
Fast and accurate view classification of echocardiograms using 
deep learning

Ali Madani1, Ramy Arnaout2, Mohammad Mofrad1, and Rima Arnaout3

1Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, 
California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, 208A 
Stanley Hall Room 1762, Berkeley, CA 94720, USA

2Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue Dana 
615, Boston, MA 02215, USA

3Cardiovascular Research Institute, University of California, 555 Mission Bay Blvd South Rm 484, 
San Francisco 94143, USA

Abstract

Echocardiography is essential to cardiology. However, the need for human interpretation has 

limited echocardiography’s full potential for precision medicine. Deep learning is an emerging 

tool for analyzing images but has not yet been widely applied to echocardiograms, partly due to 

their complex multi-view format. The essential first step toward comprehensive computer-assisted 

echocardiographic interpretation is determining whether computers can learn to recognize these 

views. We trained a convolutional neural network to simultaneously classify 15 standard views (12 

video, 3 still), based on labeled still images and videos from 267 transthoracic echocardiograms 

that captured a range of real-world clinical variation. Our model classified among 12 video views 

with 97.8% overall test accuracy without overfitting. Even on single low-resolution images, 

accuracy among 15 views was 91.7% vs. 70.2–84.0% for board-certified echocardiographers. Data 

visualization experiments showed that the model recognizes similarities among related views and 

classifies using clinically relevant image features. Our results provide a foundation for artificial 

intelligence-assisted echocardiographic interpretation.
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INTRODUCTION

Imaging is a critical part of medical diagnosis. Interpreting medical images typically 

requires extensive training and practice and is a complex and time-intensive process. Deep 

learning, specifically using convolutional neural networks (CNNs), is a cutting-edge 

machine learning technique that has proven “unreasonably”1 successful at learning patterns 

in images and has shown great promise helping experts with image-based diagnosis in 

radiology, pathology, and dermatology, for example, in detecting the boundaries of organs in 

computed tomography and magnetic-resonance images, flagging suspicious regions on 

tissue biopsies, and classifying photographs of benign vs. malignant skin lesions.2–4 

However, deep learning has not yet been widely applied to echocardiography, a noninvasive, 

relatively inexpensive, radiation-free imaging modality that is an indispensable part of 

modern cardiology.5

A transthoracic echocardiogram (TTE) consists of scores of video clips, still images, and 

Doppler recordings measured from over a dozen different acquisition angles, offering 

complementary views of the heart’s complex anatomy. The majority of the acquired 

information is represented as video clips; only pulsed-wave Doppler (PW), continuous-wave 

Doppler (CW), and m-mode recordings are represented exclusively as single images. 

Determining the view is the essential first step in interpreting an echocardiogram.6 This step 

is non-trivial, not least because several views differ only subtly from each other. In principle, 

a CNN can be trained to classify views, requiring only a training set of labeled images from 

which to learn; given a new image, a well-trained model should then be able determine the 

view almost instantaneously. The versatility of training in deep learning represents a 

significant advantage over earlier machine-learning methods, which have sometimes been 

applied to echocardiography. Previous methods often require time-consuming and operator-

dependent manual selection and annotation of features (e.g. manually tracing the outline of 

the heart) in each of a large number of training images, and are out-performed by deep 

learning on complex, high-dimensional problems, such as image recognition.7–11

To assist echocardiographers and improve use of echocardiography for precision medicine, 

we tested whether supervised deep learning with CNNs can be used to automatically classify 

views without requiring prior manual feature selection. We report a model that achieves 

nearly 98 percent overall test accuracy based on a variety of video and still-image view-

classification tasks.

To achieve translational impact in medicine, novel computational models must not just 

achieve high accuracy but must also address clinical relevance. We did this in three main 

ways. First, we used randomly selected, real-world echocardiograms to train our model, 

including a variety of patient variables, echocardiographic indications and pathologies, 

technical qualities, and multiple vendors to ensure that our deep learning model would be 

clinically relevant. Second, deep learning approaches are often considered “data hungry;” we 

sought to achieve high accuracy on view classification with minimal data. Third, deep-

learning models are sometimes considered “black boxes” because their internal workings are 

at first glance obscure. To address this issue, we used several methods to look inside our 
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model to show that classification depends on human-recognizable clinical features within 

images.

Taken together, these results suggest that our approach may be useful in helping 

echocardiographers improve their accuracy, efficiency, and workflow and provide a 

foundation for high-throughput analysis of echocardiographic data.

