more prone to resistance 

development in the presence of missed doses. Models can be used to explore this possibility, 

and for preliminary investigation of a once-weekly formulation of the drugs dolutegravir and 

raltegravir, and suggest failure rates should be similar to daily pills with similar average drug 

concentrations (102). The periodic highs and lows of drug levels during regular therapy can 

also promote resistance in an unexpected way. For example, viral populations may be able to 

evolve the ability to “synchronize” their lifecycle with the drug period so that they only 

undergo a particular life cycle stage when drug level blocking it are at their lowest, and 

therefore avoid the drug effect (34). Whether this effect is responsible for any clinical 

resistance patterns for HIV is still unknown.

MODELING NOVEL THERAPIES TO PERTURB LATENT INFECTION OR 

BOOST IMMUNE RESPONSES

Antiretroviral drugs are currently the only therapies approved form of treatment specifically 

targeting HIV, and they have tremendous potential to control the global epidemic. Currently, 

approximately 18 million of the 39 million estimated HIV+ individuals are receiving 

combination ART (103), a tremendous feat of basic science, clinical medicine, public health, 

and political will. However, antiretroviral therapy is not curative, and must be taken daily, 

for life, to keep viral levels suppressed. Over the past decade, an ambitious new research 

agenda has developed for HIV, with the goal of finding therapies that can permanently cure 

the infection (104). There are two basic ideas for how this could be accomplished. One 

approach, often called a “sterilizing cure”, is to purge the body of enough residual latently 

infected cells that the chance that infection will be rekindled when treatment is stopped is 

extremely low. Another approach, often called a “functional cure”, is to equip the body with 

the ability to control the infection, rendering small amounts of virus released from reservoirs 

inconsequential (105). As was the case for antiretroviral therapy, mathematical models are 

being used to predict how and when these therapies would work, interpret their outcomes in 

trials, and help guide drug development efforts (see related reviews (54, 106)).
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What maintains the latent reservoir and how can we reduce or clear it?

One branch of HIV cure research is focusing on developing therapeutics that can perturb the 

latent reservoir, ideally reducing its size or activity such that the risk of latently infected cells 

reactivating and rekindling infection when ART is stopped is removed (107). In imagining 

such therapies, researchers have sought to better understand the processes that maintain a 

nearly stable population of latent cells despite decades of treatment and extremely low levels 

of detectable virus. The latent reservoir persists mainly as proviruses integrated into the 

genomes of infected resting memory CD4+ T cells. The frequency of these latently infected 

cells is around 1 per million cells (53, 108, 109) (depending on the particular assay used and 

the requirement for virus functionality), and its size decays with a half-life of 44 months on 

average (49, 50). The majority of evidence supports the fact this reservoir is maintained by 

the underlying dynamics of these cells, and not by ongoing viral replication, which could 

lead to continual reservoir seeding despite antiretroviral therapy (reviewed in (54, 110, 

111)). While it was originally believed by many that latently infected cells must be 

intrinsically long-lived, since cell division was expected to reactivate viral expression and 

lead to eventual cell death, a series of studies over the past few years have convincingly 

demonstrated that cells in the reservoir can proliferate while remaining latently infected 

(reviewed in (110, 112)). These studies have identified multiple latently infected cells – even 

in small samples – with virus integrated into identical sites (113–115) in the genome or with 

sequence-identical virus (116–119) – two findings that would be exceedingly unlikely to 

occur in two independent infection events and likely reflect division of infected cells.

The first class of drugs to be investigated to target latent infection were the so called 

“latency reversing agents”. The rationale for these drugs is to increase the rate at which HIV 

expression is restarted in latently infected cells. If these drugs are given along with 

antiretroviral therapy, then these reactivated cells will release virus but the released virus 

will not be able to spread infection to other cells. Eventually, the productively infected cells 

should die – either by viral cytopathic effects or cytotoxic immune responses (120). Now 

that the role of proliferation in maintaining the reservoir has been established, there is 

renewed interest in developing “anti-proliferative” therapies for HIV, which would reduce 

the ability of latently infected cells to self-renew. Mathematical models have been developed 

to predict how effective these treatment strategies are likely to be (121, 122). Two recent 

papers used a similar approach which we will summarize here. If it is assumed that 

antiretroviral therapy is 100% effective, then the viral dynamics equations (e.g. Eq 1, 5) 

become linear and much simpler, as the dynamics of the latent reservoir become uncoupled 

from other variables. The dynamics of the expected number of latent cells (L) over time can 

be described by

L
.

= pL − aL − dLL,

L(t) = L0e
−(dL + a − p)t Eq. 6

whereas before, a is the rate of latent cell reactivation, dL is the rate of latent cell death, and 

now we have added a term p for proliferation (division) of these cells. To be complete we 
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could also track activated cells produced when latently infected cells reactivate, and the 

possibility for these cells to revert to latency (as in Eq 5), but adding these dynamics just 

changes the effective value of the rate a. This equation describes simple exponential decay of 

the latent pool, where the observed decay rate δ is determined by the sum of these rates (δ = 

dL + a − p). This model can be used to examine how increases in either a (the target of 

latency reversing agents) or p (the target of anti-proliferative therapy) alter the net decay 

rate. However, the effect of interventions on these parameters strongly depends on their 

underlying values, and while the observed half-life of the reservoir tells us about δ ( = 

log(2)/44 months = 0.2/year ), it is extremely difficult to estimate the relative contribution of 

each process. Petravic et al (122) examined how these uncertainties effect estimates of 

efficacy for interventions on a, while Reeves et al (121) explored similar questions for p. In 

Figure 7 we show examples of some output from their models.

Values for the baseline rate of reactivation of latent cells can be estimated from the timing of 

viral rebound (28, 121, 123), and in vivo cell proliferation rates can be estimated from stable 

isotope infusion experiments that label cells and track label decay over time (25, 121). With 

these estimates, p and dL are around two orders of magnitude larger than a, and so large 

increases in a by a hypothetical latency reversing drug are predicted to be needed to 

significantly decrease the half-life of the reservoir (Figure 7b, yellow line). If estimates of a 
are off and it is actually 10-times larger, therapy outcomes are more optimistic (Figure 7b, 

red line). For anti-proliferative therapy, even very small reductions in the latent cell division 

rate could dramatically increase reservoir decay (Figure 7c, yellow line), though the benefit 

is more modest if latent cell turnover is lower than the values measured in all central 

memory T cells (e.g. Figure 7c, blue line).

These results highlight the difficulty of predicting therapy outcomes from models, even 

qualitatively, when the underlying parameters are difficult to measure. There are many 

reasons why cells latently infected with HIV may not have the same turnover rates as typical 

resting memory CD4+ T cells. For example, proviral integration may occur in host genes 

responsible for cell division or survival and impact their rates, a subpopulation of cells may 

be more susceptible to latent infection, immune killing of infected cells expressing viral 

proteins may select over time for cells in a “deeper” latency, or cells with particular antigen 

specificities may be preferentially infected and maintained over time. Preliminary trials of 

reservoir-targeted drugs have had their own challenges. Latency reversing agents have had 

some success in increasing HIV gene expression but have not impacted reservoir size (124–

126), perhaps because of their lack of specificity for the HIV promotor, post-transcriptional 

blocks, and lack of recognition of cells by cytotoxic immune responses. Anti-proliferative 

therapies are still at an early stage, but it will likely be difficult to find compounds that 

substantially reduce division of infected cells without being overtly immune suppressive or 

triggering compensatory mechanisms to maintain cell population sizes.

