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Abstract

Purpose: Manual delineation of organs-at-risk (OARs) in radiotherapy is both time-consuming 

and subjective. Automated and more accurate segmentation is of the utmost importance in clinical 

application. The purpose of this study is to further improve the segmentation accuracy and 

efficiency with a novel network named Convolutional Neural Networks (CNN) Cascades.

Methods: CNN Cascades was a two-step, coarse-to-fine approach that consisted of a Simple 

Region Detector (SRD) and a Fine Segmentation Unit (FSU). The SRD first used a relative 

shallow network to define the region of interest (ROI) where the organ was located, and then the 

FSU took the smaller ROI as input and adopted a deep network for fine segmentation. The 

imaging data (14,651 slices) of 100 head-and-neck patients with segmentations were used for this 

study. The performance was compared with the state-of-the-art single CNN in terms of accuracy 

with metrics of Dice similarity coefficient (DSC) and Hausdorff distance (HD) values.

Results: The proposed CNN Cascades outperformed the single CNN on accuracy for each OAR. 

Similarly, for the average of all OARs, it was also the best with mean DSC of 0.90 (SRD: 0.86, 

FSU: 0.87, and U-Net: 0.85) and the mean HD of 3.0 mm (SRD: 4.0, FSU: 3.6, and U-Net: 4.4). 

Meanwhile, the CNN Cascades reduced the mean segmentation time per patient by 48% (FSU) 

and 5% (U-Net), respectively.

Conclusions: The proposed two-step network demonstrated superior performance by reducing 

the input region. This potentially can be an effective segmentation method that provides accurate 

and consistent delineation with reduced clinician interventions for clinical applications as well as 

for quality assurance of a multi-center clinical trial.
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1. Introduction

Modern radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT), 

volumetric-modulated radiotherapy (VMAT) and TOMO therapy have the ability to create 
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highly conformal dose distributions to the tumor target and therefore better spare individual 

organs-at-risk (OARs) to reduce radiation-induced toxicities. The increasing precision of 

radiotherapy treatment planning requires accurate definition of OARs in computed 

tomography (CT) images to fully realize the benefits afforded by these technological 

advances. However, this procedure is usually carried out manually by physicians, which is 

not only time-consuming, but may also need to be repeated several times during a treatment 

course due to significant anatomic changes (such as from tumor response). The delineation 

accuracy also depends on the physicians’ experience, and considerable inter-and intra-

observer variations in the delineation of OARs have been noted in multiple disease sites 

including head-and-neck (H&N) cancer [1–3].

A fully automated method of OARs delineation for radiotherapy is helpful to relieve 

physicians from this demanding process, and to increase accuracy and consistency. Artificial 

intelligence (AI), especially the Convolutional Neural Networks (CNN) [4–7] is a potential 

tool for solving this problem. AI has the potential to change the landscape of medical 

physics research and practice [8–10] and the utility of CNN in segmentation is a general 

trend. CNN consists of several convolutional and pooling layers. Multiple-level visual 

features are extracted and predictions are made automatically. There has been increasing 

interest in applying CNN to radiation therapy [11–15]. The group (Ibragimov and Xing) 

pioneered the introduction of CNN into radiotherapy contouring [11] and achieved better or 

similar results in H&N site compared with state-of-the-art algorithms. Soon, some varietal 

network models [12, 13] succeeded in other anatomical sites and qualified for clinical use 
[14, 15]. These methods improved contouring consistency and saved physicians’ time to some 

extent. However, improved accuracy and efficiency is highly desirable for wide-spread 

adoption.

One of the main drawbacks of CNN is its poor scalability with large input image size that is 

common for medical images. When performing segmentation of an isolated organ, the 

background is often uncorrelated and acts as a distraction to the primary task. The CNN is 

therefore burdened by relatively large background datasets, which affect the segmentation 

performance, especially for the smaller organs. Our work is inspired by the method by which 

physicians perform organ segmentation tasks. For an individual organ (e.g. the spinal cord) 

in a large image, they usually first focus on a relatively smaller region of interest (ROI) (e.g., 

the vertebral column) and then delineate the individual organ within the ROI. Here, we 

proposed CNN Cascades for segmentation of OARs in a similar fashion. It applied two 

cascaded networks of which the first for location and the second for precision segmentation. 