RESULTS

Deep learning achieves expert-level view classification

We designed and trained a convolutional neural network (CNN) (Fig. 1) to recognize 15 

different standard echocardiographic views, 12 from b-mode (video and still image) and 

three from pulsed-wave Doppler (PW), continuous-wave Doppler (CW), and m-mode (still 

image) recordings (Fig. 2), using a training and validation set of over 200,000 images (240 

studies) and a test set of over 20,000 images (27 studies). To maintain sample independence, 

each echocardiogram was from a different patient, and training, validation and test sets did 

not overlap by patient or study (Fig. 1b). These images covered a range of natural 

echocardiographic variation with patient variables (Table 1) and indications for imaging 

(Table 2) that represented our overall clinical database, and they included differences in 

zoom, depth, focus, sector width, gain, chroma map, systole/diastole, angulation, image 

quality, and use of 3D, color Doppler, dual mode, strain, and LV contrast (Fig. 3). Clustering 

analyses showed that the neural network could sort heterogeneous input images into groups 

according to view (Fig. 4).

The model achieved an average overall test accuracy of 97.8 percent on videos (F-score 

0.964 ± s.d. 0.035) and 100 percent accuracy on seven of the 12 video views (Fig. 5a). CW, 

PW, and m-mode categories, which always appeared in echocardiograms as still images, had 

98, 83, and 99 percent accuracies, respectively (Fig. 5b). Classification of test images by the 

trained model took an average of 21 ms per image on a standard laptop (see section 

“Methods”).

On single still images drawn from all 15 views, the model achieved an average overall 

accuracy of 91.7 percent (F-score 0.904 ± s.d. 0.058) (Fig. 5b), compared to an average of 

79.4 percent (range, 70.2–84.0; n = 4 subjects) for board-certified echocardiograpers 

classifying a subset of the same test images (one-sample t-test, p = 0.03) (Fig. 5c). 

Associated areas under the curve (AUCs) for still-image model prediction by view category 

ranged from 0.985 to 1.00 (mean 0.996; Fig. 5f). For the 8.3 percent of test images that the 

model misclassified, its second-best guess —the view with the second-highest probability—

was the correct one in 67.0 percent of cases (5.3 percent of test images; Fig. 5e). Therefore, 

97.3 percent of test still-images were classified correctly when considering the model’s top 

two guesses.

Accuracy was highest for views with more training data (e.g. apical four-chamber) and 

views that are most visually distinct from the others (e.g. m-mode). Accuracy was lowest for 

views that were clinically similar to other views, such as apical three-chamber (which can be 

confused for apical two-chamber) and apical four-chamber (vs. apical five-chamber), or 
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views in which multiple view-defining structures can be seen in the same image, such as 

subcostal IVC vs. subcostal four-chamber. As expected, training on randomly labeled still 

images achieved an accuracy (6.9 percent) commensurate with random guessing (6.7 

percent, the probability of guessing the correct one out of 15 views by chance).

Model classification is based on cardiac image regions

To understand whether classification is based on clinically relevant features, such as heart 

chambers and valves, or on confounding or statistical features that might be clearer to a 

machine than a human, such as fiducial markings, border regions, or fraction of white pixels, 

we performed occlusion experiments by measuring prediction performance on test images 

on which we masked clinically relevant features with different shapes. Overall test accuracy 

fell significantly with masking of the heart but not other parts of the image, consistent with 

this region being important to the model (Fig. 6a). In addition, saliency mapping, which 

identifies the input pixels that are most important to the model’s assignment of a particular 

classification, revealed that structures that would be important to defining the view to a 

human expert were also the ones that contributed most to the model’s classification (Fig. 

6b).

DISCUSSION

View classification is the essential first step in interpreting echocardiograms. Previous 

attempts to use machine learning to assist with view classification required laborious manual 

annotation, failed to distinguish among more than a few views at a time, used only 

“textbook-quality” images for training, exhibited low accuracy, or were tied to a specific 

equipment vendor, limitations unsuitable for general practice.7–13 In contrast, we report here 

a single, vendor-agnostic deep-learning model that correctly classifies all types of 

echocardiogram recordings (b-mode, m-mode, and Doppler; still images and videos) from 

all acquisition points relevant to a full standard transthoracic echocardiogram (parasternal, 

apical, subcostal, and suprasternal), at accuracies that exceed those of board-certified 

echocardiographers given the same task. Furthermore, the echocardiograms used in this 

study were drawn randomly from real echocardiograms acquired for clinical purposes, from 

patients with a range of ages, sizes, and hemodynamics; for a range of indications; and 

including a range of pathologies, such as low left ventricular ejection fraction, left 

ventricular hypertrophy, valve disease, pulmonary hypertension, pericardial effusion. 