The differential-equation-based model above can give estimates for the expected decay rate 

of the latent reservoir, but to achieve cure, the probability that at least one cell remaining in 

the reservoir reactivates and re-starts high-level infection before dying must be zero. To 

estimate these odds, a stochastic model is needed. An example of this type of calculation is 

given in Hill et al (123). Like the above calculation, the exact relationship between reservoir 
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size and probability of cure predicted from the stochastic model is highly dependent on 

estimates of the underlying parameter values.

What can viral dynamics tell us about the mechanism of action of new immunotherapies?

Another approach to treat and ideally cure HIV infection involves immunotherapies, which 

perturb the immune response to infection, either by boosting anti-viral immune responses or 

reversing infection-induced immune suppression (127). There are many types of 

immunotherapeutic agents, ranging from small-molecules that act on immune signaling 

pathways, to biologics like broadly neutralizing antibodies, checkpoint inhibitors, or 

vaccines, to cell therapies including chimeric antigen receptor T cells. These drugs are being 

examined alone or in combination with ART for their ability to promote either sterilizing or 

functional cures for HIV. Even in the few trials that have already been conducted, 

mathematical models are helping to understand the mechanism of these therapies.

In recent studies by Caskey et al (128) and Lu et al (129), the broadly neutralizing antibody 

(“bNAb”) 3BNC117 was administered to previously untreated HIV+ individuals. Broadly 

neutralizing antibodies bind and inhibit infection by a wide range of HIV strains with high 

potency. Similar to trials of antiretroviral therapy, the kinetics of viral decay can be 

examined in the context of viral dynamics models. However, unlike antiretroviral therapy, 

bNAbs may alter the clearance rate of virus or the lifespan of infected cells in addition to 

blocking new infection events. Therefore, decay curves may be more sensitive to the efficacy 

of the therapy and not just the underlying pre-treatment dynamics of infection. These studies 

found that viral load decay during 3BNC117 treatment was faster than that seen during ART, 

but much slower than the model predicted if the effect of the antibody was only to clear 

virus (129). However, if the model was augmented to include the ability of the antibody to 

mediate killing of infected cells, it could reproduce the observed kinetics. (Certain 

antibodies are capable of “antibody dependent cell-mediated cytotoxicity” or ADCC, 

whereby cells bound with antibody are lysed by cytotoxic immune cells). After this novel 

mechanism was suggested by modeling, detailed experiments were done in human cells in 

culture and in humanized mice to show that indeed 3BNC117 could lead to killing of 

infected cells. This preliminary study only administered a single infusion of antibody, which 

reduced viral load by ~1.5 log before antibody washed out and infection levels increased 

towards baseline. It remains to be seen whether repeated long-term treatment could lead to 

eventual control or whether viral rebound will always occur when the therapy is withdrawn.

Another way of administering immunotherapy for HIV is to give it in conjunction with 

antiretroviral therapy. The idea is that immunotherapy could help facilitate the clearance of 

latently infected cells that are stochastically or that immunotherapy could help prime the 

immune system in the presence of low-level antigen due to residual release from reservoirs. 

To test the efficacy of this strategy, all therapies are stopped, and viral load is monitored over 

time. When and if rebound occurs, the timing and kinetics can be used to understand the 

effect of treatment. Models suggest that different hypothetical treatment effects should lead 

to different alterations in rebound kinetics compared to the ART only case (Figure 8).

A few earlier studies conducted this type of “structured” or “analytic” treatment interruption 

and have provided proof of principle for using rebound as a measure of pre-interruption 
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infection status. In the AUTOVAC study, individuals on long-term suppressive ART 

underwent a series of consecutive treatment interruptions (46). During each interruption, 

viral loads rebounded, and once levels passed a threshold therapy was restarted for three 

months before another interruption. This study found that in the second and third 

interruptions, the rate of exponential increase in viral load was decreased compared to the 

first interruption (doubling time increased from 1.4 to 1.9 days), whereas the inferred initial 

level of viremia from which rebound started - which is directly related to the “reservoir” size 

and exit rate - was higher (by ~10-fold). These findings suggest that during later 

interruptions, the immune response may have been boosted compared to the first, which 

would be expected if the time between interruptions was short enough that some of the 

shorter-lived anti-viral immune response stimulated by the earlier interruptions persisted 

(long-lived memory cells from pre-treatment exist at all interruptions). They additionally 

suggest that the pool of cells contributing to rebound is increased at later interruptions. 

Although rebound after long-term ART is generally assumed to arise from reactivated 

latently infected cells, it is unlikely that these short interruptions substantially increased the 

reservoir size compared to everything that was seeded before initial therapy (130, 131). 

Instead it is more likely that the three months of treatment between interruptions was 

insufficient to clear intermediate-lifespan infected cells (132). These modeling findings 

agree with follow-up experimental work, which showed an increase in HIV-specific CD8 T 

cells during later interruptions (133).

A study conducted in SIV-infected rhesus macaques, a highly-representative animal model 

for infection that uses a virus closely related to HIV (134), examined the impact of the time 

of starting ART on later rebound (135). Therapy was started at a range of times between 3 

days and 2 weeks after infection, and then after 6 months treatment was withdrawn. All 

animals experienced viral rebound, but the kinetics differed between groups. We would 

expect that animals starting treatment earlier would have smaller latent reservoir sizes (less 

opportunity for seeding) and weaker anti-viral immune responses. Both experimental assays 

and fitting viral dynamics models to rebound trajectories supported these hypotheses: very 

early initiation of therapy lead to the steepest increase in viremia during rebound but the 

longest delay until the first detectable viral load, which are the predicted effects of lower 

rates of reservoir exit and decreased effective viral fitness (e.g. Figure 8).

Neither very early therapy initiation or repeated treatment interruptions are effective or 

scalable interventions, but these studies do provide a proof-of-concept that viral rebound 

kinetics are reflective of pre-interruption interventions and they have informed the analysis 

of two recent pre-clinical immunotherapy studies. The main drug of interest in these studies 

was an agonist of Toll-like receptor 7 (TLR7), which is involved in the innate immune 

system response to viral infections. In the first study, the TLR7-agonist was given to SIV-

infected macaques during suppressive ART, and later all treatments were stopped (136). 

Most animals rebounded in both treatment (TLR7+ART) and control (ART only) groups, 

and mathematical modeling of rebound kinetics showed that rebound trajectories were 

altered slightly in groups receiving the TLR7 agonist in a way that suggested a partial 

reduction in the latent reservoir along with alterations to target cell levels and viral immune-

responses (136). Consistent with these suggestions, many animals experienced transient 

increases in viral load during TLR7-agonist administration, despite ART, suggesting that this 
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therapy had an unexpected latency-reversing effect, and two of the thirteen animals in the 

intervention group never had detectable viremia after therapy cessation.

