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Abstract

More reliable and cheaper sequencing technologies have revealed the vast mutational landscapes 

characteristic of many phenotypes. The analysis of such genetic variants has led to successful 

identification of altered proteins underlying many Mendelian disorders. Nevertheless the simple 

one-variant one-phenotype model valid for many monogenic diseases does not capture the 

complexity of polygenic traits and disorders. Although experimental and computational 

approaches have improved detection of functionally deleterious variants and important interactions 

between gene products, the development of comprehensive models relating genotype and 

phenotypes remains a challenge in the field of genomic medicine.

In this context, a new view of the pathologic state as significant perturbation of the network of 

interactions between biomolecules is crucial for the identification of biochemical pathways 

associated with complex phenotypes. Seminal studies in systems biology combined the analysis of 

genetic variation with protein-protein interaction networks to demonstrate that even as biological 

systems evolve to be robust to genetic variation, their topologies create disease vulnerabilities. 

More recent analyses model the impact of genetic variants as changes to the ‘wiring’ of the 

interactome to better capture heterogeneity in genotype-phenotype relationships. These studies lay 

the foundation for using networks to predict variant effects at scale using machine-learning or 

algorithmic approaches. A wealth of databases and resources for the annotation of genotype-

phenotype relationships have been developed to support developments in this area. This overview 

describes how study of the molecular interactome has generated insights linking the organization 

of biological systems to disease mechanism, and how this information can enable precision 

medicine.
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Conceptual representation of genome interpretation using biological networks.

Introduction

Recent advances in sequencing technologies have significantly reduced the costs of genome 

sequencing and genetic testing, allowing the detection of genetic variants at scale. In 

particular for humans, previous studies have aimed to identify genetic variants common to 

different populations 1 and nucleotide changes associated with phenotypes 2. Variant data 

collected in population studies have been used to describe the evolutionary history of 

humans 3 while, in medical settings, research has aimed to detect disease causing variants 4 

and/or variants that increase susceptibility 5.

The analysis of genomic data and its relation to phenotypes is a fundamental step for 

enabling precision medicine 6. Although in the last decades many studies have uncovered 

genetic variants associated to diseases 7, these discoveries only partially explain the 

biological complexity of most human diseases 8. This observation is more evident in the case 

of polygenic disorders where the associated genetic variants are carried by only a fraction of 

the patients 9. Indeed many common and individually weak alleles have been detected for 

schizophrenia, bipolar disorder 10 and rheumatoid arthritis 11. The presence in the general 

population of large numbers of rare variants under strong selection suggests the hypothesis 

that these variants may contribute to a variety of diseases, potentially affecting many genes 

and pathways 12. Furthermore, it is well established that genes do not cause disease in 

isolation but rather encode elements that form a dynamic molecular network in which 

perturbations may result in different phenotypes 13, 14. As many disease mutations affect 

protein function or expression, this overview focuses on networks of proteins and their 

interactions. Indeed, knowledge of the protein-protein interaction network has proven 

relevant for understanding the mechanisms of many human disorders, including ataxia 15 

(Kahle et al., 2011), autism 16, Huntington’s disease 17 and breast cancer 18. In addition, 

analysis of the interactome is important for the identification of cross-phenotype genetic 

associations 19, 20. This phenomenon, referred to as pleiotropy, was introduced more than 

100 years ago by Ludwig Plate to describe cases where a mutation affecting the same gene 

results in clinically distinguishable phenotypes 21.

These observations sustain the need for more accurate tools for genome interpretation that 

consider the constellation of variants carried by an individual as possible perturbations of the 

underlying molecular interaction networks. In this review we summarize available resources, 

and describe how analysis of the interactome has led to an understanding of how the 
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organization of biological systems leads to disease vulnerabilities. We discuss emerging 

strategies for predicting the impact of genetic variation using interactome networks and 

highlight future opportunities for network analysis of variants.

KEY CONCEPTS

In principle, genetic variants in the protein coding region of the genome can have a broad 

array of effects on protein activity, ranging from no consequence to severe alteration to the 

function and/or structure of a protein. The effect of a variant at the single protein level may 

not reflect the severity of the associated phenotype. Some loss of function mutations are well 

tolerated. Instead the severity of perturbation to the complex network of molecular 

interactions in the cell may more closely capture potential to generate a phenotype. Missense 

mutations that change only a single amino acid in the protein can significantly affect protein-

protein, protein-DNA and enzyme-substrate interactions 22. Studying variants in the context 

of protein-protein interaction (PPI) networks and biochemical pathways can improve our 

understanding of the mechanisms underlying genotype-phenotype relationships.

Graphical modeling for computing on networks

Graphical models provide a mathematical framework for studying the architecture of 

biological systems. Biological systems can be represented as networks, wherein nodes 

usually represent biomolecules, and edges represent interactions among them. Graphical 

modeling then allows quantitative measures to be derived from the network topology for 

analyzing different aspects of biological systems. The network structure itself can be 

analyzed, or biological measurement data can be mapped onto network nodes and edges to 

facilitate integration or interpretation of those measurements in the context of the 

organization of the underlying system. In the context of the relating genotype to phenotype, 

genetic alterations are mapped onto their respective proteins to identify the PPIs and 

biochemical pathways that are potentially affected.

Network analysis measures

Various network measures have been developed to describe the characteristics of nodes 

within networks 23. In Figure 1 we summarize a few important network measures used to 

describe nodes, using the PPI network of the NTRK2 activation pathway as an example. 

Node degree describes the number of interaction partners, and can be used to designate 

proteins as hubs or peripheral nodes (Figure 1A). The clustering coefficient of a node 

describes how connected the immediate network neighborhood of a node is (Figure 1B). 

Various measures of centrality have been developed to capture the importance of a node to 

information flow in a network. For example, degree centrality captures how connected a 

node is to the rest of the network (Figure 1C), and betweenness centrality describes the 

number of shortest paths that traverse a node (Figure 1D). Nodes can also be assigned to 

modules within the network using community detection algorithms 24, 25. An example is 

represented in Figure 1 Panel D where NTRK2, BDNF, NTF4 constitute a module obtained 

using the Girvan-Newman algorithm 26 and NTRK2 is a bottleneck connecting two 

communities. The network measures described above can be used to identify nodes with key 

‘roles’ within the network topology 27.
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DATABASES AND RESOURCES

The development of new methods for analyzing and predicting the impact of genetic variants 

in the context of the protein-protein interaction network requires the collection of high-

quality data from biological experiments and clinical reports. The primary sources of data 

needed for such analyses can be divided into three main categories: genetic variants, 

biological networks and disease association databases.