Training data also included the natural variation in echocardiographic acquisition of each 

view, including variations in technical quality. By avoiding limited or idealized training 

subsets, our model is broadly applicable to clinical practice, although of course a larger 

training set would likely capture still more echocardiographic variability.

Because deep networks like CNNs usually include large numbers of (highly correlated) 

parameters (which describe the weights of connections among the nodes in the network), it 

is usually difficult to understand a model’s decision-making by simple inspection. For life-

or-death decisions, such as in medicine or self-driving cars, this issue can breed suspicion 

and has legal ramifications that can slow adoption. Occlusion testing and saliency mapping 

help address these concerns by getting inside the black box. In our model, these techniques 
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show that classification depends on the same features that echocardiographers use to reach 

their conclusions. For example, the maps shown in Fig. 6b for a short-axis-mid view and a 

suprasternal aorta view, respectively, each trace the basic outlines of their corresponding 

input view. In the future, applying these approaches to intermediate layers may prove 

interesting to more precisely define the similarities, or differences, in how humans and 

models move from features to conclusions. For now, it is reassuring that our model considers 

the same features that human experts do in classifying views.

This similarity also explains the occasional misclassifications of single images, which most 

often involved views that can look similar to human eyes (Figs. 2e, f, g, h, j, k and 5). These 

include adjacent views in echocardiographic acquisition, where a slight difference in the 

angle of the sonographer’s wrist can change the view, resulting in confusion of an apical 

three-chamber view for an apical two-chamber view or an apical five-chamber for apical 

four-chamber; as well as views in which two view-defining structures may be seen in the 

same image, such as the IVC seen in a subcostal four-chamber view. A low-velocity PW 

signal can look similar to a faint CW signal. In fact, the only misclassification made by our 

model without an obvious explanation of this sort was that of the right ventricular inflow 

view for short-axis basal; of note, the right ventricular inflow view was also very challenging 

for human echocardiographers to distinguish (with 51–57 percent accuracy). We note in the 

confusion matrices that misclassification of certain views for one another was non-

symmetrical; for example, PW images were confused with CW, but CW images were almost 

never mistaken for PW (Fig. 5b). In this case, as mentioned above, this asymmetry makes 

clinical sense; however, more training and test data can be used to explore this phenomenon 

further and refine accuracies for these categories. Because classification of videos is based 

on multiple images, and error decays exponentially with the number of images, 

misclassification of videos was very rare (~2 percent; Fig. 5d). We also noted that the 

model’s confidence in its choice (the probability assigned to a view classification for a 

particular image) affected performance; where confidence was higher, accuracy was also 

higher (Supplementary Fig. 1). Therefore, communicating the model’s confidence for each 

classification should further benefit users.

Finally, our approach had two unexpected advantages related to efficiency, practicability, and 

cost-effectiveness. First was the perhaps surprising effectiveness of a simple majority vote in 

classification of videos. Video analysis can be a complex undertaking that involves non-

trivial tasks, such as frame-to-frame color variation and object tracking. We have 

demonstrated that view classification, at least, can be done much more efficiently and cost-

effectively, reducing coding and training time. Moving beyond view classification, it will be 

interesting to see what other clinically actionable information can be extracted from 

(collections of) still images. Second, in removing color and in standardizing the sizes and 

shapes of videos and still images for training, we discovered that we could downsample—

i.e., shrink—images appreciably without losing accuracy. This allowed for a 96–99 percent 

savings in file size (vs. 300-by-400- to 1024-by-768-pixel images; Supplementary Fig. 2), 

and corresponding gains in the cost and speed of training and of classifying new samples at 

deployment. While human echocardiographers routinely classify views, they appear to 

require full-resolution, native video data to do so with high accuracy. With less input data, 

the model outperformed overall human accuracy (and speed: 32 s vs. hours to classify the 
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same 1500-image test sample). We note the potential implications for telemedicine and 

global health, including in resource-poor regions of the United States, of requiring storage 

and transmission of smaller files (though decentralized use of the model can also come 

through transmission of the model, which is a small file), and of embracing older echo 

machines that may image with lower resolution.