In a follow-up study (137), the TLR7 agonist was tested along with a therapeutic vaccine 

product (both given during ART). In some animals treated with the vaccine, with or without 

the TLR7-agonist, viremia rebounded rapidly to high levels but was then controlled to very 

low or completely undetectable levels. These dynamics are never produced by the basic viral 

dynamics model, which always leads to chronic infection. Alternative models were explored 

to explain the observations. A model that includes a population of cells belonging to the 

adaptive immune response which expand in response to viral antigen and act to reduce 

infection could explain the kinetics, and allowed for estimates of the relative contribution of 

reductions in the latent reservoir versus enhanced immunity in the altered kinetics (137). 

Overall, the modeling analysis suggested that the role of the vaccine was not in boosting 

clearance of latently infected cells prior to therapy interruption, but in creating an effective 

primed population of immune cells that do not exist in animals treated only with ART.

While these models have provided insight into treatment interruption trials was a way to 

evaluate HIV cure studies, there is significant room for improvement in future studies. A 

major limitation is the lack of detailed longitudinal data on levels and functionality of a 

panel of components of the immune response, which would allow modelers to conduct more 

formal hypothesis testing about potential mechanisms. The models used to explain these 

data are completely deterministic, whereas reactivation from latency, especially following 

reservoir-reducing interventions, may be highly stochastic (123, 138). They also only track a 

single strain of virus, but it’s possible that fitness differences between multiple strains that 

exit the reservoir and contribute to rebound, or that new strains that arise via mutation early 

in rebound contribute to viral and immunologic dynamics. For example, the number of 

antigenically distinct strains that reactivate may impact the chance of immune control. 

Another limitation is the uncertainty about the time it takes antiretroviral therapy to 

effectively “wash out” of the system after the last dose is taken. Hence the relative contribute 

of drug washout, waiting time to latent cell reactivation, and time for infection to grow to the 

detection limit are hard to separate, which limits the quantitative interpretation of reservoir 

reactivation rates estimated from models. Closer connections between modelers and 

experimentalists in the early-stage design of HIV cure trials will help ensure that 

mathematical model can be as informative as possible.

Conclusions

Mathematical models have been used to understand the dynamics of HIV within individual 

patients ever since the infection was first identified. These “viral dynamics” models have 

provided many important insights into infection and have been extensively used to 

characterize the response of HIV to antiretroviral therapy. They have elucidated the rapid 

turnover rate of virus-producing cells during infection, suggested the presence of long-lived 

latent cells that occasionally reactivate, and predict risks of the emergence of drug resistance 

during treatment. Now that research efforts are underway to find curative therapies for HIV, 

new models are being developed to help guide the development of these drugs, such as 

latency-reversing agents, anti-proliferative therapies, and immunotherapies. Models are 
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being used to interpret the kinetics of viral rebound when antiretroviral therapy is stopped 

and to predict the likelihood of cure under different investigational therapies.

Despite the many successes of viral dynamics models for HIV, there are still aspects of 

infection that cannot be reproduced with mechanistic mathematical models, highlighting the 

gaps in our understanding of HIV pathogenesis. For example, a unifying explanation for the 

long-term progression of infection and the development of AIDS is still lacking. HIV is a 

rapidly evolving infection and the population genetics of infection have been extensive 

characterized, but there is a general disconnect in the literature between viral dynamics 

models that incorporate evolution and analysis of viral sequence data. HIV dynamics are 

intricately connected to the population dynamics of lymphocytes, which can act as both prey 

and predators of the virus. However, most models of these populations are relatively 

heuristic and longitudinal functional data on these cell populations with which to compare 

models is rare. Much work remains to be done in the field of viral dynamics modeling of 

HIV. The development of next-generation methods to connect mechanistic models to high-

throughput biological data, and the rapid expansion in the classes of drugs that can be used 

to perturb infection, have the potential to close some of these gaps in our understanding of 

host-pathogen interactions for HIV.

Acknowledgements

We thank Alan Perelson and Fabian Cardozo for helpful discussions and feedback on the paper. This work was 
supported by NIH grants DP5OD019851, P01AI131385, P01AI131365, and 5P30AI060354-15, and Bill & 
Melinda Gates Foundation award OPP1148627.

References

1. UNAIDS (2017). Fact sheet - Latest statistics on the status of the AIDS epidemic.

2. Institute for Health Metrics and Evaluation (IHME) (2016). GBD Compare Data Visualization. 
Seattle, WA: IHME, University of Washington.

3. Faria NR, Rambaut A, Suchard MA, et al. The early spread and epidemic ignition of HIV-1 in 
human populations. Science 2014; 346: 56–61. [PubMed: 25278604] 

4. CDC. Pneumocystis Pneumonia --- Los Angeles. Morb. Mortal. Wkly. Rep. 1981; 30: 1–3.

5. Gallo RC, Montagnier L The Discovery of HIV as the Cause of AIDS. N. Engl. J. Med. 2003; 349: 
2283–2285. [PubMed: 14668451] 

6. FDA Approval of HIV Medicines. AIDSinfo.

7. Ribeiro RM, Qin L, Chavez LL, Li D, Self SG, Perelson AS. Estimation of the Initial Viral Growth 
Rate and Basic Reproductive Number during Acute HIV-1 Infection. J. Virol. 2010; 84: 6096–6102. 
[PubMed: 20357090] 

8. Robb ML, Eller LA, Kibuuka H, et al. Prospective Study of Acute HIV-1 Infection in Adults in East 
Africa and Thailand. N. Engl. J. Med. 2016; 374: 2120–2130. [PubMed: 27192360] 

9. Geskus RB, Prins M, Hubert J-B, et al. The HIV RNA setpoint theory revisited. Retrovirology 2007; 
4: 65. [PubMed: 17888148] 

10. Shankarappa R, Margolick JB, Gange SJ, et al. Consistent viral evolutionary changes associated 
with the progression of human immunodeficiency virus type 1 infection. J Virol 1999; 73: 10489–
10502. [PubMed: 10559367] 

11. Ganusov VV, Goonetilleke N, Liu MKP, et al. Fitness costs and diversity of CTL response 
determine the rate of CTL escape during the acute and chronic phases of HIV infection. J. Virol. 
2011;

Hill et al. Page 18

Immunol Rev. Author manuscript; available in PMC 2018 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Leviyang S, Ganusov VV. Broad CTL Response in Early HIV Infection Drives Multiple 
Concurrent CTL Escapes. PLOS Comput. Biol. 2015; 11: e1004492. [PubMed: 26506433] 

13. Mellors JW, Munoz A, Giorgi JV, et al. Plasma Viral Load and CD4+ Lymphocytes as Prognostic 
Markers of HIV-1 Infection. Ann Intern Med 1997; 126: 946–954. [PubMed: 9182471] 

14. Lee HY, Perelson AS, Park S-C, Leitner T Dynamic Correlation between Intrahost HIV-1 
Quasispecies Evolution and Disease Progression. PLoS Comput Biol 2008; 4: e1000240. 
[PubMed: 19079613] 

15. Otto SP, Day T, Day T A biologist’s guide to mathematical modeling in ecology and evolution. 
Princeton University Press, 2007.

