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Abstract

Background/Rationale: Experimental studies support the role of neurotransmitter genes in 

dementia risk, but human studies utilizing single variants in candidate genes have had limited 

success.

Methods: We used the gene-based testing program Versatile Gene-based Association Study to 

assess whether aggregate variation across 6 neurotransmitter pathways influences risk of cognitive 

decline in 8159 cognitively normal elderly (≥65 years old) adults from 3 community-based 

cohorts.

Results: Common genetic variation in GNG4 and KCNQ2 was associated with cognitive decline. 

In human brain tissue data sets, both GNG4 and KCNQ2 show higher expression in hippocampus 

relative to other brain regions; GNG4 expression decreases with advancing age. Both GNG4 and 

KCNQ2 show highest expression in fetal astrocytes.

Conclusion: Genetic variation analyses and gene expression data suggest that GNG4 and 

KCNQ2 may be associated with cognitive decline in normal aging. Gene-based testing of 
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neurotransmitter pathways may confirm and reveal novel risk genes in future studies of healthy 

cognitive aging.
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Introduction

The prevalence of dementia will rise as the world’s population ages; however, the risk 

factors and predictors of cognitive decline in cognitively normal older individuals are not 

fully understood. Dementia represents the clinical manifestation of a spectrum of 

neurodegenerative disorders that are likely caused by multiple factors. Despite variable 

underlying neuro-pathological etiologies, many forms of dementia are characterized by 

progressive cognitive decline, and early changes in cognitive function are often required for 

diagnosis under neurodegenerative conditions such as Alzheimer’s disease (AD).1 and 

frontotemporal dementia.2 Twin and sibling studies suggest that cognitive phenotypes such 

as working memory, episodic memory, and risk of dementia are heritable.3-7 Although 

recent research has broadened our understanding of the genetic underpinnings of cognitive 

decline and dementia, much remains to be understood.8,9

Evidence from studies in humans and rodents suggests that neurotransmitter function 

declines in aging and that these changes could be associated with risk of dementia and other 

disorders.10414 Current knowledge of genetic variation within neurotransmitter genes as risk 

factors for dementia is heavily derived from single-variant candidate gene studies and has 

often rendered mixed results. For example, common variants in BDNF have shown mixed 

associations in AD When compared to controls, even though imaging and cognitive studies 

suggest that this variation influences neurodegenerative processes.15,16 In addition, 

estimated effects of single nucleotide polymorphisms (SNPs) often differ across studies. 

Replication of these effects is difficult, given disease heterogeneity, overestimates of risk 

effect in underpowered studies, and variability in genetic background across different 

populations. As an when alternative to single SNP-based methods for identifying disease 

risk alleles, there are statistical tests that assess the combined assessment of multiple SNPs 

across a gene.17,18 Such gene-based tests are an attractive alternative to single variant tests 

because they reduce the burden of multiple testing, are analytically more flexible, and allow 

for allelic heterogeneity (i.e., when different variants within the same gene are associated 

with the same phenotype).18,19 For instance, if multiple SNPs in a single gene individually 

promote modest risk of cognitive decline, their effects could go unnoticed in a single-variant 

test due to the small and dispersed effects of each SNP.

Factors that impact global cognition may provide unique insight into the early pathological 

changes that underlie declines in cognitive function and mechanisms that may be helpful for 

combating it. Given their key roles in relaying synaptic signals throughout different 

networks of the brain critical for cognition, neurotransmitters are clear candidates for 

influencing cognitive aging. In addition to suggestive human genetic findings, research in 

animal models supports the role of components within neurotransmitter pathways as 
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contributing to cognitive function in aging. For example, given the role depression may play 

as a risk factor for dementia,20 many studies have examined candidate genes related to 

neurotransmitter or neuroendocrine pathways for roles in cognition and risk of 

neurodegenerative disorders leading to dementia such as AD. Further, the serotonin 

transporter length polymorphism (5-HTTLPR) has been associated with poorer memory 

function in older adults21 and with risk of dementia.22 Norepinephrine (adrenergic system) 

signaling is associated with better performance on memory tasks and is suggested to play a 

protective role against AD pathology,23-25 and extensive loss of norepinephrine projecting 

cells is often seen in AD.23 Anticholinergic medications have been linked to cognitive 

decline.26 One review suggests the excitatory glutamatergic system as another strong 

candidate system for risk of late-life depression and dementia that may relate to changes in 