Echocardiography is essential to diagnosis and management for virtually every cardiac 

disease. In this study, we have demonstrated the application of deep learning to 

echocardiography view classification that classified 15 major TTE views with expert-level 

quality. We purposely used a training set that reflected a wide range of clinical and 

physiological variations, demonstrating applicability to real-world data. We found that our 

model uses some of the same features in echocardiograms that human experts use to make 

their decisions. Looking forward, our model can be expanded to classify additional sub-

categories of echocardiographic view (e.g. to distinguish among different CW, PW, and m-

mode acquisitions), as well as diseases, work that has foundational utility for research, for 

clinical practice, and for training the next generation of echocardiographers.

METHODS

Dataset

All datasets were obtained and de-identified, with waived consent in compliance with the 

Institutional Review Board (IRB) at the University of California, San Francisco (UCSF). 

Methods were performed in accordance with relevant regulations and guidelines. Two-

hundred sixty-seven echocardiographic studies from different patients and performed 

between 2000 and 2017 were selected at random from UCSF’s clinical database. These 

studies included men and women (49.4 and 50.6 percent, respectively) ages 20–96 (median 

age, 56; mode, 63) with a range of body types (25.8 percent obese), which can affect 

technical quality of TTE (Table 1), and included indications and pathologies that are 

representative of the uses of echocardiography in current clinical practice (Table 2). Studies 

were carried out using echocardiograms acquired with equipment from several 

manufacturers (e.g., GE, Philips, Siemens).

Data processing

DICOM-formatted echocardiogram videos and still images were stripped of identifying 

metadata, anonymized by zeroing out all pixels that contained identifying information, 

labeled by view by a board-certified echocardiographer with access to native-resolution and 

video data, then split into constituent frames and converted into standardized 60 × 80-pixel 

monochrome images, resulting in 834,267 images. Fifteen views were selected for multi-

category classification, covering the majority used in the field. Views classified included 

parasternal long axis, right ventricular inflow, basal short axis (aortic valve level), short axis 

at mid (papillary muscle) or mitral level, apical four-chamber, apical five chamber, apical 

two chamber, apical three chamber (apical long axis), subcostal four-chamber, subcostal 

inferior vena cava (IVC), subcostal abdominal aorta, suprasternal aortic arch, pulsed-wave 

Doppler, continuous-wave Doppler, and m-mode. For the purposes of this study, CW 

Doppler, PW Doppler, and m-mode recordings from different acquisition points were 
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considered part of the same “view,” e.g. m-mode of the aortic valve, mitral valve, left 

ventricle, and right ventricular annulus were all considered part of the m-mode view. For 

each view, we included images with a range of natural echocardiographic variation, such as 

differences in zoom, depth, focus, sector width, gain, chroma map, systole/diastole, 

angulation, image quality, and use of 3D, color Doppler, dual mode, strain, and left-

ventricular (LV) contrast, to capture the range of variation normally seen by 

echocardiographers.

A subset of 223,787 images from 15 views were randomly split using Python into training, 

validation, and test datasets in approximately an 80:10:10 ratio. Each dataset contained 

images from separate echocardiographic studies, to maintain sample independence. The 

number of images in training, validation, and test datasets were 180,294, 21,747, and 21,746 

images, respectively (corresponding to 213, 27, and 27 different studies in each set). The 

validation dataset was used for model selection and parameter fine-tuning. The test dataset 

was used for performance evaluation of the final trained and validated model. For training, 

256- shade greyscale pixel values were scaled from [0.255] to [0.1] and the mean over the 

training data was subtracted from each dataset, as is standard in image-recognition tasks. 

Also as per standard practice, data were augmented at run-time by randomly applying 

rotations of up to 10 degrees, width and height shifts of up to a tenth of total length, zooms 

of up to 0.08, shears of up to 0.03, and vertical/horizontal flips. Training and validation 

datasets in which view labels were randomized were used as a negative control.

Model architecture and training

Our neural network architecture was designed in Python using the Tensorflow, Theano, and 

Keras packages, drawing inspiration from the VGG-16 network, which won the Imagenet 

challenge in 2014.14–17 Our model utilized a series of small 3 × 3 convolutional filters 

connected with max-pooling layers over 2 × 2 windows. Dropout was utilized in training for 

both the convolutional and fully connected layers to prevent overfitting. In addition to 

dropout for regularization, batch normalization was used before neuron activations, which 

led to faster training and increased accuracy. Activation functions were mainly rectified 

linear units (ReLU) with the exception of the softmax classifier layer. Training was 

performed over 45 epochs using an adaptive learning-rate decay for RMSprop optimization. 

k-fold cross-validation (k = 9) was used to randomly vary which images were in the training 

and validation sets, to make use of all available data for training and to select the optimal 

weights at each epoch. Batches of 64 samples at a time were used for gradient calculation. 

