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SUMMARY:

Introduction: Invasive fungal infections (IFI) are associated with high morbidity and mortality. 

A better method of risk stratifying trauma patients for combat-related IFI is needed to improve 

clinical outcomes while minimizing morbidity related to overtreatment. We sought to develop 

combat-related IFI clinical decision support (CDS) tools to assist providers make treatment 

decisions both near the point of injury and subsequently at definitive treatment centers.
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Materials and Methods: We utilized a training dataset containing information from 227 

combat-injured military personnel to build a Bayesian Belief Network (BBN) to predict the 

likelihood of developing IFI using information available at the point of initial resuscitation 

(THEATER model) and in the tertiary care setting (MEDCEN model). After selecting BBN 

models, external validation used a separate test dataset of 350 wounded warriors. Furthermore, the 

performance of the BBN models was compared to a “two-rule model” alone (based on physician 

experience), and combinations of the BBN models plus the two-rule model. The two-rule model 

contains plausible IFI criteria, but it has not been formally evaluated, and they are not currently 

actual clinical guidelines.

Results: We found receiver operating characteristic areas under the curve (AUC) of 0.70 (95% 

CI: [0.62, 0.77]) and 0.68 (95% CI: [0.59, 0.76] ) for the THEATER and MEDCEN BBN models, 

respectively, on cross-validation. External validation with the highest-AUC BBN models produced 

THEATER AUC of 0.68 (95% CI:[0.58, 0.78]) and MEDCEN AUC of 0.67 (95% CI: [0.57, 

0.78]). With the incorporation of the two-rule model in low IFI-prevalence populations, external 

validation AUC increased to 0.77 (95% CI:[0.69, 0.84]) for the THEATER model and 0.76 (95% 

CI:[0.68, 0.85]) for the LRMC model. The two-rule model alone has an AUC of 0.72 (95% CI: 

[0.63, 0.81])

Conclusions: Overall, the IFI tools produced clinically useful, robust models. However, the 

clinical utility of these models is highly dependent upon the clinician’s individual risk tolerance. 

The threshold probability for optimal clinical use of this CDS tool is currently being evaluated in 

an ongoing clinical utilization study. CDS tools, such as these, may facilitate early diagnosis of 

patients with or at risk for IFI, permitting early or prophylactic treatment with the aim of 

improving outcomes.
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INTRODUCTION

During the recent military conflict in Afghanistan, invasive fungal wound infection (IFI) 

emerged as an infectious complication with surprising incidence (7%) and high morbidity 

and mortality (8%) among severely injured military personnel.1,2 Devastating mortality rates 

as high as 38–96% have also been reported in civilian trauma and medical populations.3,4 A 

primary characteristic of this disease is recurrent tissue necrosis within the wound despite 

serial surgical débridements, straining valuable healthcare resources while adding 

continuous physiologic insult to severely injured patients. Indeed, combat casualites who 

develop IFIs have significantly more surgical amputations and proximal amputation 

revisions, a greater number of operative visits, higher proportion of bacterial co-infections, 

and a longer duration to initial surgical wound closure post-injury compared to patients 

without the disease.5 Sustaining a blast injury on foot patrol, traumatic transfemoral 

amputation, and/or requiring massive (>20 units) blood product transfusions during the first 

24 hours post-injury were identified to be independent IFI risk factors.6 Treatment 

recommendations center on aggressive and frequent débridements and early initiation of 

antifungal therapy when there is a high suspicion of IFI.1 However, if we are to prescribe 
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early and aggressive treatment in a reliable and consistent manner and avoid unnecessary 

systemic complications of overtreatment, a method to estimate the likelihood of IFI using 

patient- and injury-specific information is required.

In response to the 1999 Institute of Medicine report ‘To Err is Human’,7 the U.S. healthcare 

industry witnessed a steady rise in use of clinical decision support (CDS) tools, and with it, a 

corresponding improvement in patient outcomes.8,9 Like other CDS tools, one developed to 

identify acutely traumatized patients at risk for IFI must be designed to assist providers at 

the point of care. The purpose of this manuscript is to present our findings with regard to the 

development, internal validation, and external validation of such a tool designed to estimate 

the likelihood of IFI using information available shortly after injury. We believe our strategy 

has robust applicability across those disciplines requiring complex decision-making such as 

trauma, critical care, and transplant.