Genetic variant databases

There are a growing number of databases of genetic variants available on the internet. The 

most comprehensive database of small variants is dbSNP 28 which, in the current version 

(Build 151), includes more than 113 million validated genetic variants. In spite of the name, 

dbSNP does not contain only Single Nucleotide Polymorphisms (SNPs) but also rare and 

somatic variants. Considering these different types of genetic variation, single nucleotide 

variants account for ~90% of small variants. A significant amount of these data are the result 

of the 1000 Genomes project 1. The 1000 Genomes Consortium sequenced the whole 

genomes of more than 2,500 individuals from different populations allowing a more accurate 

characterization of the landscape of genetic variants in humans and better estimates of the 

average load of variants per individual 29.

Several data sources are more focused on collecting information about the phenotypic 

effects of genetic variants. For example, Clinvar hosts curated information about the health 

consequences of genetic variants 30. Clinvar includes ~440,000 variants with some 

supporting evidence of a relationship to human phenotypes (Clinvar release July 16, 2018). 

Focusing on the variants with clinical significance, Clinvar contains ~81,000 genetic variants 

classified either as “Pathogenic” or “Benign”. The Pathogenic subset consists of ~52,000 

variants from ~3,500 genes which are associated with more than 4,400 Mendelian disorders. 

Clinvar also includes a small set of disease-associated variants in intronic and non-coding 

regions (~4,900), and pathogenic synonymous single nucleotide variants (~200). Another 

important database that contains information about the impact single amino acid variants 

(SAVs) and their relationship to human phenotype is SwissVar 31. SwissVar curators classify 

the impact of SAVs either as “Pathogenic” or “Polymorphism”, extracting relevant 

information from the literature. The current release of SwissVar database (release 18, July 

2018) contains ~70,000 SAVs, 42% of which (~29,000) are “Pathogenic” in ~2,750 genes. 

These pathogenic SAVs are associated with more than 3,450 Mendelian diseases.

Since 2008, the published results of genome-wide association studies (GWAS) have been 

systematically reviewed to extract significant association between common variants (SNPs) 

and complex disorders. This data is hosted by the GWAS Catalogue 5 that contains 

significant SNP-Trait associations (p-value < 9e−6) for 50,900 unique genomic locations. 

About 63% of these loci are mapped to ~11,400 genes while the remaining variants are 

located in intergenic regions. Among complex diseases, cancer has been the focus of many 

sequencing studies 32 (Hudson et al., 2010). The analysis of genomic data from cancer 

patients resulted in the detection of a large number of somatic variants, found by comparing 

the genetic variants in tumor cells with those in the normal cells from the same individual. 

The somatic variants detected with this approach are collected in the COSMIC database33 
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(Forbes et al., 2017). Version 85 of the COSMIC database (May 2018) contains ~4.4 million 

variants from ~253,000 tumors samples across 45 primary sites. A small number of the 

variants reported in COSMIC (141) are additionally described as causing clinical resistance 

to pharmaceutical therapies. These 141 mutations affected 21 different genes, but were most 

prevalent in ABL1, EGFR and KIT.

Resources for biological network analysis

Biological networks can be built directly from expert knowledge, or in an unbiased fashion 

from large experimental screens34 (Rual et al., 2005) (see Sidebar 1). Perhaps the most 

intuitive biological network model is a protein-protein interaction (PPI) network, where 

nodes represent proteins and edges indicate physical interactions between proteins. Other 

common networks model intra-cellular signaling, mRNA co-expression, gene regulation or 

metabolic flux. A broad selection of pathways and networks are hosted via online databases 

such as KEGG 35, IntAct 36, iRefIndex 37, Reactome 38, Pathway Commons39, BioPlex 40, 

DIP41 and STRING 42. These databases can be classified according to the type of 

information collected. Although KEGG (Kyoto Encyclopedia of Genes and Genomes) 

collects many types of information, it serves as a reference database for biological pathways. 

The KEGG PATHWAY resource consists of graphical representations of cellular processes, 

such as metabolism, membrane transport, signal transduction and cell cycle. Recently, the 

MINT 43 and IntAct 44 databases merged their efforts to provide a curated repository of 

experimentally determined interactions. The current version of IntAct (August 2018) 

contains ~546,000 unique PPIs, 35% of which occur between ~23,500 human proteins. 

IntAct also contains a small set of proteins unlikely to be engaged in an interaction. This 

negative interaction set represents less than 0.2% of the total number of IntAct interactions. 

Other resources such as iRefIndex 37, Reactome 38, Pathway Commons 39 integrate 

pathways and/or protein-protein interaction data from several primary sources.

Sidebar 1: Interactome construction—PPIs can be detected in a variety of ways. The 

two most common technologies for high-throughput PPI screening are yeast two-hybrid 

(Y2H) and mass spectrometry (MS). These technologies have advantages and limitations 

that must be considered when analyzing the resulting interactomes. Y2H can effectively 

detect binary interactions, but cannot detect multi-protein complexes. MS can characterize 

the elements of multi-protein complexes, however it does not provide enough information to 

determine which proteins in the complex are in direct physical contact. Sometimes such 

complexes are depicted as ‘cliques’ in networks, such that all participating proteins in the 

complex are linked together by edges. Both technologies have associated false positive 

(finding an interaction when none exists) and false negative (failing to find an existing 

interaction) detection rates. Interactions can be also be obtained from low throughput 

experiments, for example co-crystal structures obtained via x-ray crystallography, cryo-

electron microscopy or negative stain electron microscopy. Because many studies that probe 

protein interactions are not performed as high-throughput screens, the associated interactions 

are generally mined from the biomedical literature. Networks generated from literature 

mining are more susceptible to study bias than networks derived from high-throughput 

screens, however networks constructed from the literature tend to contain more interactions 

and those interactions may be less prone to random error 45.
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Another widely used resource for protein-protein interactions is the STRING 42 database 

which integrates known and predicted interaction data across multiple organisms. Apart 

from experimentally verified PPIs, STRING collects data derived from different sources 

including gene co-expression analyses, automated text-mining and computational inference 

based on gene orthology. For human alone, the latest release of STRING (version 10.5, May 

2017) contains more than 691,000 unique associations between ~18,700 genes.