By filtering out the distractors in the big image, the proposed method could focus processing 

power on the specific discerning features of the organs, while simultaneously reducing time 

required for segmentation. There have been similar mechanisms named ‘attention models’ 

for many computer vision tasks [16, 17] and recently He et al [18] proposed a Mask R-CNN 

that added a branch for predicting an object mask in parallel with the existing branch for 

bounding box recognition detection. This study has three main new contributions as 

compared with existing methods. First, the proposed method does not need a large number 

of additional manual annotations of the bounding boxes as required for the instance 

segmentation methods (e.g. the Mask R-CNN). It has the benefit that it adopts a self-

attention mechanism to focus on the ROI and only requires the ground truth of the contours. 
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This will greatly reduce the complexity of data preparation for training. Second, we trained 

two deep CNN separately, i.e., the SRD to predict segmentation mask to shrink the input 

region and the FSU to achieve fine-segmentation. It allows the usage of any existing method 

in each component of the process, and each model could be fine-tuned for more accurate 

final segmentation. Finally, the proposed method can rapidly locate the OAR region in the 

form of a rectangular box which includes useful information around the OAR. Only the 

small region is used for fine-segmentation which has greatly improved efficiency.

2. Methods and Materials

2.1. Data and Pre-processing

The imaging data set used for this study is publically available via the Cancer Imaging 

Archive (TCIA) [19]. It consists of 100 head-and-neck squamous cell carcinoma (HNSCC) 

patients’ images and DICOM RT data [20, 21]. Simulation CT was scanned with the patient in 

the supine position. CT images were reconstructed with a matrix size of 512×512 and slice 

thickness of 2.5 or 3.0 mm. In total, there were 14,651 two-dimensional (2D) CT slices. The 

pixel size was 0.88–1.27 mm with a median value of 1.07 mm. The radiotherapy contours 

were directly drawn on the CT by expert radiation oncologists and thereafter used for 

treatment planning [20]. The relevant OARs studied in this research were the brainstem, 

spinal cord, left eye, right eye, left parotid, right parotid, and mandible.

The image data were pre-processed in MATLAB R2017b (MathWorks, Inc., Natick, 

Massachusetts, United States). The original CT data read from Dicom image was of 16-bit. 

It was converted to an intensity image in the range 0 to 1 with the function ‘mat2gray’ and 

then multiplied with 255 to create the 8-bit data. A contrast-limited adaptive histogram 

equalization (CLAHE) algorithm [22] was followed to enhance the contrast. The final data 

used for CNN were the 2D CT slices and the corresponding contour labels. These processes 

were fully automated.

2.2. CNN Cascades for Segmentation

In this study, we introduced an automated segmentation method for OARs delineation using 

region-of-interest-based serially connected CNN. Figure 1 depicts the flowchart of the CNN 

Cascades. It was an end-to-end segmentation framework that could predict pixel class labels 

in CT images. Different from the current single CNN methods, we used two cascade 

networks to improve the accuracy and efficiency, including a Simple Region Detector (SRD) 

and a Fine Segmentation Unit (FSU). The SRD and FSU used the deep dilated convolutional 

neural networks (DDCNN) [12] and the very deep dilated residual network (DD-ResNet) [13], 

respectively. Both were segmentation nets using CNN to classify every pixel of the object in 

the image into a given category. The SRD used a relative shallow network to identify the 

ROI where the organ was located, and the ROI image was then used by the FSU with a very 

deep network to fine-segment the organs.

Specifically, the input of SRD was the 2D CT image (CT with size: M×M) and the output 

was the course segmentation (size: M×M) of one OAR. Then the center (C) of the 

segmented OAR was calculated and located in each CT slices. Taking the point C as the 
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center, a square ROI with a dimension of M
n × M

n  (n = 2 for big organs, 4 for small organs) 

encompassing the OAR was selected in the CT image. Next, enlarging the ROI by n times to 

the original size M×M rendered an enlarged CT image (CTROI), which was used as the input 

to FSU for fine-segmentation. The final result was restored from the output of FSU in the 

original image. The SRD may have generated either false negative or false positive ROIs. 

