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Abstract

Background: Building prognostic models of clinical outcomes is an increasingly important 

research task and will remain a vital area in genomic medicine. Prognostic models of clinical 

outcomes are usually built and validated utilizing variable selection methods and machine learning 

tools. The challenges, however, in ultra-high dimensional space are not only to reduce the 

dimensionality of the data, but also to retain the important variables which predict the outcome. 

Screening approaches, such as the sure independence screening (SIS), iterative SIS (ISIS) and 

principled SIS (PSIS) have been developed to overcome the challenge of high dimensionality. We 

are interested in identifying important single-nucleotide polymorphisms (SNPs) and integrating 

them into a validated prognostic model of overall survival in patients with metastatic prostate 

cancer. While the abovementioned variable selection approaches have theoretical justification in 

selecting SNPs, the comparison and the performance of these combined methods in predicting 

time-to-event outcomes have not been previously studied in ultra-high dimensional space with 

hundreds of thousands of variables.

Methods: We conducted a series of simulations to compare the performance of different 

combinations of variable selection approaches and classification trees, such as the least absolute 

shrinkage and selection operator (LASSO), adaptive least absolute shrinkage and selection 

operator (ALASSO) and random survival forest (RSF), in ultra-high dimensional setting data for 

the purpose of developing prognostic models for a time-to-event outcome that is subject to 

censoring. The variable selection methods were evaluated for discrimination (Harrell’s 
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concordance statistic), calibration and overall performance. In addition, we applied these 

approaches to 498,081 SNPs from 623 Caucasian patients with prostate cancer.

Results: When n=300, ISIS-LASSO and ISIS-ALASSO chose all the informative variables 

which resulted in the highest Harrell’s c-index (>0.80). On the other hand, with a small sample 

size (n=150), ALASSO performed better than any other combinations as demonstrated by the 

highest c-index and/or overall performance, although there was evidence of overfitting. In 

analyzing the prostate cancer data, ISIS-ALASSO, SIS-LASSO, and SIS-ALASSO combinations 

achieved the highest discrimination with c-index of 0.67.

Conclusions: Choosing the appropriate variable selection method for training a model is a 

critical step in developing a robust prognostic model. Based on the simulation studies, the effective 

use of ALASSO or a combination of methods, such as ISIS-LASSO and ISIS-ALASSO, allows 

both for the development of prognostic models with high predictive accuracy and a low risk of 

overfitting assuming moderate sample sizes.
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Variable selection; calibration; overfitting; machine learning; proportional hazards model; 
prognostic models; elastic net; random forest; high dimensional data; germline single-nucleotide 
polymorphism; survival outcomes

Background

The proportional hazards (PH) model [1-2] has been widely used for predicting time-to-

event outcomes. The partial likelihood estimation of the PH model, however, is not 

appropriate for exploring the simultaneous relationship of the high dimensional variables 

with outcomes. For this reason, variable selection approaches, such as the least absolute 

shrinkage and selection operator (LASSO)[3], adaptive LASSO (ALASSO)[4], and a 

specific extension of random survival forests (RSF)[5] have been widely used to select the 

informative variables in a high dimensional setting[6-8,11]. In addition, LASSO, ALASSO, 

and RSF have been extended to time-to-event endpoints that are subject to censoring. 

Although these methods are capable of reducing the number of variables in high 

dimensionality, Fan et al. [9] and Zhou and Li [10] proposed methods, such as the sure 

independence screening (SIS) [9], the iterative SIS (ISIS) [9], and the principled SIS (PSIS) 

[10] to expedite computing time and improve estimation accuracy in a ultra-high 

dimensional setting. Furthermore, Fan et al. define ultra-high dimensionality by the 

exponential growth of the dimensionality in the sample size (that is, log(p)=O(na) for some a 
ϵ (0,0.5))[11]

The SIS or PSIS aim to reduce the ultra-high dimensional space to a manageable subset 

which encompass the important variables. We define important variables as those in which 

the true coefficients are not equal to zero marginally on the survival outcomes, assuming a 

linear association between the log-hazard function and the variables in the proportional 

hazard model. SIS or PSIS can select important variables, just as LASSO or ALASSO. 

When SIS or PSIS is combined with LASSO or ALASSO, however, SIS or PSIS is applied 

prior to running LASSO or ALASSO in the same way as employed in [11]. To emphasize 
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the processing order among the methods, we broadly classify these methods into two 

groups: screening approaches which follow the genomic literature (SIS and PSIS), and 

variable selection methods (LASSO and ALASSO). Fan et al.[9,11] theoretically proved that 

SIS is highly likely to choose all the important variables and showed that SIS and its variants 

are more efficient in excluding unimportant variables than LASSO alone.

We chose LASSO, ALASSO, and RSF due to their wide application in genomic medicine in 

selecting informative variables in high-dimensional settings. Fan et al. [9,11] showed that 

LASSO selects too many uninformative variables and thus the authors proposed to combine 

SIS with LASSO to efficiently exclude uninformative variables while keeping all the 

informative ones. Thus, the concept of implementing SIS, ISIS, and PSIS in high 

dimensional space before running ALASSO and RSF was innovative [9-11]. Moreover, 

statisticians who are not familiar with SIS, ISIS, and PSIS may want to consider using these 

variable methods as alternatives to select important variables and ultimately develop 

prognostic models with higher predictive accuracy in high-dimensional space.

We are interested in identifying important germline single-nucleotide polymorphisms 

(SNPs) and integrating them into a validated prognostic model of overall survival in patients 

with metastatic prostate cancer. The data included 498,081 SNPs processed from blood 

samples from 623 Caucasian patients with prostate cancer after passing quality control. 