METHODS

Following Institutional Review Board approval, we queried two separate databases 

containing deployment-related traumatic injury records managed by the Infection Disease 

Clinical Research Program – Trauma Infection Disease Outcomes Study (TIDOS) data, 

collected during Operations Enduring Freedom and Iraqi Freedom.

We selected 77 records containing a definite or probable diagnosis of IFI (cases) from June 

2009 to August 2011 and 150 non-IFI control subjects (controls) from within the same time 

period using criteria previously described.6,10 These 227 records served as the training set. 

Table 1 shows the complete list of 65 variables (or features) contained in each record. The 

injury data in this table includes data acquired in theater, at the Landstuhl Regional Medical 

Center (MEDCEN), and military hospitals in the United States after evacuation. A limitation 

of this dataset is that there is no variable that indicates specifically when IFI was diagnosed. 

Using these data, we created models that could be used to guide treatment in two settings: at 

point of injury (THEATER model), and at the first military hospital following medevac from 

Afghanistan to MEDCEN. Data that would have been available to physicians during the 

initial debridement(s) in theater were used to train the THEATER models, and data available 

to physicians at MEDCEN were used to train the MEDCEN models. We also experimented 

with adding a two-rule model–derived from the original 66-variable feature set—to the 

implementation of these models.

Feature Selection and Model Development

Of the 227 training records, 77 (34%) developed IFI. During the feature selection process, 

we excluded those that served as proxies for other features, due to the fact that they would 

confound the Bayesian model by including variables known to be highly correlated. We 

further excluded variables where data was missing in greater than 25% of records. For the 

THEATER model, we also excluded data that would not be acquired until admission to 

hospitals in the United States. This left 23 candidate features for inclusion in the THEATER 

model and 35 candidate features for inclusion in the MEDCEN model (see Table 1 for 

variable inclusion lists). This variable set included six Sequential Organ Failure Assessment 

(SOFA) scores. These scores are used to evaluate a patient during an intensive care unit stay. 
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We summed all individual SOFA11 scores to create one overall variable for each patient, and 

also summed the units of whole-blood and PRBCs into a single variable (“Blood 

Requirement during Initial Resuscitation”). The SOFA scores were combined because they 

are correlated and make other relationships in the data look weaker by comparison. Table 2 

presents a list of patient demographics and all candidate features.

We used an iterative modeling process to build Bayesian Belief Networks (BBNs) using 

FasterAnalytics™ v7.0. BBNs are directed, acyclic probabilistic models that capture Joint 

Probability Distributions (JPDs) between variables (how and under what circumstances the 

value of one feature may be described in relation to other features). FasterAnalytics™ uses 

an unsupervised machine-learning algorithm to build BBNs. This is accomplished by using 

search heuristics that allow relevant models to be found earlier in the modeling process 

through a scoring method that allows fast and efficient evaluation of putative subject models. 

The result is a graphical model, a set of nodes and edges, where the nodes represent 

variables in the data set and the edges (or lack thereof) represent JPDs.

Feature selection was conducted by identification of first and second-degree associates using 

JPDs within data subsamples. Iterative random sampling of the data, ten iterations of 90% of 

the observations, was utilized to identify candidate features found to be a first or second 

degree associate of the outcome (IFI) in any iteration. An evaluation with all training data 

was also used to identify associates. The subsamples of the data are assumed to be a 

representative sample of the larger population and used to further reduce the 23 THEATER 

and 35 MEDCEN features. All continuous variables were transformed into two bins 

(≤median and >median). We also tested four Minimum Descriptive Lengths (MDLs) for 

each model using ten-fold cross validation. The MDL is an evaluation metric used to 

quantify model complexity and balance accuracy or over-fitting of the data depending on the 

number and quality of JPDs; a lower MDL implies a more complex model. These model 

parameters were empirically shown to yield higher AUCs (>0.7) during feature selection and 

were selected to optimize the model AUCs.