signal transduction in older age.27

Taken together, these findings suggest that multiple neurotransmitter pathways may 

contribute to risk for dementia, and that by investigating genes rather than single 

polymorphisms the authors may better understand the role these functional systems play in 

cognition during aging. Finally, there are many approved drugs that modulate 

neurotransmitter levels and are tolerated in dementia,28 which makes treatment based on a 

gene-based analysis more tractable. For example, the drug memantine is already used to 

treat AD and is an N-Methyl-D-aspartate (glutamate) receptor antagonist and may also affect 

dopamine receptors.29 We hypothesized that common variation in neurotransmitter genes 

would contribute to changes in cognitive function during aging, which could ultimately 

represent progression toward dementia. We used gene-based tests to assess whether genetic 

variation across each of the genes within specific neurotransmitter pathways influences risk 

of cognitive decline in healthy elderly European American participants.

Methods and Materials

Cohort Descriptions and Cognitive Measures

Three cohorts comprising a total of 8159 participants with cognitive and genetic data were 

used in our study. In all 3 cohorts, we required that individuals had genome-wide SNP 

genotypes, ≥2 cognitive test scores available, and were of European ancestry and unrelated 

based on SNP data. All participants in all studies provided written informed consent, and the 

institutional review boards at recruitment sites and the study-coordinating center (University 

of California, San Francisco) approved all aspects of this study.

Discovery Cohort—Health, Aging, and Body Composition

Our discovery cohort was the Health, Aging, and Body Composition (Health ABC) study, a 

prospective cohort study of 3075 community dwelling black and white men and women 

living in Memphis, Tennessee or Pittsburgh, Pennsylvania, and aged 70 to 79 years at 

recruitment in 1997. Eligible participants reported no difficulty with daily living activities, 

walking a quarter of a mile, or climbing 10 steps without resting at baseline. All participants 

were free from life-threatening cancer diagnoses and planned to live in the study area for at 

least 3 years. The cohort has been described in more detail in previous publications.30
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In the Health ABC cohort, we used 2 different measures of cognitive function: the Modified 

Mini-Mental State Examination (3MS), a measure of global cognition,31 and the Digit 

Symbol Substitution Test (DSST), a measure of processing speed.32 In Health ABC, the 

3MS was administered in years 1,3,5, and 8 and the DSST was administered in years 1, 5, 

and 8. For phenotype generation, 3MS and DSST repeated measures from across the 

research period were used to calculate participant-specific slopes and intercepts for each test. 

As in prior work, we generated cognitive test score slopes as best linear unbiased predictions 

using a linear mixed model with random slopes and intercepts (Stata10, StataCorp, College 

Station, Texas).33 This type of modeling enables estimation of population-level fixed effects 

(changes in cognitive function across the entire cohort) as well as individual-level random 

effects (each participant’s deviation from the overall group). This approach allows each 

participant to have a unique intercept and trajectory (slope describing a change in cognitive 

function). Estimated slopes were used as a quantitative trait in association analysis with 

genetic variants as described below. Covariate adjustments were introduced at the genetic 

analysis stage, as detailed below.

Replication Cohorts—Study of Osteoporotic Fractures and Osteoporotic Fractures in Men

Our replication cohorts were the Study of Osteoporotic Fractures (SOF) and Osteoporotic 

Fractures in Men (MrOS) study. The SOF is a multicenter observational study of 9704 

women aged 65 or older started in 1986 to study risk factors for osteoporosis, falls, and 

fractures. It was expanded to include measures of successful aging and has been previously 

described in detail.34 The MrOS study is a multicenter observational study of 5994 older 

men started in 2000 to study risk factors for osteoporosis, fractures, and prostate cancer 

susceptibility, which included multiple measures of successful aging and cognitive health. It 

has previously been described in detail.35

In accordance with study guidelines, cognitive phenotype generation for SOF and MrOS was 

conducted by the San Francisco Coordinating Center (SFCC), a nonprofit academic 

organization that manages the clinical data for multisite studies and clinical trials. For the 

SOF cohort, the Mini-Mental State Examination (MMSE),36 an assessment similar to the 

3MS, was used as a measure of general cognitive function. The MMSE was administered in 

years 0, 6, 8, and 10. In the MrOS cohort, the 3MS was used as a measure of general 

cognitive function. The 3MS was administered in years 0, 4, and 7. For SOF and MrOS data, 

standardized measures of cognitive function (z scores) were separately calculated in each 

cohort. Participant-specific slopes were calculated by the SFCC using linear mixed effect 

regression models (PROC MIXED in SAS, SAS Institute, Cary, North Carolina).37 In the 

SOF and MrOS cohorts, fixed effects of site, age, and education level were included in the 

cognitive score models. As in the Health ABC analyses, random effects for slope and 

intercept were included. Cognitive decline was scored as a dichotomous trait as the 

phenotype of interest, defining decline as having a slope >1 standard deviation (SD) from 

the group mean slope over the assessment period included in the present study.