While the abovementioned variable selection approaches have theoretical justification in 

selecting important SNPs, the comparison and the performance of these combined methods 

have not been studied in ultra-high dimensional space with time-to-event endpoints. In other 

words, it is unknown if the combined variable selection methods would perform well in a 

context of an ultra-high number of variables. Our primary goal is to compare the 

performance of the methods in predicting a time-to-event outcome via a simulation study 

with 100,000 (100k) variables. There is a plethora of variable selection methods, but it is not 

always apparent which approach is best to use in identifying important variables in ultra-

high dimensional space. Thus, another purpose of this paper is to provide applied 

statisticians with a basic understanding of these combined methods and to make 

recommendations on how best to use them.

The rest of this paper is organized as follows. We provide an overview of the widely used 

variable selection methods in section 2 while offering a concise discussion of their 

advantages and disadvantages. In Section 3, we describe the design of the simulation studies 

and the comparison among the four single variable selection methods and the nine 

combinations of the variable selection methods. An ultra-high dimensional example is used 

where the data are analyzed using a combination of methods to identify SNPs that will 

predict overall survival time for metastatic prostate cancer patients (Section 4). The results 

of the simulations and recommendations are discussed in Section 5.

Methods

Let p be the number of variables. A linear association between the log-hazard function and 

the p-dimensional variables is assumed in the PH model as following,
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h(t ∣ x) = h0(t)exβ (1)

where h(t∣x is a hazard function of time-to-event t, provided that each of the p variables, 

x=(x1,x2, …,xp)′, is a vector with sample size n, for the xi = (xi1,xi2, …,xin)′ for i = 1,…,p. 

The parameters β = (β1,β2, …,βp)′ and h0(t) is an arbitrary parameter-free baseline hazard 

function. We assume that the important variables are associated with the time-to-event based 

on (1). We consider the variable selection methods in order to only choose important 

variables of clinical outcomes, as presented in Figure 1.

Screening Approaches

We refer to SIS, ISIS and PSIS as screening or variable selection approaches and these 

words are used interchangeably. Fan et al. [9] introduced the SIS to decrease the number of 

variables, p from the ultra-high, to a reduced subset size, m, for time-to-event outcomes. 

They choose m as ≤ ⌊n/log(n)⌋) or ⌊n/(4 log(n))⌋ depending on the different variants of SIS. 

The former is known as “aggressive” SIS and the latter is named “vanilla” SIS. We consider 

the aggressive SIS since its performance is shown to be more effective in high-dimensional 

setting [9]. The aggressive SIS starts with randomly splitting the sample into two partitions, 

n1 and n2, then SIS computes the marginal correlation between a single variable and the 

survival outcome within each partition. This is called marginal utility and is denoted as uk,1 

and uk,2 for k = 1,…,p. The utility is obtained by maximizing the partial likelihood of each 

variable in the following way:

uk, 1 = maxβk
Σi ∈ n1

δixikβk − Σi ∈ n1
δi log Σ j ∈ R(yi)

exp(x jkβk) ,

uk, 2 = maxβk
Σi ∈ n2

δixikβk − Σi ∈ n2
δi log Σ j ∈ R(yi)

exp(x jkβk) ,
(2)

in which δi is the censoring indicator, xik is the k-th element among the p variables, and 

R(yi) is the risk set right before the time yi, i.e. R(yi) = {j; yj ≥ yi}. By ordering all variables 

in increasing order of their corresponding marginal utilities, u(1), < u(2) < … < u(p–1) < u(p), 

one selects the top s( = n
log(n) ) ranked variables for each partition. The details are presented 

in Figure 2. Let I1 and I2 be the index sets of the selected s variables and are expressed as

s = I1 = 1 ≤ k ≤ p; uk, 1 ≥ γs, 1 = I2 = 1 ≤ k ≤ p; uk, 2 ≥ γs, 2 , (3)

where γs,1 and γs,2 are cut-off values depending on s for each partition. The asymptotic 

probability that I1 ∩ I2 contains all the important variables is 1. This is the reason why this 

method is called sure screening.

The SIS is, however, unable to select important variables that are weakly and marginally 

associated with right censored outcomes. Furthermore, I1 ∩ I2 is most likely to retain 
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unimportant variables that are highly correlated with the important variables [9]. To reduce 

the false negative and false positive rates, Fan et al. [9] also proposed ISIS and its aggressive 

variant. The iterative SIS begins similarly to SIS in the first iteration and derives the first 

subset, O1 denote the first subset size. The second iteration repeats SIS but with the (p – m1) 

variables and calculates the conditional utility for each partition given m1 variables. The 

selection method is again applied to the union set of m variables and O1 from which the 

second subset O2 is driven. The process runs iteratively until Oj–1, = Oj, for some j which is 

the number of iterations or until a pre-specified number of iterations has been reached.

Despite the high probability for ISIS to select the important variables, there is no theoretical 

justification for choosing the cut-off values γs,1 and γs,2. The lack of theoretical explanation 

motivates Zhao and Li [10] to develop the principled SIS for time-to-event endpoints. 