16. Shubber Z, Mishra S, Vesga JF, Boily M-C The HIV Modes of Transmission model: a systematic 
review of its findings and adherence to guidelines. J. Int. AIDS Soc. 2014; 17:

17. Delva W, Wilson DP, Abu-Raddad L, et al. HIV treatment as prevention: principles of good HIV 
epidemiology modelling for public health decision-making in all modes of prevention and 
evaluation. PLoS Med. 2012; 9: e1001239. [PubMed: 22802729] 

18. Stover J Influence of Mathematical Modeling of HIV and AIDS on Policies and Programs in the 
Developing World. Sex. Transm. Dis. 2000; 27: 572. [PubMed: 11099072] 

19. Nowak MA, May RMC. Virus dynamics: mathematical principles of immunology and virology. 
Oxford University Press, USA, 2000.

20. Perelson AS. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2002; 2: 28–36. 
[PubMed: 11905835] 

21. Perelson AS, Ribeiro RM. Modeling the within-host dynamics of HIV infection. BMC Biol. 2013; 
11: 96. [PubMed: 24020860] 

22. Phillips AN. Reduction of HIV concentration during acute infection: independence from a specific 
immune response. Science 1996; 271: 497. [PubMed: 8560262] 

23. McLean AR, Nowak MA. Competition between zidovudine-sensitive and zidovudine-resistant 
strains of HIV. AIDS 1992; 6: 71. [PubMed: 1543568] 

24. Anderson RM, May RM. Infectious diseases of humans: dynamics and control. Oxford University 
Press, USA, 1991.

25. Macallan DC, Wallace D, Zhang Y, et al. Rapid Turnover of Effector–Memory CD4+ T Cells in 
Healthy Humans. J. Exp. Med. 2004; 200: 255–260. [PubMed: 15249595] 

26. Ramratnam B, Bonhoeffer S, Binley J, et al. Rapid production and clearance of HIV-1 and hepatitis 
C virus assessed by large volume plasma apheresis. The Lancet 1999; 354: 1782–1785.

27. De Boer RJ, Ribeiro RM, Perelson AS. Current Estimates for HIV-1 Production Imply Rapid Viral 
Clearance in Lymphoid Tissues. PLoS Comput Biol 2010; 6: e1000906. [PubMed: 20824126] 

28. Luo R, Piovoso MJ, Martinez-Picado J, Zurakowski R HIV Model Parameter Estimates from 
Interruption Trial Data including Drug Efficacy and Reservoir Dynamics. PLoS ONE 2012; 7: 
e40198. [PubMed: 22815727] 

29. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 
infection. Nature 1995; 373: 117–122. [PubMed: 7529365] 

30. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes 
in HIV-1 infection. Nature 1995; 373: 123–126. [PubMed: 7816094] 

31. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion 
clearance rate, infected cell life-span, and viral generation time. Science 1996; 271: 1582–1586. 
[PubMed: 8599114] 

32. Herz AVM, Bonhoeffer S, Anderson RM, May RM, Nowak MA. Viral dynamics in vivo: 
limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. 1996; 93: 
7247–7251. [PubMed: 8692977] 

33. Mittler JE, Sulzer B, Neumann AU, Perelson AS. Influence of delayed viral production on viral 
dynamics in HIV-1 infected patients. Math. Biosci. 1998; 152: 143–163. [PubMed: 9780612] 

34. Neagu IA, Olejarz J, Freeman M, Rosenbloom DIS, Nowak MA, Hill AL. Life cycle 
synchronization is a viral drug resistance mechanism. PLOS Comput. Biol. 2018; 14: e1005947. 
[PubMed: 29447150] 

Hill et al. Page 19

Immunol Rev. Author manuscript; available in PMC 2018 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Asquith B, Borghans JAM, Ganusov VV, Macallan DC. Lymphocyte kinetics in health and disease. 
Trends Immunol. 2009; 30: 182–189. [PubMed: 19286425] 

36. Boyman O, Létourneau S, Krieg C, Sprent J Homeostatic proliferation and survival of naïve and 
memory T cells. Eur. J. Immunol. 2009; 39: 2088–2094. [PubMed: 19637200] 

37. Anderson RW, Ascher MS, Sheppard HW. Direct HIV Cytopathicity Cannot Account for CD4 
Decline in AIDS in the Presence of Homeostasis: A Worst-Case Dynamic Analysis. J. Acquir. 
Immune Defic. Syndr. 1998; 17: 245–252.

38. Haase AT. Population Biology of HIV-1 Infection: Viral and CD4+ T Cell Demographics and 
Dynamics in Lymphatic Tissues. Annu. Rev. Immunol. 1999; 17: 625–656. [PubMed: 10358770] 

39. Yates A, Stark J, Klein N, Antia R, Callard R Understanding the Slow Depletion of Memory CD4+ 
T Cells in HIV Infection. PLoS Med 2007; 4: e177. [PubMed: 17518516] 

40. Althaus CL, De Boer RJ. Dynamics of Immune Escape during HIV/SIV Infection. PLoS Comput 
Biol 2008; 4: e1000103. [PubMed: 18636096] 

41. Conway JM, Perelson AS. Post-treatment control of HIV infection. Proc. Natl. Acad. Sci. 2015; 
112: 5467–5472. [PubMed: 25870266] 

42. Burg D, Rong L, Neumann AU, Dahari H Mathematical modeling of viral kinetics under immune 
control during primary HIV-1 infection. J. Theor. Biol. 2009; 259: 751–759. [PubMed: 19389409] 

43. STAFFORD MA, COREY L, CAO Y, DAAR ES, HO DD, PERELSON AS. Modeling Plasma 
Virus Concentration during Primary HIV Infection. J. Theor. Biol. 2000; 203: 285–301. [PubMed: 
10716909] 

44. Nowak MA, Anderson RM, McLean AR, Wolfs TF, Goudsmit J, May RM. Antigenic diversity 
thresholds and the development of AIDS. Science 1991; 254: 963–969. [PubMed: 1683006] 

45. Allen TM, Altfeld M, Geer SC, et al. Selective Escape from CD8+ T-Cell Responses Represents a 
Major Driving Force of Human Immunodeficiency Virus Type 1 (HIV-1) Sequence Diversity and 
Reveals Constraints on HIV-1 Evolution. J. Virol. 2005; 79: 13239–13249. [PubMed: 16227247] 

46. Ruiz L, Martinez-Picado J, Romeu J, et al. Structured treatment interruption in chronically HIV-1 
infected patients after long-term viral suppression. AIDS 2000; 14: 397. [PubMed: 10770542] 

47. Davey Jr RT, Bhat N, Yoder C, et al. HIV-1 and T cell dynamics after interruption of highly active 
antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl 
Acad Sci USA 1999; 96: 15109–15114. [PubMed: 10611346] 

48. Finzi D, Hermankova M, Pierson T, et al. Identification of a Reservoir for HIV-1 in Patients on 
Highly Active Antiretroviral Therapy. Science 1997; 278: 1295–1300. [PubMed: 9360927] 

49. Siliciano JD, Kajdas J, Finzi D, et al. Long-term follow-up studies confirm the stability of the 
latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 2003; 9: 727–728. [PubMed: 
12754504] 

50. Crooks AM, Bateson R, Cope AB, et al. Precise Quantitation of the Latent HIV-1 Reservoir: 
Implications for Eradication Strategies. J. Infect. Dis. 2015; jiv218.