New resources for studying biological networks, such as the Network Data Exchange 

(NDEx) 46 and the Cell Collective 47, are emerging to provide collaborative platforms for 

data sharing, analysis and model simulation. In particular NDEx implements a RESTful API 

which can be programmatically accessed by any application. In the most recent version of 

NDEx, the curators improved the quality and abundance of biological networks relevant to 

the cancer research community. Similarly, the Cell Collective platform enables users to build 

and analyze network models, and use them to run simulations via a web interface. This 

application can be used to simulate loss/gain of function and test possible scenarios in real 

time.

High-throughput experiments for detecting molecular interactions are important for mapping 

the interactome and are also useful for assessing the quality of available databases, 

validating the performance of methods that predicting PPIs and selecting sub-networks 

obtained from the same experimental technologies. A recent study based on affinity 

purification mass spectrometry detected more than 56,000 interactions among ~11,000 

human proteins 40. The results of this experiment are accessible through the BioPlex website 

(http://bioplex.hms.harvard.edu/). Crosslink mass spectrometry is an alternative technique to 

profile PPIs 48, 49. A popular high-throughput approach for detecting interactions is by yeast 

two-hybrid (Y2H) experiments that detect binary protein-protein interactions 34, 50, 51. Many 

such interactions are available through the Human Reference Protein Interaction Mapping 

Project (HuRI; http://interactome.baderlab.org/).

The large number of available resources for studying biological networks poses a question 

about the implications of selecting a network for a particular study, including the reliability 

of particular networks for specific applications (see Sidebar 2). Focusing on the ability to 

recover disease gene sets, a recent study evaluated 21 human genome-wide interaction 

networks 52. This analysis showed that performance increased with network size. The 

STRING database had the best overall performance, however after correcting for size, the 

smaller network from the Database of Interacting Proteins (DIP) 41 had the highest per edge 

performance.

Sidebar 2: Selecting the right interactome—The availability of numerous biological 

networks constructed from different experimental techniques and literature mining poses a 

difficult question about the accuracy and reliability of networks for disease studies. 

Generally speaking the evaluation of the quality of the interaction networks is problem 

dependent. Focusing on the task of recovering disease-gene associations based on colocation 

and connectivity in the interactome, larger networks tend to achieve better overall 

performance (higher sensitivity) than smaller networks. Contrarily, if the analysis aims to 

minimize the number of false positive genes recovered, a network with a smaller and well-
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curated set of interactions on average scores with higher precision than larger networks 53. 

Interactions that have been detected by multiple technologies are often considered more 

reliable, thus some studies include interactions with multiple evidences 54–56. However this 

can throw away real interactions that could be informative for a particular study. As a rule of 

thumb, protein-protein interaction data from X-ray crystallography are more reliable than 

other types of data. An important limitation for evaluating the quality of PPI networks is the 

low number of known of non-interacting proteins (negative set). A fair assessment of the 

quality of a PPI network should include an analysis of the performance on a negative set.

Disease/Phenotype annotation and classification

Pivotal resources for studying the impact of genetic variants in the context biological 

networks are databases for the annotation and classification of diseases and phenotypes. A 

systematic classification of diseases and their genetic causes was carried out by McKusick, 

who developed the primary comprehensive curated repository for genotype/phenotype 

relationships. Available online since 1987, the Online Mendelian Inheritance in Man 

(OMIM) database 7 synthesizes and summarizes information extracted from the biomedical 

literature by careful curation. The OMIM database is freely available upon request for the 

academic community, and it its current version (August 2018) contains ~5,300 phenotypes 

with known molecular basis.

Cataloging and description of distinct phenotypes is a limiting step for their analysis and 

comparison. To overcome this limitation, different standardized vocabularies have been 

developed to ensure consistent, reusable and sustainable descriptions of human diseases. 

Initially the US National Library of Medicine (NLM) developed the Unified Medical 

Language System (UMLS) 57 which includes names, concepts and relationships from 

different biomedical vocabularies. Similarly, Medical Subject Headings (MeSH) 58 defines a 

hierarchically-organized terminology for indexing and cataloging biomedical information, 

and the Systematized Nomenclature of Medicine (SNOMED) provides a systematic, 

computer-processable collection of medical terms 59.

The medical terms developed by NLM curators are part of specific ontologies for the 

classification of disease and phenotype such as the Disease Ontology (DO) 60 and the 

Human Phenotype Ontology (HPO) 61. DO is a hierarchical disease-centric ontology 

collecting additional facts about disease. In the latest version, DO curators expanded the 

utilities for examination and comparison of genetic variants, phenotypes, proteins, drugs and 

epitopes. In contrast to DO, the HPO focuses on the analysis of phenotypic abnormalities. 

The HPO project is divided into three components: the phenotype vocabulary, disease-

phenotype annotations and algorithms that operate on these. With respect to DO, HPO 

implements a better nomenclature for the description of rare diseases.

There are a number of additional resources for disease-gene associations such as DisGeNET 
62, dSysMap 63 and the Comparative Toxicogenomics Database (CTD) 64. In particular, 

DisGeNET is one of the largest collections of genes and variants associated with human 

diseases, and integrates data from expert curated repositories, GWAS catalogues, animal 

models and the scientific literature. The current version of DisGeNET (v5.0) contains more 

than 560,000 gene-disease associations, between ~17,000 genes and more than 20,000 
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diseases and traits. In terms of variants, it contains more than 135,000 variant-disease 

associations, between ~83,000 variants and ~9,200 diseases and phenotypes. Focusing more 

on protein structure, dSysMap maps human disease-related mutations onto the structural 

interactome. In its latest version (April 2018), dSysMap contains ~29,000 mutations in 

~2,700 proteins associated to ~3,600 phenotypes. Finally, the CTD is a database that aims to 

advance the understanding of the effect of environmental exposures on human health. The 

database is divided in six categories with eleven relationships among them. Apart from 

gene–disease associations and gene-gene interaction data, CTD collects associations 

between chemicals and diseases. The current version of the database (June 2018) is 

composed of ~37,500 curated gene–disease and ~211,500 curated chemical–disease 

associations. A summary of the resources described above is provided in Table 1.