Convergence plots of training and validation accuracy by epoch confirmed that the model 

was not overfitting. The training method was robust, with three separate trainings of the 

223,787 images resulting in overall test accuracies above 97 percent. Training was 

performed on Amazon’s EC2 platform with a GPU instance g2.2xlarge and took about 18 h. 

Testing was performed on a laptop computer (Intel i5-3320M CPU @ 2.60GHzx4 with 16 

GB RAM); it took a total of 32 s to predict 1500 images, yielding an average of 21 ms per 

image. Code availability: VGG-16 is publically available on Github.
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Model evaluation

Several metrics were used over the test dataset for performance evaluation. Overall accuracy 

was calculated as the number of correctly classified images as a fraction of the total number 

of images. Average accuracy was calculated as the average over all views of per-view 

accuracy. F-score was calculated in standard fashion as twice the harmonic mean of 

precision (positive predictive value) and recall (sensitivity). Receiver operator characteristic 

(ROC) curves were plotted in the standard way as true-positive fraction (y-axis) against 

false-positive fraction (x-axis) and the associated area under curve (AUC) was calculated. 

Confusion matrices were calculated and plotted as heat maps to visualize performance of 

multi-view classifiers and their associated errors. Single test images were classified 

according to the view with the highest probability. Test videos were classified by simple 

majority vote on multiple images from a given video.

The basis for the model’s classification decisions was explored using t-distributed stochastic 

neighbor embedding (t-SNE) dimensionality reduction18 of raw pixels and of the last fully 

connected layer output for each sample. Occlusion experiments were performed by masking 

test images with bounding boxes of different shapes, then submitting them to the model for 

label prediction. Saliency maps were created using guided backpropogation, which keeps the 

model weights fixed and computes the gradient of the model’s output for a given image.

Comparison to human experts

Echocardiogram test-image classification by board-certified echocardiographers was 

approved by the UCSF Human Research Protection Program and Institutional Review 

Board. Each board-certified echocardiographer gave informed consent and was given a 

randomly selected subset of 1500 60-by-80 pixel images, 100 of each view, drawn from the 

same low-resolution test set given to the model, and performance compared using the 

relevant metrics above.

Data availability

The datasets generated during and/or analyzed in this study are available from 

rima.arnaout@ucsf.edu on reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Convolutional neural net architecture for image classification. a The neural network 

algorithm used for classification included six convolutional layers and two fully-connected 

layers of 1028 and 512 nodes, respectively. The softmax classifier (pink circles) consisted of 

up to 15 nodes, depending on the classification task at hand. b Training, validation, and test 

data were split by study, and test data was not used for training or validating the model. The 

model was trained to classify images, with video classification as a majority rules vote on 

related image frames. Conv convolutional layer, Max Pool max pooling layer, FC fully 

connected layer
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Fig. 2. 
Sample input images. Views classified included parasternal long axis (psla), right ventricular 

inflow (rv inflow), basal short axis (sax basal), short axis at mid or mitral level (sax mid), 

apical four-chamber (a4c), apical five chamber (a5c), apical two chamber (a2c), apical three 

chamber/apical long axis (a3c), subcostal four-chamber (sub4c), subcostal inferior vena cava 

(ivc), subcostal/abdominal aorta (subao), suprasternal aorta/aortic arch (supao), pulsed-wave 

Doppler (PW), continuous-wave Doppler (CW), and m-mode (mmode). Note that these 

images are the actual resolution of input data to the deep learning algorithm
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Fig. 3. 
Natural variations in input data. In addition to applying data augmentation algorithms, we 

included in each category a range of images representing the natural variation seen in real-

life echocardiography. The parasternal long-axis view is shown here for example. Variations 

include a range of timepoints spanning diastole and systole, differences in gain or chroma 

map, use of dual-mode acquisition, differences in depth and zoom, technically challenging 

images, use of 3D acquisition, a range of pathologies (seen here, concentric left ventricular 

hypertrophy and pericardial effusion), and use of color Doppler, as well as differences in 

angulation, sector width, and use of LV contrast. Note that these images are the actual 

resolution of input data to the deep learning algorithm
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Fig. 4. 
Deep learning model simultaneously distinguishes among 15 standard echocardiographic 

views. We developed a deep-learning method to classify among standard echocardiographic 

views, represented here by t-SNE clustering analysis of image classification. On the left, t-