Furthermore, Zhao and Li provide the mathematical reasoning for the cut-off value γm by 

using the standard normal distribution, and hence controlling the false positive rate. The 

PSIS requires the maximum partial likelihood estimates (MPLE) of the coefficients to be 

written as:

βk = argmaxβk
Σi = 1

n δixikβk − Σi = 1
n δi log Σ j ∈ R(yi)

exp(x jkβk) . (4)

Once the false positive rate qm is chosen, the cut-off value γm will be the quantile of the 

standard normal distribution, i.e. γm = Φ−1(1– qm/2), assuming that the asymptotic null 

distribution of Ik βk
1 2βk is N(0,1), where Ik is the information matrix. Hence, the m 

variables are chosen in the following manner:

m = 1 ≤ k ≤ p; Ik βk

1
2 βk ≥ Φ−1(1 − qm 2) . (5)

Variable Selection Methods

It is possible that the subset filtered by SIS or PSIS includes not only the important p* 

variables but also several of the unimportant (p–p*) variables. To remove the falsely selected 

variables, we employ some of the most widely-used penalized regression methods in current 

clinical research, such as the LASSO and the ALASSO. Tibshirani [3] proposed LASSO 

with the L1 penalty while taking the survival analysis framework into consideration. The 

efficient computational algorithm is conducted in Simon et al. [12] by maximizing a scaled 

log-partial likelihood of the PH model. The penalized maximum likelihood estimator is 

given by

β = argmaxβ
2
nl(β) − λPα(W , β) , (6)

where
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Pα(W , β) = α Wβ 1 + 1
2(1 − α) β 2

2 . (7)

Note that the R library glmnet scales the log partial likelihood by a factor of 2/n for 

convenience. LASSO evaluates (6) with a scalar α=1 and a matrix W=Ip in which Ip is the p-

dimensional identity matrix in (7). ALASSO identically plugs in α=1 but instead a diagonal 

matrix, W with 1 ∣ β ∣ as the diagonal entries in which β = (β1, β2, …, β p)′ is a vector 

containing the MPLE of the log partial likelihood l(β). The coefficient estimates are 

obtained corresponding to the value of λ that minimizes the mean cross-validated partial 

likelihood error in this paper. To be specific, 10-fold cross-validation was used. Only 

variables with non-zero coefficient estimates are finally selected by the penalized algorithm.

Unlike the penalized regression approaches, the random survival forest (RSF) is a non-

parametric method and an extension of Breiman’s random forests [13] for analyzing right-

censored outcomes. These methods are known for their ability to easily deal with nonlinear 

effects, correlated variables and variable interactions [13]. We implement minimal depth 

thresholding, which stems from the idea of observing the most important variables that are 

located on the upper nodes in a tree. Ishwaran et al. [14] provide the null distribution of the 

minimal depth of a maximal subtree that is given by

P Dv − D(S) ∣ v is noisy, l0, …, lD(S) − 1 = 1 − Σd = 0
D(S) − 1 1 − 1

p

Ld
1 − 1 − 1

p

ld
, (8)

where Dv is the minimal depth for a given variable v, D(S) is the depth of the tree S, ld is the 

number of nodes at depth d, and Ld = ∑i = 0
d − 1 li. According to Ishwaran et al. [14], a variable 

v is chosen if its forest averaged minimal depth, Dv=dv, is less than or equal to the mean 

minimal depth of Dv under the null distribution of (8). Thus, we build final models with the 

variables meeting the (mean) minimal depth thresholding.

Simulation Studies

We conducted a series of simulations to compare the performance of the combined variable 

selection approaches in the ultra-high dimensional setting within the survival framework. We 

used single variable selection methods as references and assumed a linear relationship 

between the log-hazard function and the significant variables via the non-zero constant 

coefficients. In addition, we assumed that the baseline hazard function had a value of 1. We 

considered p* to be six because most articles in the context of the ultra-high dimensional 

data assumed six or less important variables in their simulation studies as these methods are 

computationally intensive [9,15-16]. Another reason for considering a small number of 

important variables is that many genome-wide association (GWAS) analysis identified only 

a few SNPs that are clinically important [17-20].
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We limited p to 100k, each variable having three classes since they were similar to the SNP 

genetic data that served as our motivation example. The random samples were generated 

assuming that the variables are mutually independent and identically distributed (IID). The 

IID variables were randomly and independently sampled from a multinomial distribution 

being specified with probabilities for the three classes, (0, 1, 2) as ((1–q)2,2q(1–q),q2), 

respectively, which followed the Hardy-Weinberg equilibrium (HWE) [21,22]. In the context 

of genetic data, q is the minor (risk) allele frequency (MAF) of a SNP and was assumed to 

represent 0.15 of SNPs. The MAF refers to the frequency of the allele with frequency no 

more than 50% in a population [22]. The three probabilities were formed given that the pairs 

of alleles were known to be independent and hence there was no deviation from the HWE.

The true regression coefficient values, β were randomly chosen from (−1)u(a+∣z∣), where u 
was sampled from a Bernoulli distribution having parameter 0.5, z generated from the 

standard Gaussian distribution. We followed Fan et al. [11] and set a=1 and a=2 for weak 

and strong signal strength, respectively. We considered two scenarios for the true values of β

Strong signal:

β = (2.527186, 2.443898, 2.152147, − 2.388758, 2.156502, − 2.003314)′,

Weak signal:

β = (1.036478, − 1.073296, − 1.250946, 1.138729, − 1.128361, 1.145263)′ .

The true coefficients were multipliers of the first six variables and hence, the other 99,994 

variables had zero coefficients. Failure times were assumed following a Weibull distribution. 

The hazard function, hw(t∣x) was the function of the variables from a Weibull distribution 

and it is expressed as

hw(t ∣ w) = τtτ − 1 × exp{τ(x1β1 + x2β2 + x3β3 + x4β4 + x5β5 + x6β6)}, (9)

where τ was a shape parameter of the Weibull distribution. The failure times were randomly 

drawn from the Weibull distribution assuming τ=1.5. Also, we set the inverse of exp{τ(x1β1 

+ x2β2 + x3β3 + x4β4 + x5β5 + x6β6)} as the scale parameter.