The models for THEATER and MEDCEN were developed using all patients from the 

training data set and the reduced feature set and the MDLs (0.7 and 0.8) selected from the 

ten-fold cross-validation exercise. Records were divided into ten unique training and test sets 

and the proportion of positive IFI cases were held constant between sets. Ten models were 

developed and then tested using the corresponding test set. For each of the cross validation 

interatons we then estimated the area under the Receiver Operator Characteristic curve 

(AUC) to determine mean model accuracy and confidence interval.

External Validation and Decision Analysis

External validation of the selected THEATER AND MEDCEN BBNs was subsequently 

performed using a separate subset of the TIDOS database of 350 subjects, 53 of whom 

(15%) developed IFI. This subset is comprised of data collected from June 2009 to 

December 2013.

The BBNs were also combined with a “two-rule model”. Previous experience5 has 

suggested IFI risk factors of (A) transfemoral amputation and (B) receive >10 units of whole 
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blood or packed red blood cells (PRBCs); subsequently these will be referred to as (A) and 

(B). The potential predictive ability of the two-rule model was assessed with 3 different 

approaches: (1) two-rule model satisfied (TRMS): if both components (A) and (B) were met, 

the patient was assigned a probability of 1 for having IFI, and otherwise, a probability of 0 

was assigned (2) BBN + TRMS: if both components (A) and (B) were met, the patient was 

assigned a probability of 1 for having IFI, and otherwise, a probability was obtained from 

the BBN (3) BBN + two-rule model not satisfied (BBN + TRMNS): if both components (A) 

and (B) were not met, the patient was assigned a probability of 0 for having IFI, and 

otherwise, a probability was obtained from the BBN.

For both THEATER and MEDCEN, a bootstrap procedure was used to compare the 

performance of all 4 modeling approaches ((1) BBN (2) TRMS (3) BBN + TRMS (4) BBN 

+ TRMNS. Since the external validation dataset consisted of 350 patients with 51 cases of 

IFI, bootstrap samples were generated by randomly selecting 102 patients (51 cases and 51 

controls). For each bootstrap sample, the following performance metrics were evaluated: 

AUC, Sensitivity/Specificity (at probability threshold where product of sensitivity and 

specificity is maximized), Sensitivity/Specificity (at a probability threshold where sensitivity 

is maximized while specificity is closest to 0.5, but not less). 150 bootstrap iterations were 

performed because it was determined to be sufficient number of iterations for convergence 

of the cumulative AUC mean – additional iterations did not change the AUC by greater than 

0.01. Confidence intervals for performance metrics were obtained by calculating the 2.5% 

and 97.5% quantiles.

RESULTS

The THEATER BBN model (Figure 1a), demonstrates two first-degree associates of IFI 

cases (Probability of IFI), the number of units of blood (whole blood or PRBCs) used during 

resuscitation (≤10, > 10), and whether the patient required a diverting colostomy. First-

degree associates are variables most closely related to our outcome variable and are defined 

graphically as variables that are connected by one arc to our outcome. Similar to the 

THEATER BBN model, the MEDCEN BBN model (Figure 1b) shows the first degree 

associates of IFI cases are the number of units of blood used during resuscitation, and 

whether the patient required a diverting colostomy. While first degree associates are the most 

closely related to our outcome, the rest of the model becomes very important when data is 

missing from the first degree associates. For example, in our test data set we did not know 

whether a subject had a in theater olostomy for 292 out of the 350 subjects. In these cases, 

the rest of the variables in the model predict the outcome.

Model evaluation with the external validation dataset indicates that the highest AUCs 

(THEATER mean: 0.77, MEDCEN mean: 0.76) are displayed by the model BBN + TRMNS 

(see Tables 3 and 4). Kruskal-Wallis and Bonferroni-corrected Wilcoxon-rank sum tests 

were used to determine that the differences in AUC are significant.

Regarding sensitivity and specificity, Table 3 displays performance metrics when the 

probability threshold for IFI classification is chosen to maximize the product of sensitivity 

and specificity. For a proability threshold of 0.42, both THEATER and MEDCEN models 
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have a mean sensitivity of 0.72 and mean specificity of 0.8. Table 4 provides performance 

metrics after choosing a probability threshold where sensitivity is maximized while 

specificity is closest to 0.5 but not less. For a proability threshold of 0.42, both THEATER 

and MEDCEN models have a mean sensitivity of 0.74 and mean specificity of 0.68.