Computational methods for variant, network and disease annotation

Although not directly relevant to the current review, it is worth noting that a variety of 

computational tools have been developed to prioritize, annotate and extend the three 

categories of information required for network analysis of variants. Over the last decade 

many algorithms have been developed to predict the impact of single nucleotide variants 

(SNVs) 65, 66, protein-protein interactions 67, 68, and disease-gene associations 69, 70. In 

particular many machine learning methods are available to predict deleterious SNVs 65 and 

the effect of single amino acid substitutions on protein stability 66. The prediction of new 

protein-protein interactions can be performed using sequence and/or structure information 
68. Some methods have also been trained to predict the interface residues that mediate the 

interactions between proteins 67. New associations between genes and diseases are frequent 

in the literature. Thus, methods for mining the literature to recover new disease-gene 

associations are essential 71 The majority of such tools use algorithms comparing regular 

text, specific ontologies and biological networks 69, 70. The computational methods 

described in the above-cited reviews represent important early attempts to bridge the gap 

between the vast numbers of catalogued genetic variants and their association with human 

phenotypes, and are frequently applied to inform mechanistic studies.

NETWORK TOPOLOGY AND DISEASE

Networks provide a versatile framework for modeling the architecture of biological systems. 

Biological network architectures arise through evolution which should select for 

characteristics that confer a fitness advantage to an organism. For example, protein 

interaction networks have evolved to be robust to random genetic variation 72–75. As a result, 

studying mutation rates together with location in PPI networks can provide information 

about evolutionary constraints on particular proteins. Proteins under stronger evolutionary 

constraint should be less tolerant to error, and mutations in those proteins should more likely 

be associated with extreme phenotypes. Thus topology should also be helpful for bridging 

the gap between genotype and phenotype. Indeed networks that recapitulate the organization 

of biological systems can be used to study the relevance of the constituent molecules and 

molecular interactions to fitness or disease 14, 76, 77.
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Properties of biological interactome networks and how they relate to phenotype

Studies of PPI network topology have generated multiple insights linking protein location 

and connectivity within the network to particular phenotypes. The characteristics of PPI 

network topology that enable function and robustness of biological systems also create 

certain kinds of vulnerability. PPI networks tend to have a scale-free topology, such that the 

number of edges with degree k scales as a power-law distribution (p(k)~k−γ) 78 where the 

exponent (γ) typically ranges between 2 and 3. As a result, a minority of nodes are hubs 

with a very large number of interaction partners while most nodes participate in very few 

interactions. This is thought to render the system robust to random error, since genetic 

variants at random are more likely to affect a protein with few interactors, and thus cause 

only a minor perturbation the overall topology of the network. However, this leads to 

vulnerabilities, as mutations affecting a highly connected hub are likely to have a significant 

impact on the system 72.

In PPIs networks, on average, the shortest path length of edges separating a pair of randomly 

selected nodes grows proportionally to the logarithm of the number of nodes in the network 

(small-world network) 79. The shortest path length is thought to be important for efficient 

transfer of information and rapid response to perturbation. Redundant paths between nodes 

may confer robustness to genetic variation 79, 80. Although small-world properties would not 

be expected to generate a modular network topology per se 81, biological networks tend to 

be modular, with densely connected subnetworks that are linked into the global network 

architecture by a small number of connections 82. Indeed, there is selection against the 

formation of new interactions between nodes that are already highly connected. Instead, 

links between highly connected nodes and nodes with few interactions are favored 83. The 

observed balance between modularity and small-worldness in PPI networks may provide the 

optimal architecture for information flow 81, 84, 85. However this architecture also creates 

bottlenecks, nodes that bridge more clustered regions of the network, and as such may create 

additional vulnerabilities 86.

Integrating protein topology with other data layers, such as gene expression or protein 

structure can reveal more detail about how the elements of the network function together. 

Hubs can be further divided into party and date hubs, dependent on whether interaction 

partners are all co-expressed with the hub protein, or co-expressed at different times or 

locations 82. Incorporating protein structure into analysis of topology, Kim et al observed 

that hubs can be grouped according to whether interactors used different interfaces, allowing 

multiple simultaneous interactions, or used only a single interface, in which case interactions 

would be mutually exclusive 87. Interestingly, multi-interface hubs corresponded to party 

hubs, whereas hubs that interacted with multiple partners via a single interface were more 

likely to be date hubs. The differences in co-expression and interface usage by date and 

party hubs suggests that different evolutionary constraints may act on these subsystems. 

Indeed, in studies of the s. cerevisiae PPI, date hubs were found to evolve more rapidly than 

party hubs, and their removal had a more extreme effect on the average path length of the 

network 82, 87, 88. Similarly, multi-interface hubs were reported to evolve more slowly than 

single interface hubs 89. Bottlenecks are also reportedly significantly less coexpressed with 
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other network nodes, suggesting they may play a more dynamic role in biological systems 
86.

Network topology determines the potential of genes to drive phenotypes

Given the clear evidence that nodes with distinct characteristics in the network support 

different aspects of the function of biological systems and are under different evolutionary 

constraints, it makes sense to evaluate the implications for fitness-related phenotypes. Many 

studies have taken advantage of network measures to examine different classes of gene. 

Essential genes encode proteins that are required for organismal survival, such that loss of 

the gene is lethal. Essential genes are reported to have higher degree 90, higher clustering 

coefficients 91, 92 and higher betweenness centrality in the PPI network 86. Grouping high 

degree nodes according to their status as party and date hubs further revealed that party hubs 

are more often essential than date hubs 82. Cancer genes were also found to be enriched at 

hubs by several studies 93–96. In contrast, Mendelian disease genes were found to be less 

central in the network than essential and cancer genes 93, 94, particularly when essential 

Mendelian genes are excluded from the analysis 94. Interestingly, disease genes associated 

with dominant disorders had higher degree in the network than genes associated with 

recessive disorders (Feldman et al., 2008). In contrast, gene deletion at the periphery of the 

network was less frequently associated with an essential or disease phenotypes 93, 97. Figure 

2 shows an example of analyzing network feature distributions for different classes of gene.

The relationship between network location, gene essentiality and disease raises the 

possibility of inferring the importance of a gene using network measures. For example, Xu 

et al. used a k-nearest neighbors approach to implicate genes with similar network 

characteristics as likely Mendelian disease genes 101. Such approaches have also been 

generalized to predicting drug targets and toxicities 102, 103. Kotlyar et al. found that the 

centrality of genes regulated by a drug target was correlated with the toxicity of the drug 102.

The modular organization of the PPI network has been useful for implicating disease genes. 