51. Joos B, Fischer M, Kuster H, et al. HIV rebounds from latently infected cells, rather than from 
continuing low-level replication. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 16725–16730. 
[PubMed: 18936487] 

52. Kearney MF, Wiegand A, Shao W, et al. Origin of Rebound Plasma HIV Includes Cells with 
Identical Proviruses that are Transcriptionally Active Before Stopping Antiretroviral Therapy. J. 
Virol. 2015;

53. Siliciano JD, Siliciano RF. The latent reservoir for HIV-1 in resting CD4+ T cells: a barrier to cure. 
Curr. Opin. HIV AIDS 2006; 1: 121–128. [PubMed: 19372795] 

54. Hill AL (2017). Mathematical Models of HIV Latency. HIV Latency, 1–26.

55. Perelson AS, Essunger P, Cao Y, et al. Decay characteristics of HIV-1-infected compartments 
during combination therapy. Nature 1997; 387: 188–191. [PubMed: 9144290] 

56. Markowitz M, Louie M, Hurley A, et al. A Novel Antiviral Intervention Results in More Accurate 
Assessment of Human Immunodeficiency Virus Type 1 Replication Dynamics and T-Cell Decay 
In Vivo. J. Virol. 2003; 77: 5037–5038. [PubMed: 12663814] 

Hill et al. Page 20

Immunol Rev. Author manuscript; available in PMC 2018 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



57. Andrade A, Rosenkranz SL, Cillo AR, et al. Three Distinct Phases of HIV-1 RNA Decay in 
Treatment-Naive Patients Receiving Raltegravir-Based Antiretroviral Therapy: ACTG A5248. J. 
Infect. Dis. 2013; 208: 884–891. [PubMed: 23801609] 

58. Cardozo EF, Andrade A, Mellors JW, Kuritzkes DR, Perelson AS, Ribeiro RM. Treatment with 
integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of 
cells with slow integration. PLOS Pathog. 2017; 13: e1006478. [PubMed: 28678879] 

59. Palmer S, Maldarelli F, Wiegand A, et al. Low-level viremia persists for at least 7 years in patients 
on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 3879–3884. 
[PubMed: 18332425] 

60. Spivak A, Rabi A, McMahon MA, et al. Dynamic Constraints on the Second Phase Compartment 
of HIV-infected Cells. AIDS Res. Hum. Retroviruses 2010;

61. Zhang J, Perelson AS. Contribution of follicular dendritic cells to persistent HIV viremia. J. Virol. 
2013; 87: 7893–7901. [PubMed: 23658450] 

62. Arnaout RA, Nowak MA, Wodarz D HIV-1 dynamics revisited: biphasic decay by cytotoxic T 
lymphocyte killing? Proc. R. Soc. B Biol. Sci. 2000; 267: 1347–1354.

63. Sedaghat AR, Dinoso JB, Shen L, Wilke CO, Siliciano RF. Decay dynamics of HIV-1 depend on 
the inhibited stages of the viral life cycle. Proc. Natl. Acad. Sci. 2008; 105: 4832. [PubMed: 
18362342] 

64. Sedaghat AR, Siliciano RF, Wilke CO. Constraints on the Dominant Mechanism for HIV Viral 
Dynamics in Patients on Raltegravir. Antivir. Ther. 2009; 14: 263–271. [PubMed: 19430101] 

65. Murray JM, Emery S, Kelleher AD, et al. Antiretroviral therapy with the integrase inhibitor 
raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS Lond. Engl. 
2007; 21: 2315–2321.

66. Andrade A, Guedj J, Rosenkranz SL, et al. Early HIV RNA decay during raltegravir-containing 
regimens exhibits two distinct subphases (1a and 1b). AIDS 2015; 29: 2419–2426. [PubMed: 
26558541] 

67. Shen L, Peterson S, Sedaghat AR, et al. Dose-response curve slope sets class-specific limits on 
inhibitory potential of anti-HIV drugs. Nat. Med. 2008; 14: 762–766. [PubMed: 18552857] 

68. Bonhoeffer S, May RM, Shaw GM, Nowak MA. Virus dynamics and drug therapy. Proc Natl Acad 
Sci USA 1997; 94: 6971–6976. [PubMed: 9192676] 

69. Zhang H, Zhou Y, Alcock C, et al. Novel Single-Cell-Level Phenotypic Assay for Residual Drug 
Susceptibility and Reduced Replication Capacity of Drug-Resistant Human Immunodeficiency 
Virus Type 1. J Virol 2004; 78: 1718–1729. [PubMed: 14747537] 

70. Hill A The possible effects of the aggregation of the molecules of haemoglobin on its dissociation 
curves. J. Physiol. 1910; 40: iv–vii.

71. Stefan MI, Novère NL. Cooperative Binding. PLOS Comput. Biol. 2013; 9: e1003106. [PubMed: 
23843752] 

72. Shen L, Rabi SA, Sedaghat AR, et al. A Critical Subset Model Provides a Conceptual Basis for the 
High Antiviral Activity of Major HIV Drugs. Sci. Transl. Med. 2011; 3: 91ra63.

73. Rosenbloom DIS, Hill AL, Rabi SA, Siliciano RF, Nowak MA. Antiretroviral dynamics 
determines HIV evolution and predicts therapy outcome. Nat. Med. 2012; 18: 1378–1385. 
[PubMed: 22941277] 

74. WHO HIV drug resistance report 2017.

75. Sampah MES, Shen L, Jilek BL, Siliciano RF. Dose-response curve slope is a missing dimension 
in the analysis of HIV-1 drug resistance. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 7613–7618. 
[PubMed: 21502494] 

76. Melnyk AH, Wong A, Kassen R The fitness costs of antibiotic resistance mutations. Evol. Appl. 
2015; 8: 273–283. [PubMed: 25861385] 

77. Constant RH ffrench-, Bass C Does resistance really carry a fitness cost? Curr. Opin. Insect Sci. 
2017; 21: 39–46. [PubMed: 28822487] 

78. Gimode WR, Kiboi DM, Kimani FT, Wamakima HN, Burugu MW, Muregi FW. Fitness cost of 
resistance for lumefantrine and piperaquine-resistant Plasmodium berghei in a mouse model. 
Malar. J. 2015; 14: 38. [PubMed: 25627576] 

Hill et al. Page 21

Immunol Rev. Author manuscript; available in PMC 2018 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



79. Szakács G, Hall MD, Gottesman MM, et al. Targeting the Achilles Heel of Multidrug-Resistant 
Cancer by Exploiting the Fitness Cost of Resistance. Chem. Rev. 2014; 114: 5753–5774. 
[PubMed: 24758331] 

80. Mikaberidze A & McDonald BA (2015). Fitness Cost of Resistance: Impact on Management. 
Fungicide Resistance in Plant Pathogens, 77–89.