Genotyping and Quality Control

Genotyping for Health ABC was performed on the Illumina Human1M-Duo BeadChip 

system by the Center for Inherited Disease Research.33 Genotyping for SOF and MrOS was 
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conducted on the Illumina Omni1-Quad array at the Broad Institute.37 For individuals of 

European American genetic background based on principal components analysis (PCA), 

genotype imputation was performed using MACH/minimac to increase the number of SNPs 

covered in each cohort using CEU HapMap Phase 2 release 22 as reference.38 The SNPs 

with a minor allele frequency ≥0.01, call rate >95%, and Hardy-Weinberg equilibrium P > .

0001 were used for imputation. For imputed SNPs, we excluded markers with imputation 

accuracy <0.3.

Gene Selection

Neurotransmitter genes were first identified using pathways identified by the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)39 and the Science Signaling Database of Cell 

Signaling (SSDCS). The KEGG is a database that provides information for the systematic 

analysis of gene functions by providing genomic and higher order functional information. 

The KEGG’s PATHWAY database has graphical representations of cellular processes such 

as metabolism and cellular signaling. The SSDCS was a graphical interface that allowed for 

the visualization of canonical pathways. It was archived in June 2015, but the original XML 

files used in this article are still available (http://stke.sciencemag.org/about/help/cm). Both 

databases adequately represent current knowledge on the pathways of interest—KEGG is 

still actively maintained and the SSDCS database was last updated in 2012. Genes belonging 

to these 6 neurotransmitter pathways were included in our analyses: adrenergic, cholinergic, 

dopaminergic, γ-aminobutyric acid (GABAergic), glutamatergic, and serotonergic.

Gene Expression

To assess the expression patterns of our most promising candidate genes, we analyzed gene 

expression levels in the Braineac database (http://www.braineac.org/). The database consists 

of 134 neuropathologically confirmed normal donors from the MRC Sudden Death Brain 

Bank in Edinburgh, United Kingdom, and the Sun Health Research Institute in Sun City 

West, Arizona. The cohort is composed of 99 males and 35 females with an average age of 

58 (range 16-102). The average postmortem interval (PMI) was 41.7 hours. For each 

individual in the study, up to 10 brain regions were sampled: cerebellar cortex, frontal 

cortex, hippocampus, medulla, occipital cortex, putamen, substantia nigra, thalamus, 

temporal cortex, and intralobular white matter. RNA extraction, quality control steps, and 

analysis of array data are described elsewhere in detail.40 In brief, RNA expression was 

assessed using the Affymetrix Exon 1.0 ST Array following manufacturers’ protocols. 

Differences in transcript expression across the 10 brain regions were assessed using the 

default settings in Braineac, which utilizes the maximum number of samples per region as 

possible based on data availability. To minimize the effects of outlier probes within a gene, 

Braineac utilizes a Winsorized mean across the available probe sets.

To explore and describe the temporal and spatial patterns of gene expression among our 

most promising candidate genes, we used the Human Brain Transcriptome project (HBT; 

http:// hbatlas.org/pages/hbtd). The HBT provides transcriptome data for the developing and 

adult human brain. The study used over 1340 tissue samples from 57 clinically 

unremarkable individuals with no large-scale genetic abnormalities. The cohort is composed 

of 31 males and 26 females ranging in age from 5.7 weeks postconception (pcw) to 82 years 
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old. The average PMI was 12.1 hours. Tissue was taken from 6 major areas. We examined 

the hippocampus, amygdala, striatum, cerebellar cortex, mediodorsal nucleus of the 

thalamus, and neocortex. Cohort characteristics, RNA extraction, quality control steps, and 

analysis of array data are described in detail in Kang et al.41 The developers of the HBT 

project also used the Affymetrix Exon 1.0 ST Array to measure RNA expression.