The censoring rate, C was specified as 20% across the simulation studies. Censored times 

were assumed to follow a uniform distribution on [0,θc]. For each specific censoring rate, θc 

was determined using the Newton-Raphson iteration (Appendix (A3) and (A5) of [23]). The 

failure time, Ti, for i=1,…,n, was randomly generated from (9); whereas the censoring 

times; Ci, for i=1,…,n was randomly sampled from uniform distribution. Then the observed 

failure times and censoring indicators were ti=min(Ti,Ci) and δi=I(Ti ≤ Ci), respectively. We 

considered sample sizes of 150 and 300.

Because of the intensive computing time (100k variables), we generated 300 data sets for 

each simulation scenario. Single variable selection approaches (SIS, PSIS, LASSO, and 
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ALASSO) were examined as references. In addition, nine combinations of the variable 

selection methods were considered. These are: ISIS-LASSO, SIS-LASSO, PSIS-LASSO, 

ISIS-ALASSO, SIS-ALASSO, PSIS-ALASSO, ISIS-RSF, SIS-RSF, and PSIS-RSF. It is 

important to note that it is not possible to run ISIS alone as it works simultaneously with SIS 

in combination with a variable selection method. We sought to run RSF by itself, however 

had insufficient memory. We used the default maximum number of iteration (five) from the 

SIS library in R version 0.6 when running the ISIS combinations. To expedite computing 

time in running RSF, we set the number of trees in the forest and the maximum number of 

random split points to be 100 and 10, respectively to increase computing speed. The split 

points split for a variable. For PSIS, we set the false positive rate at 0.001(=qm from (5)) 

over all simulation data sets as this will limit PSIS from selecting hundreds of variables in a 

reduced subset.

Prognostic models were developed based on the training datasets, whereas independent 

testing sets were generated from the underlying joint distribution of the variables. The 

testing sets had much larger sample sizes (n=2,000) than the training sets, as suggested by 

Hothorn et al. [24]. The above variable selection approaches were compared for their 

predictive ability using overall performance, discrimination, and calibration. For the overall 

performance, we picked up Graf et al. RBS
2  [25], which assesses the percentage gain in 

predictive accuracy compared to the null model (model with no variables) at a single time 

point. In this paper, RBS
2  was evaluated at 2-years because it was very close to the median 

overall survival time in our motivation example of prostate cancer. A positive value of RBS
2 , 

means that a prognostic model predicts better relative to the null model, whereas a negative 

value indicates that the model predicts poorly relative to the null model. Discrimination 

describes the ability of a prognostic model to distinguish between patients with and patients 

without the outcome of interest [26]. Discrimination was measured using Harrell’s c-index. 

A value of 0.5 represents random prediction whereas a value of 1 represents perfect 

discrimination [26]. Calibration refers to the agreement between the observed survival 

probability at 2-years versus the predicted probability at 2-years. Patients were divided into 

quartiles and the average predicted survival probability was compared with the observed 

survival probability similar to how is described by Harrell [26]. The calibration slope was 

estimated by regressing new survival outcomes on the predicted prognostic index [27]. 

Lastly, overfitting was evaluated by using the rms library in R using the validate command 

with 100 bootstrapped samples generated from the original sample.

The high computational burden was alleviated by using shared cluster computers at the 

University of Iowa Supercomputer Center. The LASSO, ALASSO, and RSF were executed 

in R using glmnet library version 2.0–5 and randomForestSRC version 2.1.0. We created R 

codes for PSIS according to the algorithms in [11] because there is no available library for 

PSIS. We employed R codes from the SIS library (version 0.6) and combined it with 

ALASSO and RSF in accordance with the techniques described in [41], since SIS can only 

implement SIS-LASSO or ISIS-LASSO. The R codes were written by the first author and 

are available on https://duke.box.com/s/q2wj7m4gxv0gnslaw91nooindjjat6cf.
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Results

Overall performance

Table 1 shows the means and standard deviations of RBS
2  values evaluated at 2-years out of 

the 300 simulations for the training sets. The highest RBS
2 (2) were observed for PSIS-LASSO 

and PSIS-ALASSO when n=150 regardless of the signal strength. For n=300, and assuming 

a weak signal among the six variables, LASSO had the highest RBS
2 (2) which was 83% 

(Table 1). This implies that the final model containing the selected variables from LASSO 

had 83% gain relative to a null model in explaining the survival outcomes at 2 years. When 

n=300, and assuming a strong signal among the six variables, PSIS-LASSO and PSIS had 

RBS
2 (2) above 85%, whereas LASSO had negative average RBS

2 (2), indicating that the average 

model size of 108 variables performed poorly compared to the null model.

We present the mean and standard deviation (SD) of the final model sizes in Table 2. We 

observed that PSIS, PSIS-LASSO, and PSIS-ALASSO chose an excessive number of 

uninformative variables given that the number of informative variables was fixed at six. 

When n=300, and assuming a strong signal among the six variables, the prediction models 

that employed LASSO performed poorly compared to the null model. When the sample size 

was 300 and a strong signal was assumed, the combinations with ISIS chose a small number 

of variables and their RBS
2 (2) values were almost 80% (Table 2).

Table 3 presents the mean number of important variables chosen in the final models over the 

300 simulations in the training sets. In addition, we present the proportion of the number of 

unimportant variables selected in each model relative to the size of the final models. When 

n=150, PSIS, PSIS-LASSO, PSIS-ALASSO, LASSO, and ALASSO selected four or more 

important variables on average. These final models chose too many unimportant variables as 

the proportions of unimportant variables were greater than 85% (Table 3). On the other 

hand, when n=300 and the signal strength was weak, ISIS-LASSO, ISIS-ALASSO, and 

ISIS-RSF selected five or more important variables on average. These combinations 

however, chose a small number of unimportant variables as the largest proportion was only 

3.3% for ISIS-RSF (Table 3).