81. Shafer RW. Rationale and Uses of a Public HIV Drug‐Resistance Database. J. Infect. Dis. 2006; 
194: S51–S58. [PubMed: 16921473] 

82. Perelson AS, Essunger P, Ho DD. Dynamics of HIV-1 and CD4+ lymphocytes in vivo. AIDS 1997; 
11 Suppl A: S17–24. [PubMed: 9451962] 

83. Colgrove R, Japour A A combinatorial ledge: reverse transcriptase fidelity, total body viral burden, 
and the implications of multiple-drug HIV therapy for the evolution of antiviral resistance. 
Antiviral Res. 1999; 41: 45–56. [PubMed: 10321578] 

84. Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface 
perspective. Pharmacol. Rev. 1995; 47: 331–385. [PubMed: 7568331] 

85. Jilek BL, Zarr M, Sampah ME, et al. A quantitative basis for antiretroviral therapy for HIV-1 
infection. Nat. Med. 2012; 18: 446–451. [PubMed: 22344296] 

86. Wood K, Nishida S, Sontag ED, Cluzel P Mechanism-independent method for predicting response 
to multidrug combinations in bacteria. Proc. Natl. Acad. Sci. 2012; 109: 12254–12259. [PubMed: 
22773816] 

87. Wood KB, Wood KC, Nishida S, Cluzel P Uncovering Scaling Laws to Infer Multidrug Response 
of Resistant Microbes and Cancer Cells. Cell Rep. 2014; 6: 1073–1084. [PubMed: 24613352] 

88. Zimmer A, Katzir I, Dekel E, Mayo AE, Alon U Prediction of multidimensional drug dose 
responses based on measurements of drug pairs. Proc. Natl. Acad. Sci. 2016; 113: 10442–10447. 
[PubMed: 27562164] 

89. Wahl LM, Nowak MA. Adherence and drug resistance: predictions for therapy outcome. Proc. R. 
Soc. B Biol. Sci. 2000; 267: 835–843.

90. Wu H, Huang Y, Acosta EP, et al. Modeling long-term HIV dynamics and antiretroviral response: 
effects of drug potency, pharmacokinetics, adherence, and drug resistance. J. Acquir. Immune 
Defic. Syndr. 1999 2005; 39: 272–283.

91. Dixit NM, Perelson AS. Complex patterns of viral load decay under antiretroviral therapy: 
influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 2004; 226: 95–109. 
[PubMed: 14637059] 

92. Kleist M von, Menz S, Huisinga W Drug-Class Specific Impact of Antivirals on the Reproductive 
Capacity of HIV. PLOS Comput. Biol. 2010; 6: e1000720. [PubMed: 20361047] 

93. Ke R, Loverdo C, Qi H, Sun R, Lloyd-Smith JO. Rational Design and Adaptive Management of 
Combination Therapies for Hepatitis C Virus Infection. PLoS Comput Biol 2015; 11: e1004040. 
[PubMed: 26125950] 

94. Koizumi Y, Ohashi H, Nakajima S, et al. Quantifying antiviral activity optimizes drug 
combinations against hepatitis C virus infection. Proc. Natl. Acad. Sci. 2017; 114: 1922–1927. 
[PubMed: 28174263] 

95. Schiffer JT, Swan DA, Magaret A, et al. Mathematical modeling of herpes simplex virus-2 
suppression with pritelivir predicts trial outcomes. Sci. Transl. Med. 2016; 8: 324ra15.

96. Cadosch D, Abel Zur Wiesch P, Kouyos R, Bonhoeffer S The Role of Adherence and Retreatment 
in De Novo Emergence of MDR-TB. PLoS Comput. Biol. 2016; 12: e1004749. [PubMed: 
26967493] 

97. Cadosch D, Bonhoeffer S, Kouyos R Assessing the impact of adherence to anti-retroviral therapy 
on treatment failure and resistance evolution in HIV. J. R. Soc. Interface 2012; 9: 2309–2320. 
[PubMed: 22417909] 

98. Bershteyn A, Eckhoff PA. A model of HIV drug resistance driven by heterogeneities in host 
immunity and adherence patterns. BMC Syst. Biol. 2013; 7: 11. [PubMed: 23379669] 

99. Duwal S, Kleist M von. Top-down and bottom-up modeling in system pharmacology to understand 
clinical efficacy: An example with NRTIs of HIV-1. Eur. J. Pharm. Sci. 2016; 94: 72–83.

Hill et al. Page 22

Immunol Rev. Author manuscript; available in PMC 2018 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



100. Sanche S, Sheehan N, Mesplède T, Wainberg MA, Li J, Nekka F A Mathematical Model to 
Predict HIV Virological Failure and Elucidate the Role of Lymph Node Drug Penetration. CPT 
Pharmacomet. Syst. Pharmacol. 2017;

101. Margolis DA, Boffito M Long-acting antiviral agents for HIV treatment. Curr. Opin. HIV AIDS 
2015; 10: 246–252. [PubMed: 26049949] 

102. Kirtane AR, Abouzid O, Minahan D, et al. Development of an oral once-weekly drug delivery 
system for HIV antiretroviral therapy. Nat. Commun. 2018; 9: 2. [PubMed: 29317618] 

103. UNAIDS (2017). Ending AIDS: progress towards the 90–90–90 targets.

104. Deeks SG, Lewin SR, Ross AL, et al. International AIDS Society global scientific strategy: 
towards an HIV cure 2016. Nat. Med. 2016; 22: 839–850. [PubMed: 27400264] 

105. Deeks SG, Autran B, Berkhout B, et al. Towards an HIV cure: a global scientific strategy. Nat. 
Rev. Immunol. 2012; 12: 607–614. [PubMed: 22814509] 

106. Hill AL. Modeling HIV persistence and cure studies. Curr. Opin. HIV AIDS 2018; In Press:

107. Margolis DM, Archin NM. Proviral Latency, Persistent Human Immunodeficiency Virus 
Infection, and the Development of Latency Reversing Agents. J. Infect. Dis. 2017; 215: S111–
S118. [PubMed: 28520964] 

108. Ho Y-C, Shan L, Hosmane NN, et al. Replication-Competent Noninduced Proviruses in the 
Latent Reservoir Increase Barrier to HIV-1 Cure. Cell 2013; 155: 540–551. [PubMed: 24243014] 

109. Eriksson S, Graf EH, Dahl V, et al. Comparative Analysis of Measures of Viral Reservoirs in 
HIV-1 Eradication Studies. PLoS Pathog 2013; 9: e1003174. [PubMed: 23459007] 

110. Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How 
Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. J. Immunol. 2016; 
197: 407–417. [PubMed: 27382129] 

111. Zyl G van, Bale MJ, Kearney MF. HIV evolution and diversity in ART-treated patients. 
Retrovirology 2018; 15: 14. [PubMed: 29378595] 

112. Maldarelli F The role of HIV integration in viral persistence: no more whistling past the proviral 
graveyard. J. Clin. Invest. 2016; 126: 438–447. [PubMed: 26829624] 

113. Wagner TA, McLaughlin S, Garg K, et al. Proliferation of cells with HIV integrated into cancer 
genes contributes to persistent infection. Science 2014; 345: 570–573. [PubMed: 25011556] 

114. Maldarelli F, Wu X, Su L, et al. Specific HIV integration sites are linked to clonal expansion and 
persistence of infected cells. Science 2014; 345: 179–183. [PubMed: 24968937] 

115. Cohn LB, Silva IT, Oliveira TY, et al. HIV-1 Integration Landscape during Latent and Active 
Infection. Cell 2015; 160: 420–432. [PubMed: 25635456] 

116. Wang Z, Gurule EE, Brennan TP, et al. Expanded cellular clones carrying replication-competent 
HIV-1 persist, wax, and wane. Proc. Natl. Acad. Sci. 2018; 201720665.