Finally, cell type–specific expression data were obtained for selected genes using the Brain 

RNA-Seq tool (http:// www.brainrnaseq.org/). All samples came from elective procedures 

and all postnatal tissue were deemed normal by both electroencephalography and magnetic 

resonance imaging. We examined all available cell types including fetal astrocytes, mature 

astrocytes, neurons, oligodendrocytes, microglia/macrophages, and endothelial cells. 

Detailed descriptions of the samples and processing techniques used have been previously 

published.42–44

Statistical Analysis

We performed a 2-step analysis. First, univariate genetic associations with cognitive slope 

(Health ABC) or cognitive decline (SOF and MrOS) were determined for SNPs in candidate 

genes in each cohort separately. Next, we grouped SNPs within gene regions of interest as 

defined by genes’ membership in specific neurotransmitter pathways in order to evaluate 

gene-level contributions to cognition. The 3 cohorts used for this study utilized 2 separate 

cognitive tests and were mixed with respect to sex composition and study initiation date, so 

they were not combined for analysis. Qualitative comparisons were made between the 

cohorts when possible.

Single-Variant Associations With Cognitive Measures

We implemented a regression model in R to test for genetic associations between SNPs and 

the cognitive phenotype of interest in each cohort. In the Health ABC study, we assessed 

SNP associations with slope of scores on 3MS or DSST separately using linear regression. 

Both analyses were adjusted for participants’ baseline age, sex, education level, APOE ε4 

carrier status, recruitment site, baseline cognitive test score, and population substructure. 

Population substructure was estimated using PCA, and the first 2 eigenvectors (from PCA) 

were included in the model as covariates. In the SOF and MrOS analyses, SNP associations 

were tested using the dichotomous phenotype of cognitive decline (slope < 0) on MMSE or 

3MS, respectively, versus no decline (slope ≥ 0) via logistic regression, adjusting for age, 

education level, APOE ε4 genotype, and population substructure (through inclusion of the 

first 2 PCA-derived eigenvectors). In all analyses, we did not adjust for depression levels, as 

depression can be a prodromal sign of dementia.45

Gene-Based Testing

The Versatile Gene-based Association Study (VEGAS) algorithm has been previously 

described.46 Briefly, the VEGAS uses the University of California, Santa Cruz genome 

browser hg18 assembly to assign user supplied SNPs to genes. Gene boundaries were 

defined as ±50 kb from the 5′ and 3′ end of the untranslated regions, and all SNPs within 

these boundaries that were analyzed for associations from each data set were included for 

analysis. The software then takes the full set of markers within a gene and accounts for 
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confounding due to reference population linkage disequilibrium (LD) patterns and gene size. 

The VEGAS corrects for these confounders using simulations that utilize HapMap LD 

structures.46 The VEGAS provides a gene-based test statistic as the sum of all χ2-con-verted 

SNP P values for a given gene. The software then calculates a null distribution of χ2 

statistics using Monte Carlo simulation, which is compared to the gene-based test statistic 

described above. The P value for a gene is calculated by comparing the empirical χ2 statistic 

to the null distribution of χ2 statistics. The Monte Carlo simulation technique is faster than 

traditional permutation techniques and yields similar results.46 The maximum number of 

simulations was 1 000 000 (default setting), which means that the lowest possible P value is 

1 × 10−6.

Results

Cohort Composition

The final Health ABC cohort was comprised of 1598 cognitively normal older individuals 

who had either the 3MS or DSST available for analysis. There were 1597 individuals with a 

longitudinal 3MS profile and 1594 individuals with a longitudinal DSST profile. In the SOF 

cohort, 383 of 3508 women were labeled as showing cognitive decline over the test period. 

In the MrOS cohort, 384 of 3820 men were labeled as showing cognitive decline over the 

test period. The average age of participants in the 3 cohorts was in the early to mid-70s 

(Tables 1 and 2). The Health ABC cohort and MrOS cohorts were highly educated, with a 

majority of individuals reporting greater than 12 years of education, whereas a majority of 

the SOF cohort participants reported less than 12 years of education (Tables 1 and 2). 

Baseline scores on cognitive tests differed between individuals by cognitive trajectory; 

individuals with a negative slope in the Health ABC cohort or identified as cognitive 

decliners in the SOF or MrOS cohorts generally did worse compared to those with a positive 

slope or identified as nondecliners in the SOF or MrOS analyses (Tables 1 and 2).