According to the disease module hypothesis, genes related to a particular disease or 

symptom are likely to reside in the same region of the interactome 94, 104, 105. A variety of 

community detection algorithms are available to identify tightly clustered groups of nodes 

that are more likely to be functionally related. Approaches have included random walk-

based algorithms 106 and non-negative matrix factorization 107. Other algorithms use 

modularity to implicate disease genes for various classes of genetic disease. For example, 

the HetRank method uses networks to rank candidate genes for monogenic diseases 

exhibiting locus heterogeneity 108. In the setting of complex multigenic risk for disorders 

such as obesity, heart disease or diabetes, disease modularity has been used to uncover 

shared biological mechanisms underlying diseases by mapping distant risk variants, such as 

are identified by genome wide association studies, to genes that are close together in the 

network. Under the assumption that risk genes for the same disorder are more likely to be 

functionally related, Tasan et al used a network of functionally associated genes to prioritize 

genes in disease-associated genomic regions 109.

Efforts to catalog mutations in thousands of tumor genomes have uncovered substantial 

genetic heterogeneity in cancer as well; despite their phenotypic similarities (cancer cells 

Capriotti et al. Page 10

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



display certain hallmark behaviors 110), individual tumors rarely share the same mutations 
111. Although there is very little overlap in the genes that are mutated between tumors, the 

genes affected by causal driver mutations tend to converge on a limited set of pathways 
99, 112, 113. Since genes within a pathway also tend to cluster in biological networks, 

mutations can be mapped onto a network in order to identify sub-networks of genes that are 

enriched for alterations 114–116 or assess tumor similarity using the set of pathways or 

network regions mutated in common 117, 118. A more in depth discussion of network 

analysis for tumor genomes is provided by Ozturk et al 119.

A phenotype of great medical interest is synthetic lethality. In the setting of synthetic 

lethality, mutations impairing one gene render loss of function at another gene lethal to the 

cell 120. The most extensive studies of synthetic lethality have been performed by knocking 

out all genes individually and in pairwise combination is s. cerevisiae 121. Synthetic lethality 

occurs when cells are robust to knock out of each gene independently but sensitive to the 

loss of both. This raises the possibility of designing therapies that exploit pre-existing 

mutations in cells to selectively eliminate diseased cells, a strategy that has been 

successfully used to combat cancer 122–124. Analysis using the interactome network 

topology revealed that synthetic lethal genes pairs were frequently clustered and coded for 

functionally related proteins that shared interaction partners, implicating protein interactions 

as a major source of synthetic lethality 125. More recently, CRISPR-Cas9 was used to 

analyze the consequences of pairwise gene knockout in mammalian cells. Synthetic lethal 

pairs overlapped across three cell lines, but also showed significant differences, suggesting 

that lethality may vary considerably across cell types and conditions 120, 126.

NETWORK-INFORMED VARIANT INTERPRETATION

From the observed relationship between network topology and essential or disease genes, it 

follows that the potential of genetic variants to cause a phenotype is determined by the 

location of the altered protein within the network 14, 91, 127. Analysis of loss of function 

variants with and without pathogenic consequences confirms that interactome topology is a 

determinant of genotype to phenotype relationships. Garcia-Alonso et al reported that loss of 

function variants in healthy individuals were more frequently observed in genes located near 

the periphery of the interactome. In contrast, loss of function variants with pathological 

phenotypes were more central 93. Piñero et al found that network centrality was inversely 

correlated with tolerance to mutation and that this could be observed at different scales, 

global and local, within the interactome 128. Of note, the association between network 

centrality and tolerance to loss of function variants was found to hold for PPI and regulatory 

networks, but not metabolic networks 97. These studies suggest that the topological location 

of a variant within the network may be helpful in determining its pathogenicity.

Modeling variants as network perturbations

Most genetic variants are not loss of function events, but rather result in more subtle changes 

to protein sequences, and mutations within the same protein can have very different effects 

on its function 129. It has been shown experimentally that most nonsynonymous Mendelian 

disease mutations generate stable proteins, supporting that mutation effects on specific 
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protein activities rather than absence of protein drives disease phenotypes 22. Mapping 

variants to nodes in the network cannot capture such subtle differences in variant effect, 

however the integration of information about protein structure and functional sites with 

protein interactions has made it possible to better discriminate variants in some cases by 

mapping them to network edges. Zhong et al introduced the concept of ‘edgetics’ to describe 

the potential of mutations to perturb distinct interactions in which a protein participates 
13, 20, 130. Under this model, variants mapping to the core have the potential to eliminate all 

interactions by destabilizing the protein, while variants mapping to interaction interfaces 

have the potential to perturb specific subsets of interaction (Figure 3).

Studies of edgetic effects requires information about the three-dimensional structure of 

protein complexes, so that amino acid residues can be labeled according to their location in 

the protein core, on the surface or at an interface between interacting proteins (Figure 4). 

The framework of edgetics thus allows variants to be studied not only in the context of their 

location in the network, but also according to their direct impact on network topology. 

Structurally resolved interactome networks, which integrate information about the domains 

or amino acid residues that physically interact, are increasingly available to explore the 

mechanisms by which mutations cause disease at scale 130–134. Multiple studies using 

structurally resolved networks revealed a statistical excess of known disease mutations at 

protein interaction interfaces135–137, with in-frame disease mutations enriched at interfaces 

relative to truncating mutations 137, confirming the utility of such networks for 

systematically investigating disease mechanism.

Early edgetic analyses focused on Mendelian mutations and revealed several key advantages 

to the edgetic model. Zhong et al. proposed that edgetics had the potential to describe 

aspects of genetic disease that could not be captured by topological location of a protein 

alone (Figure 5). These aspects include: 1) allelic heterogeneity (or pleiotropy), in which a 

single gene is associated with multiple phenotypes, 2) locus heterogeneity, where a single 

disorder is caused by a mutation in one of several genes, 3) variable penetrance, wherein not 

all individuals with a variant have a disease, and 4) variable expressivity, wherein individuals 

with a disease are not affected equally 20. Indeed, classic examples of pleiotropy and locus 

heterogeneity could be explained by edgetics. Mutations in the WASP protein associated 

with Wiskott-Aldrich Syndrome versus X-linked Neutropenia were found to map to distinct 

interfaces, while mutations associated with hemolytic uremic syndrome in the C3 and CFH 

proteins were found to map to reciprocal interfaces on the two proteins 137. Guo et al. further 

investigated the relationship between edgetic effects and the inheritance mode of diseases 

caused by particular mutations 136, finding that recessive disease mutations affecting 

reciprocal interfaces were more likely to cause the same phenotype than similar mutations 

associated with dominant effects. They described cases where dominant truncating 

mutations removed some interfaces while preserving others, such as was found for TRIM27 
mutations in ovarian cancer, supporting that truncating variants may also frequently have 

edgetic effects 136.