The slices containing false positive ROIs will introduce more images to the second step of 

the fine segmentation, which does not affect the final performance; however, the slices 

containing the false negative ROIs will be lost. According to our experience, the maximum 

number of slices at the boundary that may be ignored by our coarse segmentation was 3. In 

order to avoid losing such information, we took 5 more slices into consideration at the 

superior and inferior borders, respectively. The center of the segmented OAR was estimated 

with linear extrapolation method in these CT slices. With the ROI selection and fine-

segmentation operations, CNN Cascades could learn to focus processing and discriminatory 

power on the section of the image that is relevant for the specific organ.

2.3. Experiments

The performance of CNN Cascades was evaluated with 5-fold cross-validation. The dataset 

was randomly divided into 5 equal-sized subsets. For each loop of validation, 80% of the 

data were used as the training set to “tune” the parameters of the segmentation model, and 

the remaining 20% cases were used as the test set to evaluate the performance of the model.

For data augmentation, we adopt some most popular and effective methods, such as random 

resize between 0.5 and 1.5 (scaling factors: 0.5, 0.75, 1, 1.25, and 1.5), random cropping 

(crop size: 417×417), and random rotation (between −10 and 10 degrees) for training 

dataset. This comprehensive scheme greatly enlarged the existing training dataset and made 

the network resist overfitting.

The two nets, SRD and FSU, were trained independently and were combined only during 

the inference stage. The model parameters for each network were initialized using the 

weights from the corresponding model trained on ImageNet and were then “fine-tuned” 

using training data. We used a batch size of 12 for SRD with shallow network and 1 for FSU 

with deep network due to memory limitations. The input images and their corresponding 

segmentation labels were used to train the network with the Stochastic Gradient Descent 

implementation of Caffe [23]. We used the “poly” learning rate policy with initial learning 

rate of 0.0001, learning rate decay factor of 0.0005, and momentum of 0.9, respectively. 

Both SRD and FSU models were fine-tuned for 80K iterations.

2.4. Quantitative Evaluation

The cross-validation set was used to assess the performance of the model. All the 2D CT 

slices of the validation set were segmented one by one. The input was the 2D CT image and 

the final output was pixel-wised classification (1 for segmented target and 0 for 

background). The boundary of the segmented target was extracted as the contour. Manual 

segmentations (MS) generated by the experienced physicians were defined as the reference 

segmentations. The segmentation accuracy was quantified using two metrics: the Dice 

similarity coefficient (DSC) [24] and the Hausdorff distance (HD) [25]. Both of them measure 
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the degree of mismatch between the automated segmentation (A) and the manual 

segmentation (B). The DSC is calculated as DSC = 2TP/(2TP+FP+FN) using the definition 

of true positive (TP), false positive (FP), and false negative (FN). It ranges from 0, indicating 

no spatial overlap between the two segmentations, to 1, indicating complete overlap. The 

HD is the greatest of all the distances from a point in A to the closest point in B. Smaller 

value usually represents better segmentation accuracy.

In addition, the performance of our CNN Cascades was compared with the state-of-the-art 

CNN methods (U-Net [7] and FSU) in medical segmentation. We also evaluated the accuracy 

of the coarse segmentation with SRD. The DSC and HD values for each OAR with the four 

methods were analyzed and compared. All values are presented as mean ± SD. A Multi-

group comparison of means was first carried out by one-way analysis of variance (ANOVA) 

test. If it was significant, then a post hoc test by Least Significant Difference (LSD) test was 

performed to detect whether a significant difference lies between the proposed method and 

each of the other methods. All analyses were performed with a p-value set to <0.05.

3. Results

3.1. Accuracy

The detailed results of are shown in Table 1 and Table 2. It can be seen from the quantitative 

evaluation metrics that the proposed CNN Cascades approach gave the best accuracy 

compared with other methods. The advantage over U-Net and SRD was significantly for all 

the OARs (p<0.05). Although the LSD test showed some of the metrics (DSC of left eye and 

Mandible, and HD of left eye, right eye and left parotid) between CNN Cascades and FSU 

were not so significant, CNN Cascades had the highest mean DSC values and the lowest 

mean HD values for each OAR.

The mean values of evaluation metrics for all the OARs with the different methods were 

evaluated. CNN Cascades was also the best with mean DSC of 0.90 (SRD: 0.86, FSU: 0.87, 

and U-Net: 0.85) and the mean HD of 3.0 mm (SRD: 4.0, FSU: 3.6, and U-Net: 4.4).