Gene Pathway Identification

Using the KEGG and SSDCS databases, we identified a total of 330 genes associated with 

adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, and serotonergic 

neurotransmitter pathways. A full list of these genes is available in Supplemental Data 1.

Gene-Based Analyses

VEGAS results were available for 315 of the 330 neurotransmitter genes identified through 

the KEGG and SSDCS databases due to SNP coverage and other factors (sex chromosome 

genes are not analyzable in version of VEGAS used). A graphical summary of the major 

findings and replicated genes from the Health ABC analyses as well as the SOF and MrOS 

cohorts is shown in Figure 1.

The Health ABC DSST cognitive trajectory analysis resulted in 20 genes that were 

significant at a P value <0.05. In the Health ABC 3MS analysis, 17 genes were significant at 

a P < .05. Full results for these analyses are provided in Table 3. Four genes were significant 

in both of the Health ABC cognitive trajectory analyses: AKT2, CHRNA4, CYP2D6, and 

GABRR3.
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To test for genes that specifically influence cognitive decline, we restricted our gene-based 

VEGAS analyses to the Health ABC SNPs with negative β coefficients in the regression 

model. The Health ABC DSST cognitive decline model resulted in 18 genes that were 

significant. In the Health ABC 3MS cognitive decline model, 15 of the genes tested were 

significant at a P < .05. Full results for these analyses are provided in Table 4. Results from 

the Health ABC cognitive decline analyses were largely concordant with prior Health ABC 

cognitive trajectory analyses, with AKT2, CHRNA4, CYP2D6, and GABRR3 replicating in 

the Health ABC DSST cognitive decline analysis and CYP2D6 and GABRR3 replicating in 

the Health ABC 3MS cognitive decline analysis.

We used the SOF and MrOS cohorts to replicate our findings from the Health ABC analyses. 

In both cohorts, 13 genes were significant. GNG4 (G protein subunit gamma 4), found in the 

Health ABC 3MS cognitive trajectory and 3MS decline analyses, was replicated in the SOF 

cohort. KCNQ2 (potassium voltage-gated channel subfamily Q member 2), found in the 

Health ABC DSST cognitive trajectory and DSST decline analyses, was replicated in the 

MrOS cohort. The results from our replication analyses are shown in Figure 1, and the full 

results for the SOF and MrOS analyses are provided in Table 5.

Gene Expression Analyses

Gene expression analyses were conducted for GNG4 and KCNQ2, the 2 genes from the 

Health ABC analyses that were replicated in the MrOS or SOF cohorts, using information 

from 3 publicly available data sets of regional brain and cell type gene expression.

We next evaluated the extent to which GNG4 and KCNQ2 are expressed in brain regions 

associated with the cognitive functions measured in our study. Expression levels were 

analyzed in 10 adult brain regions, with increased expression found in areas often implicated 

in dementia such as the hippocampus, putamen, and frontal cortex when compared to white 

matter. For GNG4, the regions of highest expression were the hippocampus, putamen, and 

frontal cortex, and the region of lowest expression was intralobular white matter. There was 

a 2.4-fold difference in expression between the hippocampus and intralobular white matter 

(P = 1.7 × 10−41). For KCNQ2, the regions of highest expression were the hippocampus, 

frontal cortex, and temporal cortex, whereas the region of lowest expression was intralobular 

white matter. There was a 2.8-fold difference in expression between the hippocampus and 

intralobular white matter (P = 3.0 × 10−72). The high expression of GNG4 and KCNQ2 in 

highly plastic brain regions such as hippocampus and frontal cortex47 supports the 

possibility that these genes may have a role in cognitive function. Plots of expression levels 

for GNG4 and KCNQ2 by neuroanatomical region are shown in Figure 2.

To explore and qualitatively assess the temporal expression patterns of GNG4 and KCNQ2, 

we used expression data from human brain ranging from 5.7 pcw to 82 years old from HBT. 

We observed that across all 6 brain areas included in the data set, GNG4 expression 

appeared to decrease over older adulthood, whereas KCNQ2 expression remained relatively 

stable after birth. Plots of expression levels for GNG4 and KCNQ2 versus age are shown in 

Figure 3. Separate cell-specific gene expression analyses in human brain tissue suggested 

that both transcripts are most highly expressed in fetal astrocytes. For GNG4, neurons were 

the second highest expressing population, whereas KCNQ2 showed second highest 
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expression in adult astrocytes and only modest expression in neurons (Supplemental Figure 

1).