DISCUSSION

Trauma-related IFIs are recognized for their devastating impacts on patients in both 

military1,2,6,10,14–17 and civilian populations.3,4,18–22 In addition to substantial morbidity 

resulting from recurrent wound necrosis, the disease is also associated with high mortality.
1,5,10 Within the civilian literature, mortality range from 10% with localized cutaneous 

infections to 96% mortality with disseminated infections.4 Following the Joplin, Missouri 

tornado, 13 patients were diagnosed with trauma-related IFIs, of which five died (38% crude 

mortality rate).3 Among the 77 IFI patients in the military cohort, there were six deaths 

(8%); however, many of the deaths could not be directly attributable to the IFI due to their 

complex, severe multi-system injuries.1,10 As part of the effort to improve clinical outcomes 

within future similar populations, we developed a pair of CDS tools to aid in the prediction 

of IFI in combat-wounded personnel. Overall, our models demonstrated good performance 

on internal and external validation. The THEATER model may permit point-of-care clinical 

decision support, allowing early risk stratification so patients deemed high risk for IFI can be 

identified and treated with systemic intravenous and/or local antifungal therapies to mitigate 

downstream morbidity and mortality, in some cases accelerating formal treatment by more 

than a week. Importantly, this approach can be scaled for other emerging diseases using 

existing data sources provided those sources are accurate.

Following development and validation, the models were deployed on the Surgical Critical 

Care Initiative (SC2i) website and incorporated into the U.S. Army Institute of Surgical 

Research Clinical Practice Guidelines23 to accelerate distribution within the Military Health 

System (MHS). Presently, the IFI tool is only available to military providers. The decision to 

target the release was in response to the incidence of IFI being far greater for combat-related 

injuries, and the desire by SC2i to have the model tested and validated by MHS ‘early 

adopters and innovators’ before attempting to test or adapt the tool for use in civilian 

treatment facilities. These models have not been validated in a civilian patient population 

and many of the model variables identified are unlikely to be present following civilian 

injuries.24 To ensure the tool continues to perform optimally throughout its life cycle,25 we 

are further using the ‘crowd sourcing’ approach to solicit online feedback from military 

users via an embedded survey on the output page. A face-validity test is currently being 

performed on the four qualitative and quantitative questions asked of the user: who they are, 

where the model was used, which platform was utilized, and how they rated the performance 

of the tool. Ultimately, our intent is to propose standards and/or best practices for the benefit 

of the medical community.26

As it relates to the deployment and use of the IFI tool in the civilian healthcare system, the 

U.S. Food and Drug Administration has provided general guidance, which ultimately 

delegates the onus of responsibility onto treatment facilities to make their own determination 

regarding the proper vetting and use of this technology.27 This determination stems from the 
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fact the IFI models are characterized as knowledge-based CDS tools, which rely on clinical 

and physiologic inputs, and use an inference model to provide the user with an estimate of 

the likelihood of IFI. As they are relied upon to assist in medical decision making, these 

models will be considered a software as a medical device (SaMD), category II, belonging 

between the National Surgical Quality Improvement Program28 or Acute Physiology and 

Chronic Health Evaluation II,29 which are both SaMD category I, or the Breast Cancer Risk 

Assessment Tool Gail models (SaMD III).30 Where the IFI tool differs is in its use of 

machine learning techniques to generate the likelihood of a patient developing an IFI, and 

that it can thus function in the presence of missing or incomplete input data. As such, it can 

guide clinical intervention, rather than merely predict (generally poor) clinical outcomes, 

and be vetted not only by measures of accuracy, but also by decision analysis to ensure the 

tool is and remains suitable for clinical use.