Figure 2 shows the visualization organ segmentation in axial cross-sections. The auto-

segmented contours with all the methods were in good agreement with the reference 

contours. However, the single CNN (U-Net and FSU) missed some contours for mandible 

and parotids, especially at the superior and inferior border and small regions. At the same 

time, U-Net produced some wrong scattered points for mandible.

3.2. Time Cost

The mean time for automated segmentation with FSU, U-Net and CNN Cascades was about 

10.6 (SD +/−0.8) min, 5.8 (SD +/−0.4) min and 5.5 (SD +/−0.3) min per patient, 

respectively, using Amazon Elastic Compute Cloud with NVIDIA K80 GPU. The proposed 

CNN Cascades significantly reduced the mean segmentation time by 48% (FSU, p<0.05) 

and 5% (U-Net, p<0.05), respectively.
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4. Discussion

This study proposed a two-step CNN Cascades model to improve the segmentation accuracy 

of OARs in radiotherapy. For all the OARs, CNN Cascades performed well with good 

agreement to the delineations contoured manually by clinical experts. It can be seen from 

Tables 1 that the CNN Cascades outperformed the current state-of-the-art nets (U-Net and 

ResNet) significantly. The reasons for the better performance of the proposed method can be 

explained as follows: The segmentation using CNN achieves pixel-wised prediction based 

on the features extracted from images with a set of convolutional filters. As for the CT 

image for radiotherapy, the image is big and there is no organ to be segmented in some 

slices. CNN needs to classify the pixel into two regions (organ and background) using lots of 

different features for all the slices. Some features might be more relevant to the organ in the 

image while others might be more relevant to the background. Each filter extracts a different 

feature; however, the number of filters is fixed in a certain CNN. The first net in out method 

could predict segmentation mask to shrink the input region. In this way it can ignore the big 

background and focus on optimizing the parameters of the filters used for segmentation. 

This means using more parameters to solve the simplified problem, which is bound to 

improve accuracy.

We compared the DSC value that is the most common evaluation index reported in the 

literature with other studies (Table 3) and found our results to of similar or improved 

accuracy. Our segmentation was done on CT images; however, magnetic resonance imaging 

(MRI) may be recommended for a better delineation of the low-contrast region [36] due to its 

superior soft-tissue visualization compared with CT for some organs. Further studies 

combining CT with MRI could improve the segmentation accuracy further.

We quantitatively evaluated the time efficiency of the proposed two-step framework. The 

proposed method had one more step in the process than single CNN; however, the 

segmentation time was less. The reason may be that the first network is very shallow and can 

define the region where the OAR located fairly quickly, while the second deep network only 

used reduced CT images for the fine prediction, saving inference time for 2D CNN.

One limitation of this study is the lack of an independent test set. The reason is that the data 

available are limited and separating an independent test set will drastically reduce the 

number of samples for training a robust model. The general approach in medical research to 

work around this limitation is a procedure called k-fold cross-validation. The dataset is split 

into k smaller sets. A model is trained using k-1 of the folds as training data and tested on 

the remaining part of the data. This step is repeated until k models are trained. The average 

performance is then used as the evaluation index of the studied method. This approach can 

be computationally expensive, but it takes full advantage of the entire dataset especially 

when the number of samples is very small. This approach can also demonstrate how the 

trained model is generalizable to unseen data to avoid deliberately choosing data with 

superior results for testing.

The proposed method achieved more accurate segmentation with a relatively smaller input 

region than the state-of-the-art networks used in the field of radiotherapy for automated 
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contouring. Efficiency and accuracy are highly desirable for radiotherapy segmentation. 

Unlike the networks which require the annotation of the bounding boxes, our method 

features a self-attention mechanism to focus on the ROI only with the labelling of contour. 

Moreover, the previous two-step networks usually need to be trained together; it is therefore 

more difficult to fine-tune the two networks independently. In contrast, we are able to fine-

tuned the two networks separately and optimize each. Since the proposed model is flexible, 

effective and efficient, we hope that it is a promising solution to further improve automated 

contouring in radiotherapy.