SNE clustering of input echocardiogram images. Each image is plotted in 4800-dimensional 

space according to the number of pixels, and projected to two-dimensional space for 

visualization purposes. Different colored dots represent different view classes (see legend in 

figure). Prior to neural network analysis, input data does not cluster into clear groups. On the 

right, data as processed through the last fully connected layer of the neural network are again 

represented in two-dimensional space, showing organization into clusters according to view 

category. Abbreviations: a4c apical 4 chamber, psla parasternal long axis, saxbasal short axis 

basal, a2c apical 2 chamber, saxmid short axis mid/mitral, a3c apical 3 chamber, sub4c 

subcostal 4 chamber, a5c apical 5 chamber, ivc subcostal ivc, rvinflow right ventricular 

inflow, supao suprasternal aorta/aortic arch, subao subcostal/abdominal aorta, cw 

continuous-wave Doppler, pw pulsed-wave Doppler, mmode m-mode recording
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Fig. 5. 
Echocardiogram view classification by deep-learning model. Confusional matrices showing 

actual view labels on y-axis, and neural network-predicted view labels on the x-axis by view 

category for video classification (a) and still-image classification (b) compared with a 

representative board-certified echocardiographer (c). Reading across true-label rows, the 

numbers in the boxes represent the percentage of labels predicted for each category. Color 

intensity corresponds to percentage, see heatmap on far right; the white background 

indicates zero percent. Categories are clustered according to areas of the most confusion. 

Rows may not add up to 100 percent due to rounding. d Comparison of accuracy by view 

category for deep-learning-assisted video classification, still-image classification, and still-

image classification by a representative echocardiographer. e A comparison of percent of 

images correctly predicted by view category, when considering the model’s highest-

probability top hit (white boxes) vs. its top two hits (blue boxes). f Receiver operating 

characteristic curves for view categories were very similar, with AUCs ranging from 0.985 

to 1.00 (mean 0.996). Abbreviations: saxmid short axis mid/mitral, ivc subcostal ivc, subao 

subcostal/abdominal aorta, supao suprasternal aorta/aortic arch, saxbasal short axis basal, 

rvinflow right ventricular inflow, a2c apical 2 chamber, a3c apical 3 chamber, a4c apical 4 

chamber, a5c apical 5 chamber, psla parasternal long axis, sub4c subcostal 4 chamber
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Fig. 6. 
Visualization of decision-making by neural network. a Occlusion experiments. All test 

images (a short axis basal sample image is shown here) were modified with grey masking of 

different shapes and sizes as shown, and test accuracy predicted for the test set based on 

each different modification. Masking that covered cardiac structures resulted in the poorest 

predictions. b Saliency maps. The input pixels weighted most heavily in the neural 

network’s classification decision for two example images (left; suprasternal aorta/aortic arch 

and short axis mid/mitral input examples shown) were calculated and plotted. The most 

important pixels (right) make an outline of structures clinically relevant to the view shown
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Table 2

Indications for study sample echocardiograms

Study sample indication Percent N

Heart failure/cardiomyopathy 24.0 64

Arrhythmia 11.6 31

Chemotherapy 10.9 29

Valve disease 10.5 28

Preoperative exam 7.9 21

Dyspnea 6.4 17

Coronary artery disease 6.0 16

Stroke 6.0 16

Syncope 5.2 14

Rule out endocarditis 4.9 13

Pulmonary HTN 4.5 12

Hypertension 3.7 10

Pericardial effusion 3.4 9

Murmur 3.0 8

Palpitations 3.0 8

Aortic aneurysm 2.6 7

Congenital heart disease 2.6 7

Lung disease 1.9 5

Edema 1.5 4

Hypotension 1.5 4

Cardiac arrest 0.4 1

Heart transplant 0.4 1

Number of normal studiesa Percent N

Normal studies 10.9 29

a
Defined by echo reports documenting normal four-chamber size and systolic/diastolic function, no chamber hypertrophy or wall motion 

abnormalities, normal valves with trace or less regurgitation, normal great vessels and estimated right atrial pressure, no pericardial effusion, RVSP 
< 40, and no other abnormalities, such as atherosclerosis, calcification, pleural effusion, ascites, prostheses, or catheters
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