Clinical decision support tools based on probabilistic theory have proven useful in a variety 

of clinical settings. For example, Bayesian network models were developed for use in 

patients with operable skeletal metastases to estimate the probability of survival up to 12 

months post-surgery.13,31 Bayesian models have also been used to predict mortality among 

patients with end-stage heart failure to determine who would benefit from left ventricular 

assist device therapy. The latter model was employed in the development of the web-enabled 

Cardiac Health Risk Stratification System, which provides patient-specific prediction of 

mortality at five different time points following device implantation.32 A Bayesian decision-

support system has also been used to aid in diagnosis of ventilator-associated pneumonia 

and predict the likelihood of survival and recurrence in relation to high-risk node-negative 

colon cancer.33,34

Models based on probability have a variety of advantages in the clinical setting. First, they 

afford the opportunity to account for uncertainty within datasets, such as the presence of 

missing or incomplete data. The BBN produces a graphical representation of the 

probabilistic relationship between the factors, allowing for greater understanding of how and 

under what conditions the features relate to one another. Lastly, the technique lends itself 

well to interval improvements as new data, evidence, or treatments become available.

The present study possesses limitations. The models were constructed and tested based upon 

2 retrospectively collected datasets. The 2 datasets differ in IFI incidence: ~34% (77/227) 

(internal validation data) vs ~15% (51/350) (external validation data). The difference in 

incidence could be related to changes in military injury patterns and geography of more 

intense operations during these two periods. While data verification has been performed on a 

large portion of this information, no retrospective database contains perfect and complete 

data. Furthermore, these CDS models were developed based on data gathered from combat-

injured military personnel for use in similar circumstances and patient populations. The 

applicability to other populations (e.g., civilian trauma patients) is unknown and, for these 

reasons, clinical use in these other populations is actively discouraged at the present time 

(civilian access to the functioning model is actively restricted). We know that as sampe size 

increases, the gap between reality and the represented data closes. Our validation set, which 

has a higher number of records than our training set, has a much lower rate of IFI. Therefore, 

increasing our sample size may help us more accurately represent the full population.
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CONCLUSIONS

We developed two robust, clinically useful models for risk stratification of IFI following 

combat-related injuries, and these CDS tools may expedite treatment and improve outcomes 

for severely injured patients. Clinicians may vary the risk threshold depending on the need to 

maximize sensitivity, specificity, or both together. This highlights both the need for 

utilization of such CDS tools only under appropriate clinical circumstances and potential 

limitations. These tools have already been deployed within the MHS23 to reduce undesirable 

variation in care in the combat setting, and improve outcomes as a result.35 The optimal 

threshold is currently being determined within an ongoing Military Health System 

deployment. Future research is necessary to confirm that early systemic and/or local 

interventions can prevent IFI infections or improve outcomes in wounded warriors at high 

risk for IFI. This approach may be utilized for emerging diseases using existing data sources 

and, as such, this approach provides a flexible method in which to respond to unmet needs.
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Figure 1. 
Graphic representation Bayesian Belief Network models; (A) the THEATER model; (B) the 

MEDCEN model. Outcomes, first degree associates, and second degree associates are 

represented by dark, medium, and light shades respectively in both panels.
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Table 1.