Discussion

Our findings implicate neurotransmitter pathway genes GNG4 and KCNQ2 with cognitive 

decline in 3 population-based cohorts of cognitively normal older adults. Both GNG4 and 

KCNQ2 were replicated in independent cohorts and showed greater expression in the 

hippocampi versus other neuroanatomical regions in a publicly available human post-

mortem gene expression data set. Further, GNG4 showed a decrease in expression from birth 

to old age in human brain tissue. Although our results were not significant after correction 

for multiple testing, they were replicated in separate cohorts, have regional brain expression 

patterns consistent with our outcome of interest, and are biologically plausible given the 

existing literature. Moreover, these findings represent an important methodological step 

forward in the assessment of how genetic variation influences risk of cognitive decline.

GNG4 is a modulator and transducer of several transmembrane signaling systems48 and 

plays a role in hemostasis and glucagon response.49 Further, recent experimental evidence 

suggests that GNG4 is down-regulated in the brain tissue of rodent models of AD49 and an 

SNP near GNG4 (rs291353) has been nominally associated with age at menopause in the 

Framingham Heart Study.50 In the context of the Framingham Heart Study’s findings, our 

finding that GNG4 replicated in the all-female SOF cohort is particularly interesting. 

Though the role of estrogen on cognition and neurodegenerative disease is yet to be fully 

elucidated, there is evidence to support it as a modifier of cognitive decline and dementia 

risk.51-56 Given this, it may not be coincidental that the GNG4 association with cognitive 

decline was replicated in the all-female SOF cohort but was not significant in the all-male 

MrOS cohort. The role of GNG4 in female-specific cognitive decline in aging remains tobe 

further investigated in studies specifically designed to probe this question.

KCNQ2 is a transmembrane potassium channel gene that is part of the acetylcholinergic 

pathway and can harbor pathogenic mutations associated with epilepsy,57 suggesting that 

KCNQ2 may be important for restraining excessive neuronal signaling. Beyond the known 

association with epilepsy, there is growing evidence that KCNQ2 is also associated with 

memory impairment in mice58 and age-related memory impairment in drosophila.59 Recent 

evidence shows that KCNQ2 expression is decreased by αβ, one of the pathological proteins 

associated with AD.60 Whether the effects of αβ on KCNQ2 expression mediate the 

memory impairments observed in model organisms remains unknown, but increased seizures 

and excitatory activity have been identified in AD mouse models61-63 as well as human 

patients64 and are linked to cognitive impairment. Under this framework, αβ suppression of 

KCNQ2 expression may contribute to the increased seizures, excitatory activity, and 

memory impairments seen in AD. Whether KCNQ2 is related in a similar fashion to 

cognitive decline remains an open area of research.

Of note, both genes showed highest expression in fetal astrocytes. Although speculative, 

these findings could potentially suggest that genetic variation in GNG4 and KCNQ2 could 

be important during neurodevelopment. If this proves to be true, it would suggest that 
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cognitive trajectories in aging are influenced by common variation in utero. Astrocytes are 

critical for synaptogenesis, and the role of these cells in adult neurologic and 

neuropsychiatric diseases is becoming increasingly appreciated.65 Additional studies will be 

required to validate this hypothesis and further explore the role of common genetic variation 

on neurodevelopmental processes and cognitive decline in aging.

We specifically tested the role of neurotransmitter pathway genes in cognitive decline 

because their protein products are more accessible as therapeutic targets than many other 

proteins implicated in cognitive decline. As candidate genes, GNG4 and KCNQ2 are 

particularly interesting given our observation that both are expressed at highest levels in 

human hippocampal tissue compared to 9 other functionally relevant brain regions and that 

GNG4 expression decreases during aging. The hippocampus is one of the first regions of the 

brain to atrophy and accumulate pathologic αβ during the earliest stages of AD and is a 

sensitive biomarker of clinical progression in mild cognitive impairment and AD.66-68 

Although additional studies will be required to validate these findings, both candidate genes 

and their protein products represent potentially tractable drug targets. KCNQ2 is perhaps the 

more tractable of the 2 genes, as there are already drugs known to alter potassium channel 

activity. One of these drugs, flupertine (an aminopyridine), works by opening potassium 

channels and has been shown to ameliorate stress-induced memory deficits in rodents.69 

Flupertine is already approved for use in many major markets as a nonopioid analgesic.70,71 

Similarly, given our observation that GNG4 expression decreases across the brain with 

advancing age and evidence from murine models of AD that GNG4 expression is decreased 

in neurodegenerative disease,49 it is plausible that drug treatments which increase GNG4 

could modify cognitive trajectory.