Overfitting and Discrimination

We also assessed overfitting using the original samples (training sets). Table 4 presents the 

mean optimism and corrected c-index over 100 boostrapped samples when the sample size is 

300. We observed the lowest mean optimism with SIS combination when the signal was 

weak, but these approaches led to the smallest corrected c-index. On the other hand, PSIS-

LASSO had the highest mean optimism. LASSO, ALASSO and the ISIS combinations had 

reasonable c-indexes relative to the mean optimism (Table 4). The same pattern was 

observed when a strong signal among the important variables was assumed.

The mean and standard deviation values of CH over the 300 simulations in the testing sets 

are presented in Table 5. We observed that when the signal is weak and n=150, ALASSO 
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had the highest c-index. On the other hand, prediction models from ISIS-LASSO, ISIS-

ALASSO, ISIS-RSF and ALASSO had the highest average c-index when the sample size 

was 300 and the signal was weak. When the sample size was 150 and a strong signal was 

assumed, both LASSO and ALASSO had the highest c-index (Table 5). In contrast, when 

the sample size was large and a strong signal was assumed, all variable selection approaches 

had high c-indices. The ISIS combinations had the highest c-index, followed by LASSO and 

ALASSO-PSIS combinations, respectively.

Calibration

The mean and standard deviation of the calibration slopes for the testing sets are displayed 

in Table 6. Calibration slope identifies a linear association between the observed survival 

outcomes and the predicted prognostic index. When n=300, the average calibration slopes 

from the prognostic models containing variables selected by ISIS-LASSO, ISIS-ALASSO, 

and ISIS-RSF were close to a value of 1. This implies that these prognostic models were 

well-calibrated. On the other hand, when n=150, most variable selection approaches had 

calibration slopes considerably below 1, suggesting overfitting.

The models were also evaluated for their calibration by plotting the observed versus the 

predicted probabilities for the variable selection approaches that had the calibration slopes 

closet to 1. Figures 3A-3D present the calibration plots of the observed survival probability 

versus the predicted probability at 2-years. The observed survival probability was close to 

the predicted probability when n=150 and the signal strength is weak (Figure 3A). We 

detected similar patterns as the observed survival probability was close to the predicted 

probability for ISIS-ALASSO when the sample size was 300 with a weak signal (Figure 

3B), for ISIS−LASSO when a strong signal among the variables is assumed and n=150 

(Figure 3C) and for ISIS−LASSO when a strong signal among the variables is assumed 

n=300 (Figure 3D).

Real Data Example

The variable selection methods (SIS, PSIS, LASSO, LASSO, RSF) and the nine 

combinations were used to identify SNPs that predict overall survival in men with metastatic 

prostate cancer who participated in a phase III clinical trial (CALGB 90401). Overall 

survival was defined as the date of death from date of random assignment. We confined our 

analysis to 623 genetically defined Caucasians men who participated in the GWAS study 

[28]. Deaths were observed in 94% of the 623 Caucasian men.

Among all the SNPs, 498,081 SNPs were selected after quality-control utilizing GenABEL 

(R package): call rate < 99%, p-value of HWE < 1e-08, MAF < 0.05, removal of non-

autosomal SNPs. The missing SNPs values were simply replaced with the average of non-

missing SNP values. Although this may not be the optimal method for handling missing 

data, it is an effective ad-hoc approach when the proportion of missing SNPs is relatively 

low. Eighty five percent of the 498,081 SNPs that passed quality control were complete. The 

proportion of missing SNPs among 498,081 were: 11.9% in 1 SNP, 2% had 2 SNPs, 0.5% 

had 3 SNPs, 0.2% had 4 SNP missing, 0.10% had 5 SNPs missing and 0.4% had more than 

5 SNPs missing.
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The dataset was randomly split into a 2:1 allocation ratio to training (n=419) and testing 

(n=204) sets, respectively. From the training set, important SNPs were selected using the 

different variable selection approaches. In all the proportional hazards models, SNPs were 

considered assuming additive models and were adjusted for risk score based on the predicted 

survival probability [29]. As expected, there was a slight indication of overfitting in the 

training set when the c-index from the original sample was compared to the bootstrapped 

samples. The corrected c-index is presented in Table 7. Three variable selection methods 

(ISIS-ALASSO, SIS-LASSO and SIS-ALASSO) selected only the validated risk score. It is 

worth mentioning that for PSIS, PSIS-RSF, and LASSO, the corrected c-index could not be 

estimated due to the singularity problem among the predictors. The estimated coefficients of 

the selected SNPs from the training set were applied to the testing set and we calculated the 

c-indices and the 95% confidence intervals. As presented in Table 7, ISIS-ALASSO, SIS-

LASSO, and SIS-ALASSO combinations achieved the highest c-index of 0.67.

Discussion

Advancement in laboratory technologies has led to ultra-high dimensional data that are now 

being routinely captured in clinical studies. A critical element of genomic medicine is 

implementing validated prognostic models for identifying patients with cancer for clinical 

trial design and/or for optimal therapy. For example, the Decipher signature has been 

developed for predicting metastasis after radical prostatectomy in men with prostate cancer 

[30-34]. The Decipher score was developed using random forest and has been independently 

validated [31-34]. Another example is the well-known oncotypeDx recurrence score that has 

been utilized to stratify randomization and to guide treatment in breast cancer patients in the 

TAILORx trial [35-37].

Prognostic models are usually built and validated utilizing common statistical methods and 

machine learning tools. The challenge in ultra-high dimensional space is not only to reduce 

the dimensionality of the data, but to keep the important molecular variables in predicting 

the time to event endpoints. Another major challenge which is common in high dimensional 

data is overfitting, which is identified by the high accuracy for a prognostic model based on 

a training set, but a low accuracy is observed when the model is evaluated on an external 

validation dataset.