Full Variable List

Variable Name DROP/KEEP IN Theater Model DROP/KEEP MEDCEN Model

AGE AT INJURY KEEP KEEP

DISMOUNTED BLAST KEEP KEEP

BLAST DROP DROP

BRANCH OF SERVICE KEEP KEEP

CASES KEEP KEEP

DISMOUNTED STATUS DROP DROP

GENDER DROP DROP

GENITOURINARY INJURY KEEP KEEP

IFI CLASS DROP DROP

INITIAL TREATMENT FACILITY KEEP KEEP

INITIALTREATMENT FACILITY UNKNOWN DROP DROP

INJURY DATE DROP DROP

THEATER COLOSTOMY KEEP KEEP

MEDCEN ALT AT ADMISSION DROP DROP

MEDCEN AST AT ADMISSION DROP DROP

MEDCEN BUN AT ADMISSION DROP DROP

MEDCEN CREATININE AT ADMISSION DROP DROP

MEDCEN TEMPERATURE AT ADMISSION DROP DROP

MEDCEN WHITE BLOOD CELL COUNT AT 
ADMISSION DROP KEEP

MEDCEN ADMISSION DATE DROP DROP

MEDCEN ASPER DROP KEEP

MEDCEN BASE DEFICIT DROP DROP

MEDCEN ISS SCORE KEEP KEEP

MEDCEN MOLD PRESCENCE DROP KEEP

MEDCEN MUCOR DROP KEEP

MEDCEN OTHER MOLD PRESCENCE DROP KEEP

MEDCEN PH DROP DROP

MEDCEN PULSE DROP DROP

MEDCEN SBP DROP DROP

MEDCEN SEPSIS INDCATOR DROP KEEP

MEDCEN SHOCK INDEX DROP KEEP

MEDCEN SIRS INDICATOR DROP KEEP

MEDCEN SOFA BILIRUBIN CREATE SOFA SCORE CREATE SOFA SCORE

MEDCEN SOFA CARDIOVASCULAR CREATE SOFA SCORE CREATE SOFA SCORE

MEDCEN SOFA COAGULATION CREATE SOFA SCORE CREATE SOFA SCORE

MEDCEN SOFA NEUROLOGICAL CREATE SOFA SCORE CREATE SOFA SCORE
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Variable Name DROP/KEEP IN Theater Model DROP/KEEP MEDCEN Model

MEDCEN SOFA RENAL CREATE SOFA SCORE CREATE SOFA SCORE

MAX MEDCEN TEMPERATURE DROP KEEP

MAX MEDCEN WHITE BLOOD CELL 
COUNT DROP KEEP

MILITARY OPERATION DROP DROP

NO INJURY DROP DROP

NUMBER OF THEATER FACILITIES DROP DROP

PELVIS INJURY KEEP KEEP

PENETRATING ABDOMEN INJURY KEEP KEEP

RECTUM INJURY KEEP KEEP

SOFA SCORE DROP KEEP

THEATER AMPUTATION LOWER LEFT 
EXTREMITY DROP DROP

THEATER AMPUTATION UPPER LEFT 
EXTREMITY DROP DROP

THEATER AMPUTATION LOWER RIGHT 
EXTREMITY DROP DROP

THEATER AMPUTATION UPPER RIGHT 
EXTREMITY DROP DROP

THEATER BASE DEFICIT KEEP KEEP

THEATER COLOSTOMY KEEP KEEP

THEATER PH DROP DROP

THEATER PLASMA DROP DROP

THEATER PACKED RED BLOOD CELLS COMBINE W/THEATER WHOLEBLOOD COMBINE W/THEATER WHOLEBLOOD

THEATER PULSE DROP DROP

THEATER SBP DROP DROP

THEATER SHOCK INDEX KEEP KEEP

THEATER TOTAL BLOOD DROP DROP

THEATER WHOLEBLOOD COMBINE W/THEATER PRBC COMBINE W/THEATER PRBC

THEATER WHOLEBLOOD AND PACKED 
RED BLOOD CELLS KEEP KEEP

TIDOS INJURY CAUSE DROP DROP

TRANSFEMORAL AMPUTATION KEEP KEEP

UNIQUE ID DROP DROP
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Table 2.

Demographics of Initial Patient Dataset for Model Creation of Cross-Validation

Statistic N Mean St.Dev. Min Max

Age 227 24.623 4.883 19.200 47.200

Transfemoral Amputation
(Binary, 0 = NO, 1 = YES) 227 0.463 0.500 0 1

Marine Status (Binary, 0 = NOT
A MARINE, 1 = A MARINE) 224 0.585 0.494 0 1

Genitourinary Injury (Binary, 0 =
NO, 1 = YES) 227 0.485 0.501 0 1

THEATER Colostomy (Binary, 0
= NO, 1 = YES) 225 0.169 0.375 0 1

White Blood Cell count
(cells/ml3)

224 8.396 2.753 1.800 19.700

ISS 227 21.233 8.346 4 50

MEDCEN Shock Index 226 0.811 0.190 0.061 1.558

Pelvis Injury (Binary, 0 = NO,
1 = YES) 227 0.308 0.463 0 1

Penetrating Abdomen Injury
(Binary, 0 = NO, 1 = YES) 227 0.141 0.349 0 1

Rectal Injury
(Binary, 0 = NO, 1 = YES) 227 0.115 0.319 0 1

SOFA Score 226 6.049 3.975 0 19

Theater Base Deficit 186 6.430 5.652 0 27

Theater Wholeblood and PRBC
(Units) 227 18.432 18.336 0 126

Theater Shock Index 197 1.068 0.469 0.418 3.120

MEDCEN = Landstuhl Regional Medical Center; ISS = Injury Severity Score, PRBC = packed red blood cells; Sequential Organ Failure 
Assessment = SOFA.
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Table 3.