117. Stockenstrom S von, Odevall L, Lee E, et al. Longitudinal Genetic Characterization Reveals That 
Cell Proliferation Maintains a Persistent HIV Type 1 DNA Pool During Effective HIV Therapy. 
J. Infect. Dis. 2015; 212: 596–607. [PubMed: 25712966] 

118. Lee GQ, Orlova-Fink N, Einkauf K, et al. Clonal expansion of genome-intact HIV-1 in 
functionally polarized Th1 CD4+ T cells. J. Clin. Invest. 2017; 127: 2689–2696. [PubMed: 
28628034] 

119. Hiener B, Horsburgh BA, Eden J-S, et al. Identification of Genetically Intact HIV-1 Proviruses in 
Specific CD4+ T Cells from Effectively Treated Participants. Cell Rep. 2017; 21: 813–822. 
[PubMed: 29045846] 

120. Choudhary SK, Margolis DM. Curing HIV: Pharmacologic Approaches to Target HIV-1 Latency. 
Annu. Rev. Pharmacol. Toxicol. 2011; 51: 397–418. [PubMed: 21210747] 

121. Reeves DB, Duke ER, Hughes SM, Prlic M, Hladik F, Schiffer JT. Anti-proliferative therapy for 
HIV cure: a compound interest approach. Sci. Rep. 2017; 7: 4011. [PubMed: 28638104] 

122. Petravic J, Rasmussen TA, Lewin SR, Kent SJ, Davenport MP. Relationship between measures of 
HIV reactivation and the decline of latent reservoir under latency-reversing agents. J. Virol. 2017;

123. Hill AL, Rosenbloom DIS, Fu F, Nowak MA, Siliciano RF. Predicting the outcomes of treatment 
to eradicate the latent reservoir for HIV-1. Proc. Natl. Acad. Sci. 2014; 111: 13475–13480. 
[PubMed: 25097264] 

Hill et al. Page 23

Immunol Rev. Author manuscript; available in PMC 2018 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



124. Rasmussen TA, Tolstrup M, Brinkmann CR, et al. Panobinostat, a histone deacetylase inhibitor, 
for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 
1/2, single group, clinical trial. Lancet HIV 2014; 1: e13–e21. [PubMed: 26423811] 

125. Søgaard OS, Graversen ME, Leth S, et al. The Depsipeptide Romidepsin Reverses HIV-1 Latency 
In Vivo. PLoS Pathog 2015; 11: e1005142. [PubMed: 26379282] 

126. Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency 
in patients on antiretroviral therapy. Nature 2012; 487: 482–485. [PubMed: 22837004] 

127. Routy J-P, Mehraj V, Cao W HIV immunotherapy comes of age: implications for prevention, 
treatment and cure. Expert Rev. Clin. Immunol. 2016; 12: 91–94. [PubMed: 26629806] 

128. Caskey M, Klein F, Lorenzi JCC, et al. Viraemia suppressed in HIV-1-infected humans by 
broadly neutralizing antibody 3BNC117. Nature 2015; 522: 487–491. [PubMed: 25855300] 

129. Lu C-L, Murakowski DK, Bournazos S, et al. Enhanced clearance of HIV-1-infected cells by anti-
HIV-1 broadly neutralizing antibodies in vivo. Science 2016; 352: 1001–1004. [PubMed: 
27199430] 

130. Clarridge KE, Blazkova J, Einkauf K, et al. Effect of analytical treatment interruption and 
reinitiation of antiretroviral therapy on HIV reservoirs and immunologic parameters in infected 
individuals. PLOS Pathog. 2018; 14: e1006792. [PubMed: 29324842] 

131. Strongin Z, Sharaf R, VanBelzen DJ, et al. Effect of Short-Term Antiretroviral Therapy 
Interruption on Levels of Integrated HIV DNA. J. Virol. 2018; 92:

132. Blankson JN, Finzi D, Pierson TC, et al. Biphasic decay of latently infected CD4+ T cells in acute 
human immunodeficiency virus type 1 infection. J. Infect. Dis. 2000; 182: 1636–1642. [PubMed: 
11069234] 

133. Ruiz L, Carcelain G, Martínez-Picado J, et al. HIV dynamics and T-cell immunity after three 
structured treatment interruptions in chronic HIV-1 infection. AIDS 2001; 15: F19–F27. 
[PubMed: 11416734] 

134. Apetrei C, Pandrea I, Mellors JW. Nonhuman Primate Models for HIV Cure Research. PLOS 
Pathog 2012; 8: e1002892. [PubMed: 22956905] 

135. Whitney JB, Hill AL, Sanisetty S, et al. Rapid seeding of the viral reservoir prior to SIV viraemia 
in rhesus monkeys. Nature 2014; 512: 74–77. [PubMed: 25042999] 

136. Lim S-Y, Osuna CE, Hraber PT, et al. TLR7 agonists induce transient viremia and reduce the viral 
reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci. Transl. Med. 2018; 10: 
eaao4521. [PubMed: 29720451] 

137. Borducchi EN, Cabral C, Stephenson KE, et al. Ad26/MVA therapeutic vaccination with TLR7 
stimulation in SIV-infected rhesus monkeys. Nature 2016; 540: 284–287. [PubMed: 27841870] 

138. Pinkevych M, Cromer D, Tolstrup M, et al. HIV Reactivation from Latency after Treatment 
Interruption Occurs on Average Every 5–8 Days—Implications for HIV Remission. PLoS Pathog 
2015; 11: e1005000. [PubMed: 26133551] 

Hill et al. Page 24

Immunol Rev. Author manuscript; available in PMC 2018 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Some features of the natural history of HIV infection. A) Approximate time course of HIV 

infection, with estimates of kinetics of viral load and CD4 count taken from longitudinal 

studies of acute or chronic infection (8, 10, 13). B) Typical time course of diversity (average 

pairwise distance between sequences) and divergence (percent genetic distance from first 

detected virus) of viral populations over the course of infection, with rates taken from 