This article explores the feasibility of combining several variable selection methods in an 

ultra-high dimensional setting for the purpose of developing prognostic models for time-to-

event outcomes. To our knowledge, this is among the first articles that systematically 

compared the performance of ultra-high dimensional screening with variable selection 

methods for time-to-event endpoints.

When the sample size was small (n=150) and the signal strength among the variables was 

weak, ALASSO outperformed all other approaches having the highest c-index and the 

calibration slopes closest to 1. Assuming a moderate sample size (n=300) and a strong signal 

among the six variables, the combinations with ISIS not only selected all the important 

variables, but also excluded the unimportant variables. When n=300 and signal strength is 

weak, the combinations with ISIS had similar discriminative abilities compared with 

Pi and Halabi Page 11

Diagn Progn Res. Author manuscript; available in PMC 2018 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ALASSO in terms of high average c-index. The calibration slope, however, for ALASSO 

(0.732) indicated overfitting as compared with the slope value for ISIS-ALASSO (0.945). 

On the other hand, when n=150 with a strong signal strength, ALASSO had the best 

performance. While the combinations with ISIS or SIS failed to select all the important 

variables, the combinations with PSIS chose too many unimportant variables.

Our results do not agree with Fan et al. [9], who demonstrated that SIS combined with 

LASSO is efficient in excluding unimportant variables rather than using only LASSO. This 

could be due to the fact that different performance measures (median and squared estimation 

errors) were reported [9]. Another possible explanation may be due to the fact the Fan et al. 
simulated correlated variables whereas we did not.

Other variable selection methods based on p-values have also been used. One of these 

approaches is based on the false discovery rate (FDR). We have previously demonstrated the 

feasibility of the sequential use of FDR as a screening method with ISIS and other variable 

selection methods for predicting binary endpoints [38].

Turning back to our motivating example, the results from the prostate cancer data 

demonstrate the difficulty in choosing the important SNPs in predicting overall survival. The 

top three combinations, ISIS-ALASSO, SIS-LASSO, and SIS-ALASSO outperformed other 

approaches, but they only selected the validated risk score [28]. The other combinations of 

variable selection methods had smaller c-indices even if they included more SNPs in 

addition to the validated risk score. This highlights the importance of validating the selected 

SNPs. Although external validation is considered the gold standard, model developers may 

not have access to external data. Other validation procedures, such as bootstrapping, are 

acceptable approaches [39-40].

There are some caveats in applying the results from our simulation studies to real data. First, 

our simulations start with randomly generating categorical variables of which each has an 

identical probability to select three classes; 0, 1, and 2. The identical probability assumption, 

however, may not hold in a real problem. The second limitation is due to the independently 

and identically distributed assumption in generating the variables. Actual SNPs may be 

correlated with each other, although in our example we observed zero correlation among 

SNPs across genes and modest correlations among SNPs within the same genes. Thirdly, we 

fixed several parameters in the simulations, such as the number of important variables, 

sample size, MAF and signal strength, and all of these factors may have an impact on the 

simulation studies. Lastly, we used the R codes of the COXvarISISscad function in SIS 

(version 0.6) which was available at the time of the simulation study to combine it with 

ALASSO and RSF. The results from the aggressive variant of ISIS-LASSO using the latest 

SIS library (version 0.8–6) may produce different results when the sample size is small and 

the signal strength is weak. Despite the above limitations, these simulations are valuable to 

modelers.

Another vital point to consider is the computational time for the combination variable 

selection methods as it depends on the sample size. For instance, running ISIS-ALASSO and 

ALASSO for one training set with a sample size of 150 took 16 and 3 minutes, respectively. 
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When n=300, the processing time increased to 41 and 7 minutes for ISIS-ALASSO and 

ALASSO, respectively. Furthermore, running 500,000 variables over 200 bootstrapped 

samples was computationally intensive, and for the ISIS-LASSO combination took six hours 

simply to choose the important variables. Although ISIS is computationally intensive, the 

combination performed well as indicated in our results.

Based on our simulations, we provide the following guidelines as a trade-off between 

predictive accuracy, calibration and overfitting:

a) When the sample size is small, and regardless of the strength of the signal 

among the variables, ALASSO performs well in selecting the important 

variables and achieving a high c-index.

b) When the sample size is small and the signal among the covariate is strong, 

ALASSO again performs well in terms of having high c-index and high 

calibration slopes.

c) When the sample size is large and a weak signal among the variables is present, 

ALASSO and the ISIS combinations had the highest performance and were 

comparable. The computing time, however, is much faster for ALASSO (six 

times faster than ISIS combination).

d) When sample size is large and a strong signal is present, the ISIS combinations 

are the preferred approaches.

Conclusion

Building and validating prognostic models of clinical outcomes will remain an important 

research area in 21st genomic medicine. Choosing the appropriate variable selection method 

for training a model is a critical step in developing a robust prognostic model. Based on the 

simulation studies, the effective use of ALASSO or a combination of methods, such as ISIS-

LASSO and ISIS-ALASSO, allows both for the development of prognostic models with 

high predictive accuracy and a low risk of overfitting assuming moderate sample sizes.
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Figure 1. 
Overall diagram of the screening approaches and the variable selection methods
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Figure 2. 
Process of the aggressive variant of sure independence screening (SIS)
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Figure 3. 
Calibration plots on training set for observed survival probability at 2-years versus predicted 

survival for: (A) ALASSO with n=150 and weak signal strength; (B) ISIS-ALASSO with 

n=150 and weak signal strength; (C) ISIS-LASSO when n=150 and strong signal strength; 

and (D) ISIS-LASSO when n=300 and strong signal strength
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Table 1.