Model performance for external validation dataset (product of sensitivity and specificity is maximized).

Models AUC Threshold Sensitivity Specificity

THEATER BBN 0.68
[0.58,0.78]

0.53
[0.49,0.58]

0.66
[0.43,0.88]

0.66
[0.45,0.88]

THEATER
TRMS

0.72
[0.63,0.81] 1 0.74

[0.64,0.85]
0.69

[0.55,0.82]

THEATER BBN
+ TRMS

0.71
[0.63,0.80]

0.89
[0.58,1.0]

0.76
[0.67,0.86]

0.69
[0.55,0.82]

THEATER BBN
+ TRMNS

0.77
[0.69,0.84]

0.42
[0.12,0.49]

0.70
[0.58,0.82]

0.83
[0.70,0.94]

MEDCEN
BBN

0.67
[0.57,0.78]

0.51
[0.48,0.53]

0.64
[0.47,0.85]

0.69
[0.49,0.86]

MEDCEN
TRMS

0.71
[0.63,0.81] 1 0.74

[0.63,0.87]
0.68

[0.53,0.80]

MEDCEN
BBN + TRMS

0.70
[0.61,0.80]

0.90
[0.53,1]

0.76
[0.65,0.87]

0.67
[0.53,0.807]

MEDCEN
BBN + TRMNS

0.76
[0.68,0.85]

0.42
[0.11,0.50]

0.70
[0.58,0.82]

0.82
[0.70,0.92]

BBN = Bayesian Belief Network (produces a probability for having IFI)

TRMS = Two-rule Model Satisified (assigns 1 if satisfied, and 0 otherwise)

BBN + TRMS = Bayesian Belief Network plus Two-rule Model Satisfied (assigns 1 if TRM is satisfied, otherwise BBN produces a probability for 
having IFI)

BBN + TRMNS = Bayesian Belief Network plus Two-rule Model Not Satisfied (assigns 0 if TRM is not satisfied, otherwise BBN produces a 
probability for having IFI)
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Table 4.

Model performance for external validation dataset (sensitivity is maximized while specificity is closest to 0.5 

but not less)

MODELS AUC Threshold Sensitivity Specificity

THEATER BBN 0.68
[0.58,0.78]

0.51
[0.29,0.58]

0.68
[0.41,0.88]

0.63
[0.51,0.86]

THEATER
TRMS

0.72
[0.63,0.81] 1 0.74

[0.64,0.85]
0.69

[0.55,0.82]

THEATER BBN
+ TRMS

0.71
[0.63,0.80]

0.60
[0.49,0.74]

0.80
[0.69,0.90]

0.59
[0.51,0.69]

THEATER BBN
+ TRMNS

0.77
[0.69,0.84]

0.12
[0.12,0,12]

0.74
[0.64,0.85]

0.69
[0.55,0.82]

MEDCEN
BBN

0.67
[0.57,0.78]

0.48
[0.25,0.50]

0.71
[0.54,0.87]

0.57
[0.51,0.69]

MEDCEN
TRMS

0.71
[0.63,0.81] 1 0.74

[0.63,0.87]
0.68

[0.53,0.81]

MEDCEN
BBN + TRMS

0.70
[0.61,0.80]

0.56
[0.49,0.75]

0.80
[0.69,0.90]

0.55
[0.51,0.65]

MEDCEN
BBN + TRMNS

0.76
[0.68,0.85]

0.12
[0.12,0.12]

0.74
[0.63,0.87]

0.68
[0.53,0.81]

BBN = Bayesian Belief Network (produces a probability for having IFI)

TRMS = Two-rule Model Satisified (assigns 1 if satisfied, and 0 otherwise)

BBN + TRMS = Bayesian Belief Network plus Two-rule Model Satisfied (assigns 1 if TRM is satisfied, otherwise BBN produces a probability for 
having IFI)

BBN + TRMNS = Bayesian Belief Network plus Two-rule Model Not Satisfied (assigns 0 if TRM is not satisfied, otherwise BBN produces a 
probability for having IFI)
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