Shankarappa et al (10). C) Maximum likelihood phylogenetic tree for viral sequences 

sampled over six years of infection (image taken from (14) under CCBY license, created 

with data from Patient 6 in (10)).
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Figure 2: 
The basic viral dynamics model for HIV. A) Diagram of the variables and reactions tracked 

by the model, as described in the text. B-C) Example time course of viral loads (B) and CD4 

counts (C) from the model, starting from initial infection, for 30 days before 10 days of 

antiretroviral therapy. We assume that therapy changes β. As long as therapy leads to R0 < 1, 

the decay slope is not very sensitive to the treatment efficacy. Parameters for the model 

were: λ = 100 cells/uL/day, β = 3×10−7 /(virus/mL)/day, dT= 0.1/day, dI = 1/day, k=250 

virus/cell/day, c=25/day. For these parameter values R0 =3. With treatment, β → β (1 − ϵ) 

where ϵ is the treatment efficacy. The initial condition for was T(0)= λ/dT, I(0)= 10−3 

cell/uL/day, V(0)=0.
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Figure 3: 
Multi-phasic viral load decay under antiretroviral therapy suggests more complex infection 

dynamics. A) A schematic of an augmented viral dynamics model that has emerged from 

various studies of viral load dynamics during therapy (55–59, 66, 68). Most drugs inhibit the 

ability of virus to infect new cells (red X). Two separate populations of target cells are 

hypothesized to exist, with the second type (T2, I2) being longer lived and proceeding to 

integrate virus more slowly. Infected cells of either type can be divided up into those who 

have not yet completed the phase of the viral lifecycle where integration occurs 

(“Immature”, Ii), and those who have (“Mature”, M), which allows investigation of different 

dynamics in the presence and absence of integrase inhibitor drugs (green X). Some infected 

cells transition to an extremely long-lived latent state (L). B) Viral load decay with and 

without integrase inhibitors (II) (commonly used alternative drugs are protease inhibitors 

(PI) and non-nucleoside reverse transcriptase inhibitors (NNRTI)). Labels above phases of 

decay show the parameter combinations responsible for each phase.C) Dynamics of the 

different infected cell combinations predicted by the model. Dotted vs dashed lines have 

same meaning as in B. The model was created by combining conclusions from various 

papers. Values for parameters are also taken approximately from these studies: λ1= 100 

cells/uL/day, β = 3×10−7 /(virus/mL)/day, dT1
= 0.1/day, dI1

 = 0.36/day, m1= 2.6/day, λ2= 1 

cells/uL/day, dT2
= 0.01/day, dI2

 = 0.02/day, m2= 0.02/day, f = 10−2, a = 4×10−4/day, dL 

=10−4/day, dm= 1/day, k=250 virus/cell/day, c=25/day. With treatment with NNRTI or PI, β 
→ 0, and for treatment with II, m → m (1 − ω) and the treatment efficacy where ω=0.95.
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Figure 4: 
Effects of antiretroviral drugs on viral infectivity. A) Dose-response curves measured in 

single-round ex vivo assays for the integrase inhibitor raltegravir (RAL, IC50=0.015 uM, 

m=1) and the protease inhibitor atazanavir (ATV, IC50=0.015, m=2.9). The assay measures 

fu (Eq. 4), the fraction of uninhibited infections compared to the absence of drug, and we 

scale this up to effective basic reproductive number by multiplying by drug free R0 =10. 

Below R0 =1 infection be controlled. B) Same as A but plotted on log-log scale to highlight 

differences in suppression between drugs at clinically-relevant concentrations. The thicker 

regions on the lines are drug levels between the typical peak and trough concentrations when 

drug is taken daily with perfect adherence. C) Dose-response curves for wildtype (blue) and 

the K103N mutant (red) for the NNRTI nevirapine (NVP). Red shaded area is the “mutant 

selection window”, the range of drug concentrations where a resistant strain could 

outcompete wildtype and cause treatment failure. Parameters taken from (67, 73).
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FIGURE 5: 
An augmented viral dynamics model can be used to simulate antiretroviral therapy and the 

evolution of drug resistance. A) Basic viral dynamics model with the addition of a 

population of latently infected cells. A separate strain of virus, and the cells it infects, can be 

tracked for each genotype (Vi, Ii, Li). B) Drug levels over time for a pill taken daily, and 

assumed to increase to maximum concentration immediately afterwards then decay 

exponentially. Each dose is taken with a 70% probability. C) Basic reproductive number over 

time as a function of drug levels. D) Levels of wild type and resistant virus over time. At 
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time zero there is no resistant strain, but it is produced via mutation from the wild type at the 

point indicated by the red star. Drug parameters: IC50 =1, Cmax = 100, m=1, half-life=6 

hours. The resistant mutant has a 10-fold increase in IC50 and a 2-fold decrease in baseline 

fitness. Baseline R0 = 10.
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FIGURE 6: 
Schematic of the barriers to HIV cure and conceptual approaches to cure. Combination ART 

rapidly suppresses viral loads (solid red) to below clinical detection limits, but low level 

viremia released from long-lived latently infected cells continues. Whenever therapy is 

stopped, viral load rebounds (solid red). “Sterilizing cure” approaches aim to reduce or 

completely clear the latent reservoir, or render cells in it incapable of reactivating (possible 

infection scenario shown in bottom red dotted line). “Functional cure” approaches aim to 

equip the body with the ability to control reactivating infection before full-blown rebound 

occurs (effectively by reducing R0<1) (three possible control scenarios shown in red dotted 

lines).
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Figure 7: 
Dynamics of the latent reservoir during antiretroviral therapy in response to hypothetical 

treatments. A) Diagram of the three main processes thought to impact the population of 

latently infected cells during therapy: cell proliferation (p), reactivation (a), and death (d). 

B/C). Changes in the half-life of the latent reservoir when therapies are administered that 

perturb one of the parameters. Calculated using Equation 6, where half-life = log(2)/δ, δ = d
+a-p. Baseline parameter values, taken from Reeves et al, are a*=5.7×10−5/day, p*=0.015/

day, and d*=0.0155/day, δ= 5.2e-4/day, half-life = 44 months or 3.7 years (yellow lines). 

Red and blue lines are for alternate parameter sets. B) Hypothetical therapy that increases 

the activation rate (a) of latently infected cells during ART. When pre-therapy a is varied (to 

10a* or a*/10), p is kept constant at p* but d is adjusted to keep δ the same. C) Hypothetical 

therapy that decreases the proliferation rate (p) of latently infected cells during ART. When 

pre-therapy p is varied (to 10p* or p*/10), a is kept constant at a* but d is adjusted to keep δ 
the same. D/E) Comparison of the relative magnitude of dynamic rates for the corresponding 

scenarios in the figure above. The height of the bar is proportional to the log10 of the value 

of the rate. The bar above the horizontal axis represents the process that contributes to 

reservoir increase (“gain rate”, p) whereas bars below are processes that contribute to 

reservoir decay (“loss rate”, a, d).
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Figure 8: 
Modeling viral rebound following ART and immunotherapy. A) Design of a study in which 

two novel immunotherapies, a TLR7-agonist and a therapeutic vaccine (Ad26/MVA), where 

administered during ART treatment of SIV-infected rhesus macaques, followed by a 

treatment interruption (137). The time course of viral loads for one example animal is 

shown. B) A mathematical model of viral dynamics augmented to include an anti-viral 

immune response that is stimulated in a viral-load dependent way. C) Example time courses 

of viral load for one animal from each treatment group, along with fits to the model. Each 

animal was fit to the model individually in a Bayesian framework (with six estimated 

parameters), and maximum a posteriori values for each parameter were used to plot the 

results. D) Group mean values (for 8-9 animals per group) and standard deviations of two 

parameters that displayed significant variation between groups.
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