This study represents an important step forward in the utilization of gene-based testing to 

identify neurotransmitter pathway gene candidates that may predispose healthy individuals 

to cognitive decline, which may ultimately put them at greater risk of (or be an early 

indicator of) dementia. Our study benefits from its use of 3 well-established and 

characterized community-based cohorts. As community-based studies, Health ABC, SOF, 

and MrOS studies are designed to be more representative of the general population. Our 

findings are supported by gene expression evidence from pathologically confirmed normal 

individuals. However, our study cannot confirm causality or infer directionality in the 

relationship between GNG4 or KCNQ2 and cognitive decline. Further, our findings relied 

upon nominal P values and will require further testing to establish their significance. We 

were limited in the cognitive measures and phenotype scoring available for analyses, with 3 

different neuropsychological tests (3MS, MMSE, and DSST) used to assess cognitive 

change/decline and thus our findings may capture alterations in different domains of 

cognition (eg, general function versus episodic memory). Our studies were conducted in 

individuals of European descent and thus may not apply to other populations. Future studies 

will be required to confirm these findings and establish mechanisms by which GNG4 and 

KCNQ2 may alter risk of cognitive decline in diverse populations. Assessing gene 

relationships with cognitive phenotypes derived from more specific (rather than global) 

neuropsychological measures may also provide insight into the cognitive domains that are 

particularly vulnerable in aging (e.g., memory and executive function).
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In this study, we used gene-based testing to identify an association between GNG4 and 

KCNQ2 with cognitive decline in 3 cohorts of healthy older adults. We found evidence in 

pathology specimens suggesting links between these gene candidates and regions of the 

brain often associated with cognitive decline in aging and dementia. Our findings underscore 

the importance of neurotransmitter genes in the cognitive trajectory of healthy aging 

individuals and identify 2 promising candidate genes. Future studies in larger cohorts with 

more detailed cognitive characterization will be required to generalize these findings to 

broader populations and determine whether GNG4 and KCNQ2 directly alter disease risk 

and outcome.
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Figure 1. 
Results from HABC, SOF, and MrOS analyses major findings replicated between the Health 

ABC, DSST, HABC, 3MS, SOF, and MrOS cohorts are shown. Blue areas were significant 

and red areas were not significant. DSST denotes Digit Symbol Substitution Test; HABC,- 

Health ABC; MrOS, Osteoporotic Fractures in Men; 3MS, Modified Mini-Mental State 

Examination; SOF, Study of Osteoporotic Fractures.
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Figure 2. 
GNG4 and KCNQ2 are most highly expressed in human hippocampus. Results of gene 

expression analyses for 10 brain regions in a cohort of cognitively normal adults are shown. 

The number of samples included for each brain area is shown belowthe region label on the 

x-axis.
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Figure 3. 
GNG4 and KCNQ2 expression varies across the human life span. GNG4 and KCNQ2 
expression levels over the human life span are shown. The period is a developmental staging 

system developed by Kang et al41 and used to categorize the human lifespan from 

embryonic development to late adulthood. Age is expressed in days and years from 

conception and plotted on a log scale for ease of viewing. Age in years was rounded to the 

nearest decimal point and added by the authors manually after generating the figures in 

HBT.
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Table 2.

Replication SOF and MrOS Cohorts.

Nondecliners Decliners

SOF N 3125 383

Age, mean ± SD 71.3 ± 5.2 73.3 ± 5.6

Education, >12 yrs (%) 37.9% 32.6%

MMSE, mean ± SD 24.8 ± 1.5 23.7 ± 2.1

MrOS N 3436 384

Age, mean ± SD 74.0 ± 6.0 76.3 ± 6.2

Education, >12 years (%) 77.0% 73.2%

3MS, mean ± SD 94.5 ± 4.1 87.9 ± 10.4

Abbreviations: MMSE, Mini-Mental State Examination; MrOS, Osteoporotic Fractures in Men; 3MS, Modified Mini-Mental State Examination; 
N, Number of participants; Slope, cognitive trajectory slope (see Methods); SOF, Study of Osteoporotic Fractures; SD, standard deviation.
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