Edgetics have also provided mechanistic insights for complex diseases including autism and 

cancer. For example, a study of 1733 de novo missense mutations from autism spectrum 

disorder exomes demonstrated a significant enrichment of missense mutations affecting 
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protein interactions in probands relative to unaffected siblings 138. Experimental assessment 

using the CloneSeq pipeline to test the effect of mutations on binary protein interactions 139 

found that 74/361 (20%) of tested interactions were altered in probands versus only 21/208 

(10%) in unaffected siblings. Several studies have demonstrated that somatic mutations 

found in tumor genomes are overrepresented at protein interaction interfaces 140–143, 

suggesting that perturbations of protein interactions frequently contribute to tumor 

development. The Cancer Cell Map Initiative is now systematically experimentally mapping 

the impact of driver mutations on the interactome in cancer to further reveal the links 

between network rewiring and tumorigenesis 144.

Genetic variants perturbing network topology

While most edgetic variants would be expected to perturb existing interactions, it is also 

possible for variants to generate new interactions. For examples, the R273H amino acid 

substitution in TP53 was found to create a binding site for NRD1, and this novel interaction 

was found to promote cellular invasion in the setting of cancer 13, 145. Such novel 

interactions may be difficult to predict, and it remains unclear how frequently amino acid 

substitutions generate new interfaces. The simplest way for novel interactions to emerge is 

likely through modified specificity at existing binding sites, and such events may be most 

prevalent in proteins families with high functional similarity. For example, many mutations 

in cancer are thought to alter the specificity of kinases for their substrates 146, 147. Frequent 

cancer mutations were reported at acetylation and ubiquitination sites as well 148. 

Experimental evidence also suggested that many disease mutations affect the motif 

specificity of transcription factors, with many mutations reducing the specificity of DNA 

binding sites, thereby allowing more promiscuous binding 22.

Nonsynonymous variants and small insertions and deletions have been the focus of most 

edgetic studies, however there are other types of alteration that have the potential to ‘rewire’ 

the interactome. Alternative splicing generates different proteins from the same gene, and 

dependent on which exons are included, these protein isoforms can include different binding 

interfaces. Yang et al used experimental approaches to map the interactome of 1,423 protein 

isoforms 149, and subsequently Ghadie et al. used in silico analysis of interface containing 

domain usage by various splice isoforms to construct an isoform-specific interactome 150. 

Both studies found that patterns of protein interaction with different isoforms was associated 

with divergent disease phenotypes, creating additional opportunity for pleiotropy 149, 150. In 

cancer, aberrant splicing was enriched at domain families that mediate protein interactions 

which also frequently harbored other types of mutation 151.

Not all genes create equal opportunity for ‘rewiring’ biological networks. In cancer, 

mutations often affect genes capable of causing large changes in the network. For example, 

cancer mutations frequently affect genes involved in chromatin remodeling, resulting in 

widespread changes to gene expression 113. Fusion proteins are another common event in 

tumor genomes that can result in network rewiring. A recent pan-cancer analysis found that 

fusions often involved genes with high degree in the network and that did not interact prior 

to the fusion event 152. Some recurrent cancer fusions involve genes that regulate the activity 

of multiple targets such as transcription factors, (e.g. RUNX1, ERG) or kinases (e.g. ABL1, 
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NTRK1). Mutations with large impacts on network architecture are likely to be uncommon 

in inherited disease, as their consequences may be too severe to support early development 

in multicellular organisms. The hypothesis is consistent with reports that Mendelian disease 

genes are less central in the PPI network and participate in fewer protein interactions than 

cancer genes 93.

Studying variant accumulation at network edges instead of nodes

Studying proteins in the context of their location in the network focuses analysis on node-

level properties. In contrast, in the framework of edgetics, variants are viewed based on their 

ability to perturb network edges. From this perspective it becomes possible to analyze the 

accumulation of variation affecting network edges rather than network nodes in order to 

better understand disease mechanism. Many cases of mutations affecting interacting genes 

and leading to similar phenotypes such as Branchiootic syndrome, Charcot‐Marie‐Tooth 

disease and Polycystic kidney disease have been reported153. Several groups have developed 

scoring strategies to prioritize network edges that are enriched for disease mutation. This 

requires first mapping variants to interface residues or interacting domains of proteins. Some 

methods evaluate the ratio of observed to expected variants in interface regions controlling 

or the size of the region relative to the size of the protein 142 and or the size and the amino 

acid composition 143. An alternative approach uses the nonsynonymous to synonymous 

(dN/dS) ratio at interfaces, a signature of selective pressure that has been used to identify 

cancer genes 154, to evaluate whether interfaces are unexpectedly biased toward functional 

variants 140. Mechismo evaluates the consequences of amino acid substitutions at interfaces 

in terms of their impact on the pair potentials relative to what is expected 131, enabling an 

assessment of the likely effect of the variant on the interface. Other analyses used methods 

such as FoldX 155 to estimate the impact of the amino acid substitution on the stability of the 

protein complex.

Using networks to predict the phenotypic consequences of variants

Since networks influence the potential of variants to have a phenotypic effect, and variants 

result in phenotypic effects by perturbing biological networks in different ways, network 

measures should be informative for computational tasks relating to variant prioritization and 

interpretation. Some methods have begun to incorporate network information into 

classification tasks. Khurana et al. combined network and evolutionary properties to build a 

classifier capable of predicting gene tolerance to loss of function mutations, enabling 

automated prioritization of loss of function events according to their potential to have 

phenotypic consequences 97. Location of a variant at a protein interface was found to be one 

of the most informative features for discriminating driver missense mutations from neutral 

passenger mutations in analysis of tumor genomes 156. Gao et al. used features derived from 

gene regulatory networks to predict the functional consequences of non-coding variants 157 

under the assumption that the causal effects of gene-expression altering variants must be 

transmitted through this network. There may be various ways to derive features from 

interactome networks for the purpose of predicting variant effects. Yu et al derived 

‘ontotypes’, a signature of nodes reached by a gene in an s. cerevisiae-specific hierarchical 

interactome network, to predict the impact of specific gene knockouts on colony growth 158.
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Several approaches have used the structure of the network more directly in predicting variant 

effects. To capture the potential for variants in the same gene to have different effects on 

biological processes, Engin et al mapped cancer mutations affecting different interfaces on 

the same protein onto different perturbed network architectures. Network propagation was 

applied to identify downstream subnetworks specifically affected by each mutation 159 

(Figure 6). These subnetworks could then be analyzed for functional enrichment to suggest 

mechanisms by which mutations perturbing distinct activities of a protein could result in 

different phenotypes. In a different study, Poole et al evaluated the statistical association of 

clusters of somatic mutations within selected proteins to pathway level changes in gene 

expression in tumors 160, raising the possibility of aggregating mutations with common 

edgetic effects across samples and simultaneously analyzing them using networks.