Mean (SD) of RBS
2 (2) for the training sets over 300 simulations.

Selection
approach

Weak signal Strong signal

n=150 n=300 n=150 n=300

ISIS-LASSO 0.122 (0.109) 0.578 (0.071) 0.335 (0.318) 0.797 (0.071)

ISIS-ALASSO 0.108 (0.108) 0.578 (0.071) 0.337 (0.322) 0.797 (0.071)

ISIS-RSF 0.069 (0.088) 0.564 (0.105) 0.232 (0.284) 0.790 (0.086)

SIS 0.065 (0.085) 0.303 (0.116) 0.114 (0.119) 0.491 (0.177)

SIS-LASSO 0.112 (0.093) 0.306 (0.113) 0.142 (0.119) 0.491 (0.177)

SIS-ALASSO 0.093 (0.092) 0.306 (0.113) 0.137 (0.120) 0.491 (0.177)

SIS-RSF 0.063 (0.082) 0.294 (0.125) 0.097 (0.104) 0.482 (0.178)

PSIS 0.756 (0.116) 0.811 (0.038) 0.642 (0.183) 0.869 (0.047)

PSIS-LASSO 0.875 (0.051) 0.805 (0.037) 0.869 (0.062) 0.874 (0.049)

PSIS-ALASSO 0.874 (0.052) 0.780 (0.042) 0.869 (0.063) 0.849 (0.057)

PSIS-RSF 0.688 (0.088) 0.413 (0.109) 0.655 (0.111) 0.555 (0.167)

LASSO 0.758 (0.138) 0.834 (0.043) 0.787 (0.136) −0.211 (0.036)

ALASSO 0.583 (0.115) 0.611 (0.058) 0.812 (0.095) 0.815 (0.063)

SD=standard deviation
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Table 2.

Mean (SD) of final model size for the training sets over 300 simulations.

Selection
approach

Weak signal Strong signal

n=150 n=300 n=150 n=300

ISIS-LASSO 1.087 (1.130) 6.010 (0.672) 2.567 (2.265) 6.073 (0.261)

ISIS-ALASSO 0.993 (0.925) 5.943 (0.732) 2.397 (2.164) 6.033 (0.180)

ISIS-RSF 2.463 (0.550) 6.007 (0.954) 3.367 (1.777) 6.033 (0.304)

SIS 2.277 (0.448) 3.120 (0.925) 2.477 (0.500) 4.380 (0.955)

SIS-LASSO 0.773 (0.955) 3.033 (1.014) 1.217 (0.945) 4.377 (0.951)

SIS-ALASSO 0.750 (0.737) 3.003 (1.049) 1.100 (0.824) 4.373 (0.951)

SIS-RSF 2.057 (0.644) 3.033 (1.037) 2.240 (0.719) 4.327 (0.961)

PSIS 132.183 (11.557) 120.440 (10.707) 129.980 (11.203) 119.103 (10.702)

PSIS-LASSO 69.850 (7.238) 78.503 (7.301) 63.170 (7.212) 65.473 (6.786)

PSIS-ALASSO 52.613 (6.344) 49.007 (7.881) 42.487 (8.784) 32.067 (9.986)

PSIS-RSF 44.26 (10.512) 16.033 (5.713) 42.667 (11.009) 15.113 (5.159)

LASSO 26.619 (11.320) 61.437 (13.310) 58.347 (10.184) 108.470 (14.364)

ALASSO 19.948 (7.318) 45.010 (8.276) 33.793 (7.738) 67.147 (9.422)

SD=standard deviation
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Table 3.

Mean of the number of informative features (% of uninformative features) selected in final model over 300 

simulations in the training sets.

Selection
approach

Weak signal Strong signal

n=150 n=300 n=150 n=300

ISIS-LASSO 0.373 (64.1%) 5.913 (1.6%) 1.920 (35.3%) 6.000 (1.0%)

ISIS-ALASSO 0.383 (59.9%) 5.897 (0.9%) 1.983 (30.0%) 6.000 (0.5%)

ISIS-RSF 0.343 (88.3%) 5.817 (3.3%) 1.657 (61.1%) 5.973 (0.9%)

SIS 1.973 (89.4%) 0.160 (5.5%) 1.720 (70.7%) 0.023 (0.4%)

SIS-LASSO 0.303 (56.4%) 2.960 (2.8%) 0.757 (33.4%) 4.357 (0.4%)

SIS-ALASSO 0.303 (57.3%) 2.960 (1.6%) 0.757 (29.6%) 4.357 (0.3%)

SIS-RSF 0.293 (88.8%) 2.880 (5.3%) 0.683 (69.4%) 4.317 (0.2%)

PSIS 4.577 (96.5%) 5.943 (95.0%) 5.437 (95.8%) 5.987 (94.9%)

PSIS-LASSO 4.547 (93.4%) 5.943 (92.4%) 5.437 (91.3%) 5.987 (90.8%)

PSIS-ALASSO 4.180 (91.9%) 5.943 (87.5%) 5.403 (86.5%) 5.987 (78.7%)

PSIS-RSF 2.183 (94.8%) 3.717 (73.8%) 3.703 (90.7%) 4.973 (63.3%)

LASSO 4.671 (80.0%) 6.000 (89.7%) 5.990 (89.4%) 6.000 (94.4%)

ALASSO 5.731 (65.0%) 6.000 (86.2%) 6.000 (81.1%) 6.000 (90.9%)
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Table 4.