5. Conclusions

The proposed CNN Cascades with region of interest identification and fine-segmentation 

with very deep network from reduced image regions demonstrated superior performance in 

both accuracy and efficiency. It has the potential for implementations into radiotherapy 

clinical workflow as well as for quality assurance needs of multi-center clinical trials.
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Figure 1. 
The overall framework of the CNN Cascades.
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Figure 2. 
Segmentation results of CNN Cascades.
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Table 1.

DSC values of the OARs segmentation

OARs

Methods
p-value

LSD test

1.SRD 2.FSU 3.U-Net 4.CNN
Cascades

ANOVA 4 v.s. 1 4 v.s. 2 4 v.s. 3

Brainstem 0.86 ± 0.03 0.87 ± 0.02 0.84 ± 0.04 0.90 ± 0.02 <0.001 =0.001 =0.017 <0.001

Spinal Cord 0.86 ± 0.02 0.86 ± 0.02 0.85 ± 0.03 0.91 ± 0.01 <0.001 <0.001 <0.001 <0.001

Left Eye 0.89 ± 0.03 0.91 ± 0.02 0.88 ± 0.04 0.93 ± 0.01 <0.001 <0.001 =0.060 <0.001

Right Eye 0.89 ± 0.02 0.90 ± 0.02 0.89 ± 0.02 0.92 ± 0.02 =0.002 <0.001 =0.037 =0.001

Left Parotid 0.82 ± 0.03 0.83 ± 0.04 0.81 ± 0.03 0.86 ± 0.03 <0.001 <0.001 =0.010 <0.001

Right Parotid 0.81 ± 0.06 0.82 ± 0.04 0.80 ± 0.05 0.86 ± 0.03 =0.001 =0.001 =0.013 <0.001

Mandible 0.89 ± 0.02 0.90 ± 0.02 0.87 ± 0.04 0.92 ± 0.02 <0.001 =0.005 =0.159 <0.001
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Table 2.

Hausdorff distance (mm) of the OARs segmentation

OARs

Methods
p-value

LSD test

1.SRD 2.FSU 3.U-Net 4.CNN
Cascades

ANOVA 4 v.s. 1 4 v.s. 2 4 v.s. 3

Brainstem 3.9 ± 0.5 3.4 ± 0.3 4.3 ± 0.7 2.9 ± 0.3 <0.001 <0.001 =0.017 <0.001

Spinal Cord 2.3 ± 0.3 2.2 ± 0.3 2.4 ± 0.4 1.7 ± 0.2 <0.001 <0.001 <0.001 <0.001

Left Eye 2.3 ± 0.4 2.0 ± 0.4 2.6± 0.6 1.7 ± 0.3 <0.001 <0.001 =0.062 <0.001

Right Eye 2.5± 0.5 2.1 ± 0.4 2.7± 0.6 1.8± 0.3 =0.001 =0.004 =0.152 <0.001

Left Parotid 6.4 ±1.4 5.9 ± 1.4 7.0 ±1.6 5.1 ±1.1 =0.002 =0.008 =0.130 <0.001

Right Parotid 7.1 ± 1.5 6.5 ± 1.4 7.6 ± 1.5 5.4 ± 1.1 =0.001 =0.002 =0.045 <0.001

Mandible 3.2 ± 0.4 3.0 ± 0.4 4.0 ± 1.0 2.4 ± 0.4 <0.001 =0.001 =0.022 <0.001
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Table 3.

Comparison of DSC values with other studies

OARs
   DSC

Other Studies Ours

Brainstem 0.76[26], 0.77[27], 0.78[28], 0.76[29], 0.86[30], 0.83[31], 0.91[32] 0.90

Spinal Cord 0.76[26], 0.76[27], 0.85[28], 0.76[33], 0.75[34], 0.87[11] 0.91

Left Eye 0.83[26], 0.80[33], 0.88[11] 0.93

Right Eye 0.83[26], 0.80[33], 0.87[11] 0.92

Left Parotid 0.71[27], 0.78[35], 0.76[29], 0.84[30], 0.81[31], 0.83[32], 0.77[11] 0.86

Right Parotid 0.72[27], 0.79[35], 0.76[29], 0.81[30], 0.79[31], 0.83[32], 0.78[11] 0.86

Mandible 0.78[27], 0.86[35], 0.87[31], 0.93[32], 0.90[11] 0.92
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