Recently, Ma et al. developed DeepCell wherein the hierarchical interactome was used to 

constrain the architecture of a deep convolutional neural network that was trained to predict 

growth effects from genotype in s. cerevisiae 161. DeepCell was found to effectively simulate 

growth phenotypes observed in the laboratory directly from genotype. Furthermore, the 

weights learned by the neural network could be used to develop testable hypotheses about 

the mechanisms by which variants generated growth phenotypes, with some variants 

displaying Boolean-type effects on specific subsystems. Thus DeepCell mines the multi-

scale, hierarchical organization of the interactome to extract novel information linking 

genotype to phenotype.

In summary, multiple strategies have been developed to annotate variants according their 

consequences for biological networks to support their interpretation in the context of various 

phenotypes. These works lay the foundation for the next generation of automated variant 

interpretation tools that will integrate information about the architecture of the biological 

system and the potential of variants to perturb it. Strategies for quantifying variant effects on 

the network, or using network information to predict variant activity have thus far focused 

largely on single variants, however we note that multiple variants can simultaneously be 

mapped to network effects. This raises the possibility of using networks to predict the joint 

effects of combinations of variants, such as occur in complex polygenic diseases.

CHALLENGES AND FUTURE DIRECTIONS

While early works integrating networks with variant information to understand the 

mechanisms driving genetic disease show great promise, many challenges remain to be 

addressed. At times, analyses of network topologies have generated contradictory findings 
162–166, suggesting that careful consideration must be given to the limitations of the 

available data and the implications of choices made in constructing and analyzing network 

models when drawing biological conclusions.

Data availability and quality is an important consideration for network analyses. PPI 

networks remain incomplete and may contain many false positive connections. In addition, 

networks assembled from various published experiments may exhibit literature bias; proteins 

associated with certain phenotypes may be more studied and as a result, may appear more 

connected in the network, giving the illusion that higher degree nodes are associated with 
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phenotypes of interest 45, 91, 101. Choice of network may thus influence the biological 

conclusions drawn from network analysis. Indeed, Huang et al showed that network 

performance at recovering known disease genes varied according to the disease, and no 

single network performed best for all diseases 52. To partially address this issue, several 

methods for selecting high-quality PPI datasets and score the reliability of an interaction 

have been developed 53.

Models frequently focus on specific aspects of biology while ignoring others. For example, 

many molecular interactome networks ignore regulatory interactions by which distant 

proteins in the network can influence each other, and often do not account for post-

translational modifications. Hybrid networks that incorporate both physical and regulatory 

interactions can be constructed167 but statistical analysis may be complicated by the 

inclusion of different types of relationship. More sophisticated applications of natural 

language processing may support direct inference of more complex network models directly 

from the literature168. Many of the approaches discussed in this overview treat proteins as 

static network nodes and do not attempt to incorporate protein levels. Integrating 

interactome networks with more quantitative modeling techniques that rely on differential 

equations169 or agent based models170 could present a pathway for including quantitative 

and dynamic information about protein levels, however these methods are frequently 

computationally intensive and may not be practical for large networks.

Structure is not available for the majority of human proteins, limiting the investigation of 

variants affecting protein interactions. The extent to which networks themselves are 

complete also remains poorly understood. Many conclusions have been drawn based on the 

architecture of the human interactome, however some estimates suggest that at most 20% of 

interactions have been experimentally measured 105. In addition, gene expression patterns 

differ widely across cell types, suggesting that for accurate inference, network architectures 

need to be cell-type specific. Indeed, disease network modules tend to include genes that are 

coexpressed in specific tissues 171, and several groups have now constructed tissue-specific 

networks to study disease variation 172, 173. Many of the analyses described here have yet to 

be revisited in a tissue- or cell-type specific setting. Finally, network representations are 

usually static, whereas the biological networks that they represent are dynamic and 

conditional. Protein interactions often require particular localization or post-translational 

modification. Novel technologies such as APEX, a proximity labeling technique recently 

developed to enable spatially resolved analysis of protein interaction networks 174, may 

provide a solution to further resolve cell-type specific interactions and subcellular location 

thereof. Distinguishing between constitutive and transient interactions, and cell-state specific 

interactions may be important for further understanding the potential of variants to generate 

relevant phenotypes 175. Thus, the Stable Isotope Labeling by Amino acids in Cell culture 

(SILAC) method, a mass spectrometry technique able to detect differences in protein 

abundance among samples using non-radioactive isotopic labeling, has been used to measure 

stability of protein-protein interaction 176.

New technologies are emerging that can accelerate the pace of interaction profiling and that 

will create more complete networks and new opportunities for analysis. Next generation 

sequencing-based interaction screening technologies such as BFG-Y2H 85 and CrY2H-seq 
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177 allow higher throughput screening for binary interaction. Combining such technologies 

with techniques like deep mutational scanning 178 could allow more systematic profiling of 

the edgetic effects of variants. Technologies such as Perturb-seq also allow high-throughput 

profiling of the effects of variants on single cell transcriptional profiles, creating 

opportunities to quantify the broader effects of variants at the resolution of specific cell 

types 179. Interactome networks have the potential to play a key role in the interpretation of 

such assays.

Conclusion

A rapidly growing body of research has demonstrated the utility of network analysis for 

understanding disease mechanism. Many early studies relied on interactome networks 

derived from model organisms, such as s. cerevisiae, but the less complete human 

interactome has been instrumental for studying the relationships between genetic variation, 

genes and disease. Many insights have been gained from the study of genes with clear 

phenotypes, including essential genes, Mendelian disease genes and cancer genes. 

Interactome networks have also been successfully used to identify drug targets and study 

mechanisms underlying toxicities. However, a significant proportion of human genetic 

disease remains poorly understood, particularly for complex multigenic disorders.