Mean Optimism and corrected c-index over 100 Boostrapped samples

Weak Signal (n=300) Strong Signal (n=300)

Optimism C-index
Corrected

Optimism C-index
Corrected

ISIS-LASSO 0.010 0.654 0.005 0.794

ISIS-ALASSO 0.010 0.655 0.005 0.794

ISIS-RSF 0.010 0.641 0.005 0.791

SIS 0.008 0.426 0.007 0.627

SIS-LASSO 0.007 0.431 0.007 0.627

SIS-ALASSO 0.006 0.431 0.007 0.627

SIS-RSF 0.008 0.416 0.007 0.624

PSIS * * 0.119 0.770

PSIS-LASSO 0.082 0.745 0.043 0.836

PSIS-ALASSO 0.042 0.772 0.019 0.844

PSIS-RSF 0.026 0.574 0.016 0.721

LASSO 0.045 0.808 0.048 0.903

ALASSO 0.057 0.648 0.058 0.781

*
did not converge
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Table 5.

Mean (SD) of CH for the testing sets over 300 simulations

Selection
approach

Weak signal Strong signal

n=2000 n=2000 n=2000 n=2000

ISIS-LASSO 0.532 (0.053) 0.820 (0.033) 0.644 (0.149) 0.895 (0.003)

ISIS-ALASSO 0.534 (0.054) 0.819 (0.037) 0.648 (0.152) 0.895 (0.003)

ISIS-RSF 0.531 (0.050) 0.815 (0.044) 0.630 (0.135) 0.894 (0.010)

SIS 0.528 (0.045) 0.696 (0.052) 0.575 (0.068) 0.805 (0.050)

SIS-LASSO 0.528 (0.045) 0.696 (0.052) 0.575 (0.068) 0.805 (0.050)

SIS-ALASSO 0.528 (0.045) 0.696 (0.052) 0.575 (0.068) 0.805 (0.050)

SIS-RSF 0.528 (0.044) 0.692 (0.057) 0.570 (0.063) 0.803 (0.051)

PSIS 0.527 (0.035) 0.711 (0.027) 0.590 (0.066) 0.856 (0.018)

PSIS-LASSO 0.608 (0.050) 0.737 (0.025) 0.769 (0.072) 0.873 (0.014)

PSIS-ALASSO 0.600 (0.048) 0.748 (0.027) 0.769 (0.085) 0.880 (0.014)

PSIS-RSF 0.556 (0.033) 0.696 (0.046) 0.665 (0.066) 0.832 (0.039)

LASSO 0.692 (0.072) 0.786 (0.011) 0.857 (0.018) 0.881 (0.005)

ALASSO 0.797 (0.071) 0.818 (0.006) 0.886 (0.005) 0.886 (0.004)

SD=standard deviation
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Table 6.

Mean (SD) of calibration slope for testing set over 300 simulations

Selection
approach

Weak signal Strong signal

n=2,000 n=4,000 n=2,000 n=4,000

ISIS-LASSO 0.345 (0.340) 0.944 (0.065) 0.646 (0.347) 0.965 (0.058)

ISIS-ALASSO 0.318 (0.343) 0.945 (0.065) 0.628 (0.373) 0.965 (0.058)

ISIS-RSF 0.205 (0.379) 0.936 (0.095) 0.486 (0.515) 0.965 (0.059)

SIS 0.210 (0.395) 0.887 (0.126) 0.433 (0.512) 0.955 (0.076)

SIS-LASSO 0.391 (0.336) 0.895 (0.091) 0.624 (0.326) 0.955 (0.076)

SIS-ALASSO 0.321 (0.373) 0.897 (0.091) 0.611 (0.339) 0.955 (0.076)

SIS-RSF 0.092 (2.247) 0.881 (0.129) 0.448 (0.583) 0.950 (0.080)

PSIS 0.004 (0.006) 0.245 (0.055) 0.013 (0.017) 0.370 (0.060)

PSIS-LASSO 0.077 (0.049) 0.355 (0.060) 0.200 (0.072) 0.530 (0.056)

PSIS-ALASSO 0.075 (0.046) 0.376 (0.072) 0.246 (0.116) 0.605 (0.100)

PSIS-RSF 0.078 (0.055) 0.574 (0.135) 0.241 (0.114) 0.806 (0.097)

LASSO 0.359 (0.126) 0.381 (0.076) 0.213 (0.086) 0.219 (0.055)

ALASSO 0.780 (0.131) 0.732 (0.069) 0.642 (0.115) 0.653 (0.069)

SD=standard deviation
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Table 7.

c-indices based on the training and testing sets for the real example

Selection
approach

Training Set (419) Testing Set (n=204)

No of SNPs
selected

Original
c-index

Corrected
c-index*

c-index* (95% CI)

ISIS-LASSO 2 0.649 0.646 0.664 (0.621-0.707)

ISIS-ALASSO 0 0.649 0.650 0.671 (0.624-0.719)

ISIS-RSF 2 0.650 0.645 0.669 (0.618-0.720)

SIS 2 0.650 0.646 0.669 (0.624-0.714)

SIS-LASSO 0 0.649 0.649 0.671 (0.626-0.717)

SIS-ALASSO 0 0.649 0.650 0.671 (0.620-0.723)

SIS-RSF 2 0.650 0.648 0.669 (0.623-0.716)

PSIS 40 0.749 -- 0.572 (0.527-0.617)

PSIS-LASSO 28 0.746 0.727 0.568 (0.524-0.613)

PSIS-ALASSO 24 0.744 0.727 0.573 (0.528-0.617)

PSIS-RSF 35 0.748 -- 0.575 (0.529-0.622)

LASSO 16 0.716 -- 0.586 (0.540-0.632)

ALASSO 13 0.653 0.634 0.647 (0.601-0.693)

*
Based on 200 bootstrapped samples
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