As new high-throughput experimental assays emerge, databases of genetic variation and 

network models will become increasingly available and more complete. Large consortia are 

generating invaluable multi-layer datasets that can create new opportunities for integrated 

analysis for variant interpretation. For example, the eGTEx project will add epigenetic 

measurements to complement the library of tissue-specific expression data in GTEx 180, 

enabling integration of epigenetic factors and tissue specific gene regulation into models for 

interpreting disease variants 181, 182. These new methodologies and datasets create 

opportunities for the development of computational models that support network-informed 

inference to predict the phenotypic consequences of genetic variation and reveal the 

mechanisms by which variants contribute to complex human diseases.

Recent technological advances are enabling the development of emerging research fields 

such as the Molecular Pathological Epidemiology (MPE) incorporating interpersonal 

heterogeneity of a disease process into epidemiology 183. In this framework the integration 

of data capturing the complex combination of genetic heterogeneity (endogenous factors) 

and the environment (exogenous factors) is providing novel insights underlying etiologic 

mechanisms of different cancer types184 and define new therapeutic strategies 185.

Although these early efforts show great promise, new technological and algorithmic 

advances will be required to realize the full potential of networks to inform variant 

interpretation and precision medicine.
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Figure 1. Network analysis measures.
PPI network of the NTRK2 activation pathway through FRS2/FRS3. A) The degree (k) is 

the number of edges of a node. The degree of FRS2 is 8. The edges are highlighted in red. 

B) The clustering coefficient C of a node is calculated as the ratio between the connected 

triangles (delimited by the solid red and grey lines) and the total number of possible 

triangles k×(k-1). The dashed lines represent the unbound triangles. For FRS2, C is 0.75 

(21/28). C) The degree centrality (CD) of a node is the number of edges divided by the total 

number of possible edges. The CD of FRS2 is 0.8 (8/10). Red dotted lines represent the 

missing edges. D) The betweenness centrality (B) is the sum over all the possible pairs of 

the fraction of shortest path passing through a node (red) divided by the total number of 

shortest paths. B of FRS2 is 9.167 (18×0.5+0.167). Grey edges are part of the shortest paths 

not passing through FRS2. In this example, edge length is determined by the layout 

algorithm and does not have a quantitative interpretation.
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Figure 2. Exploring network topology as a determinant of gene-phenotype relationships.
Topological location within the network has implications for biological function. A) Nodes 

can be described with respect to particular characteristics in the network, including high 

degree hubs (red), nodes at the periphery (yellow) and nodes with the highest centrality 

according to four popular measures of centrality. We calculated network measures including 

B) degree and C) betweenness centrality for four groups of genes: 1,371 essential genes 98, 

125 cancer genes 99, 2,921 Mendelian disease genes 100, and 7,099 other genes based on the 

latest release of STRING 42 to illustrate the types of observation that have been revealed by 

systematic studies of genes with respect to location in the interactome.
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Figure 3. Conceptual framework of edgetics.
Location of variants within a protein has implications for their phenotypic consequences. 

Variants that map to the core of the protein are more likely to destabilize it, resulting in a 

loss of all interactions in which the protein participates. In contrast, mutations at protein 

interaction interfaces are more likely to perturb specific interactions. Variants mapping to the 

protein surfaces outside of binding interfaces are less likely to create a phenotype than core 

or interface variants.
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Figure 4. Mapping amino acid position to potential to interfere with protein interactions.
Protein structures of FGF2 and FGFR1 are shown on the left and right respectively, and as a 

complex in the center (Protein Data Bank structure ID: 1CVS). In the complex, residues are 

colored according to location in the protein core (purple and green), at the interface (pink 

and blue) or at the surface outside of the interface (transparent pink and blue) on the two 

proteins respectively.
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Figure 5. Modeling the edgetic effects of genetic variants supports exploration of disease 
mechanisms.
A) Pleiotropy can result when different variants in the same gene affect different interactions 

in which a protein participates. B) Variants at reciprocal interfaces of interacting proteins 

can contribute to locus heterogeneity.
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Figure 6. Propagating variant effects on networks.
Variants can be used as signal sources for network propagation in order to identify network 

neighborhoods affected by variants. Edgetic effects can be used to constrain network 

propagation according to the effects of variants on specific protein interactions. On the left 

side of this schematic, two variants to the purple node affect interactions with different 

subsets of partners (indicated by blue and pink nodes respectively). Network propagation 

can be used to implicate network regions likely to be affected by each variant, and these can 

be contrasted to identify regions perturbed by both variants that could explain shared 

phenotypes (right network, circled purple shaded nodes), or regions affected specifically by 

each variant (right network, blue and pink shaded regions) which could help explain 

pleiotropic effects.
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Table 1.

Selected databases and resources for variant interpretation in the context of biological interactions

Database Data URL

Variant databases

1000 Genomes Whole genome and variants of >2500 individuals http://www.internationalgenome.org

ClinVar Human variants with clinical significance https://www.ncbi.nlm.nih.gov/clinvar

COSMIC Catalogue of somatic mutations in cancer https://cancer.sanger.ac.uk/cosmic

dbSNP Small variants from several organisms https://www.ncbi.nlm.nih.gov/snp

GWAS Catalog Disease-associated variants from published GWAS https://www.ebi.ac.uk/gwas

SwissVar Annotated single amino acid variants https://swissvar.expasy.org

Network resources

BioPlex Human PPIs from AP-MS http://bioplex.hms.harvard.edu

HuRI Human PPIs from Y2H http://interactome.baderlab.org/

IntAct Manually curated PPIs from literature https://www.ebi.ac.uk/intact

iRefIndex Integration of PPIs from many databases http://irefindex.org

KEGG Reference database for biochemical pathways https://www.genome.jp/kegg

NDEx Platform for sharing and analyzing biological networks http://www.ndexbio.org

Pathway Commons Human PPIs and pathways from different sources http://www.pathwaycommons.org

Reactome Integration of PPIs and pathways from many databases https://reactome.org

STRING Experimental and predicted PPIs https://string-db.org

Disease/Phenotype association and classification

CTD Curated gene and chemical-phenotype associations http://ctdbase.org

Disease Ontology Hierarchical ontology for description of diseases. http://disease-ontology.org

DisGeNet Resource of variant and gene association to disease http://www.disgenet.org

dSysMap Maps of disease mutations on the structural interactome https://dsysmap.irbbarcelona.org

HPO Ontology for the description of phenotypic abnormalities https://hpo.jax.org

OMIM Database of genes implicated in Mendelian disorders https://omim.org

AP-MS: affinity purification-mass spectroscopy. PPI: Protein-Protein Interaction. Y2H: Yeast two-Hybrid
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